new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

LLM Unlearning via Loss Adjustment with Only Forget Data

Unlearning in Large Language Models (LLMs) is essential for ensuring ethical and responsible AI use, especially in addressing privacy leak, bias, safety, and evolving regulations. Existing approaches to LLM unlearning often rely on retain data or a reference LLM, yet they struggle to adequately balance unlearning performance with overall model utility. This challenge arises because leveraging explicit retain data or implicit knowledge of retain data from a reference LLM to fine-tune the model tends to blur the boundaries between the forgotten and retain data, as different queries often elicit similar responses. In this work, we propose eliminating the need to retain data or the reference LLM for response calibration in LLM unlearning. Recognizing that directly applying gradient ascent on the forget data often leads to optimization instability and poor performance, our method guides the LLM on what not to respond to, and importantly, how to respond, based on the forget data. Hence, we introduce Forget data only Loss AjustmenT (FLAT), a "flat" loss adjustment approach which addresses these issues by maximizing f-divergence between the available template answer and the forget answer only w.r.t. the forget data. The variational form of the defined f-divergence theoretically provides a way of loss adjustment by assigning different importance weights for the learning w.r.t. template responses and the forgetting of responses subject to unlearning. Empirical results demonstrate that our approach not only achieves superior unlearning performance compared to existing methods but also minimizes the impact on the model's retained capabilities, ensuring high utility across diverse tasks, including copyrighted content unlearning on Harry Potter dataset and MUSE Benchmark, and entity unlearning on the TOFU dataset.

  • 9 authors
·
Oct 14, 2024

SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation

With evolving data regulations, machine unlearning (MU) has become an important tool for fostering trust and safety in today's AI models. However, existing MU methods focusing on data and/or weight perspectives often suffer limitations in unlearning accuracy, stability, and cross-domain applicability. To address these challenges, we introduce the concept of 'weight saliency' for MU, drawing parallels with input saliency in model explanation. This innovation directs MU's attention toward specific model weights rather than the entire model, improving effectiveness and efficiency. The resultant method that we call saliency unlearning (SalUn) narrows the performance gap with 'exact' unlearning (model retraining from scratch after removing the forgetting data points). To the best of our knowledge, SalUn is the first principled MU approach that can effectively erase the influence of forgetting data, classes, or concepts in both image classification and generation tasks. As highlighted below, For example, SalUn yields a stability advantage in high-variance random data forgetting, e.g., with a 0.2% gap compared to exact unlearning on the CIFAR-10 dataset. Moreover, in preventing conditional diffusion models from generating harmful images, SalUn achieves nearly 100% unlearning accuracy, outperforming current state-of-the-art baselines like Erased Stable Diffusion and Forget-Me-Not. Codes are available at https://github.com/OPTML-Group/Unlearn-Saliency. (WARNING: This paper contains model outputs that may be offensive in nature.)

  • 6 authors
·
Oct 19, 2023

Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework

Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.

  • 3 authors
·
Aug 26

TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems

Agentic AI systems, built on large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligent autonomy, collaboration and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based agentic multi-agent systems (AMAS). We begin by examining the conceptual foundations of agentic AI, its architectural differences from traditional AI agents, and the emerging system designs that enable scalable, tool-using autonomy. The TRiSM in the agentic AI framework is then detailed through four pillars governance, explainability, ModelOps, and privacy/security each contextualized for agentic LLMs. We identify unique threat vectors and introduce a comprehensive risk taxonomy for the agentic AI applications, supported by case studies illustrating real-world vulnerabilities. Furthermore, the paper also surveys trust-building mechanisms, transparency and oversight techniques, and state-of-the-art explainability strategies in distributed LLM agent systems. Additionally, metrics for evaluating trust, interpretability, and human-centered performance are reviewed alongside open benchmarking challenges. Security and privacy are addressed through encryption, adversarial defense, and compliance with evolving AI regulations. The paper concludes with a roadmap for responsible agentic AI, proposing research directions to align emerging multi-agent systems with robust TRiSM principles for safe, accountable, and transparent deployment.

  • 4 authors
·
Jun 4 2

Distill to Delete: Unlearning in Graph Networks with Knowledge Distillation

Graph unlearning has emerged as a pivotal method to delete information from a pre-trained graph neural network (GNN). One may delete nodes, a class of nodes, edges, or a class of edges. An unlearning method enables the GNN model to comply with data protection regulations (i.e., the right to be forgotten), adapt to evolving data distributions, and reduce the GPU-hours carbon footprint by avoiding repetitive retraining. Existing partitioning and aggregation-based methods have limitations due to their poor handling of local graph dependencies and additional overhead costs. More recently, GNNDelete offered a model-agnostic approach that alleviates some of these issues. Our work takes a novel approach to address these challenges in graph unlearning through knowledge distillation, as it distills to delete in GNN (D2DGN). It is a model-agnostic distillation framework where the complete graph knowledge is divided and marked for retention and deletion. It performs distillation with response-based soft targets and feature-based node embedding while minimizing KL divergence. The unlearned model effectively removes the influence of deleted graph elements while preserving knowledge about the retained graph elements. D2DGN surpasses the performance of existing methods when evaluated on various real-world graph datasets by up to 43.1% (AUC) in edge and node unlearning tasks. Other notable advantages include better efficiency, better performance in removing target elements, preservation of performance for the retained elements, and zero overhead costs. Notably, our D2DGN surpasses the state-of-the-art GNNDelete in AUC by 2.4%, improves membership inference ratio by +1.3, requires 10.2times10^6 fewer FLOPs per forward pass and up to 3.2times faster.

  • 3 authors
·
Sep 28, 2023

Beyond Benchmarks: On The False Promise of AI Regulation

The rapid advancement of artificial intelligence (AI) systems in critical domains like healthcare, justice, and social services has sparked numerous regulatory initiatives aimed at ensuring their safe deployment. Current regulatory frameworks, exemplified by recent US and EU efforts, primarily focus on procedural guidelines while presuming that scientific benchmarking can effectively validate AI safety, similar to how crash tests verify vehicle safety or clinical trials validate drug efficacy. However, this approach fundamentally misunderstands the unique technical challenges posed by modern AI systems. Through systematic analysis of successful technology regulation case studies, we demonstrate that effective scientific regulation requires a causal theory linking observable test outcomes to future performance - for instance, how a vehicle's crash resistance at one speed predicts its safety at lower speeds. We show that deep learning models, which learn complex statistical patterns from training data without explicit causal mechanisms, preclude such guarantees. This limitation renders traditional regulatory approaches inadequate for ensuring AI safety. Moving forward, we call for regulators to reckon with this limitation, and propose a preliminary two-tiered regulatory framework that acknowledges these constraints: mandating human oversight for high-risk applications while developing appropriate risk communication strategies for lower-risk uses. Our findings highlight the urgent need to reconsider fundamental assumptions in AI regulation and suggest a concrete path forward for policymakers and researchers.

  • 4 authors
·
Jan 26

Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations

Major scandals in corporate history have urged the need for regulatory compliance, where organizations need to ensure that their controls (processes) comply with relevant laws, regulations, and policies. However, keeping track of the constantly changing legislation is difficult, thus organizations are increasingly adopting Regulatory Technology (RegTech) to facilitate the process. To this end, we introduce regulatory information retrieval (REG-IR), an application of document-to-document information retrieval (DOC2DOC IR), where the query is an entire document making the task more challenging than traditional IR where the queries are short. Furthermore, we compile and release two datasets based on the relationships between EU directives and UK legislation. We experiment on these datasets using a typical two-step pipeline approach comprising a pre-fetcher and a neural re-ranker. Experimenting with various pre-fetchers from BM25 to k nearest neighbors over representations from several BERT models, we show that fine-tuning a BERT model on an in-domain classification task produces the best representations for IR. We also show that neural re-rankers under-perform due to contradicting supervision, i.e., similar query-document pairs with opposite labels. Thus, they are biased towards the pre-fetcher's score. Interestingly, applying a date filter further improves the performance, showcasing the importance of the time dimension.

  • 5 authors
·
Jan 26, 2021

Frontier AI Regulation: Managing Emerging Risks to Public Safety

Advanced AI models hold the promise of tremendous benefits for humanity, but society needs to proactively manage the accompanying risks. In this paper, we focus on what we term "frontier AI" models: highly capable foundation models that could possess dangerous capabilities sufficient to pose severe risks to public safety. Frontier AI models pose a distinct regulatory challenge: dangerous capabilities can arise unexpectedly; it is difficult to robustly prevent a deployed model from being misused; and, it is difficult to stop a model's capabilities from proliferating broadly. To address these challenges, at least three building blocks for the regulation of frontier models are needed: (1) standard-setting processes to identify appropriate requirements for frontier AI developers, (2) registration and reporting requirements to provide regulators with visibility into frontier AI development processes, and (3) mechanisms to ensure compliance with safety standards for the development and deployment of frontier AI models. Industry self-regulation is an important first step. However, wider societal discussions and government intervention will be needed to create standards and to ensure compliance with them. We consider several options to this end, including granting enforcement powers to supervisory authorities and licensure regimes for frontier AI models. Finally, we propose an initial set of safety standards. These include conducting pre-deployment risk assessments; external scrutiny of model behavior; using risk assessments to inform deployment decisions; and monitoring and responding to new information about model capabilities and uses post-deployment. We hope this discussion contributes to the broader conversation on how to balance public safety risks and innovation benefits from advances at the frontier of AI development.

  • 24 authors
·
Jul 6, 2023

Stronger Together: on the Articulation of Ethical Charters, Legal Tools, and Technical Documentation in ML

The growing need for accountability of the people behind AI systems can be addressed by leveraging processes in three fields of study: ethics, law, and computer science. While these fields are often considered in isolation, they rely on complementary notions in their interpretation and implementation. In this work, we detail this interdependence and motivate the necessary role of collaborative governance tools in shaping a positive evolution of AI. We first contrast notions of compliance in the ethical, legal, and technical fields; we outline both their differences and where they complement each other, with a particular focus on the roles of ethical charters, licenses, and technical documentation in these interactions. We then focus on the role of values in articulating the synergies between the fields and outline specific mechanisms of interaction between them in practice. We identify how these mechanisms have played out in several open governance fora: an open collaborative workshop, a responsible licensing initiative, and a proposed regulatory framework. By leveraging complementary notions of compliance in these three domains, we can create a more comprehensive framework for governing AI systems that jointly takes into account their technical capabilities, their impact on society, and how technical specifications can inform relevant regulations. Our analysis thus underlines the necessity of joint consideration of the ethical, legal, and technical in AI ethics frameworks to be used on a larger scale to govern AI systems and how the thinking in each of these areas can inform the others.

  • 4 authors
·
May 9, 2023

Foundation Models and Fair Use

Existing foundation models are trained on copyrighted material. Deploying these models can pose both legal and ethical risks when data creators fail to receive appropriate attribution or compensation. In the United States and several other countries, copyrighted content may be used to build foundation models without incurring liability due to the fair use doctrine. However, there is a caveat: If the model produces output that is similar to copyrighted data, particularly in scenarios that affect the market of that data, fair use may no longer apply to the output of the model. In this work, we emphasize that fair use is not guaranteed, and additional work may be necessary to keep model development and deployment squarely in the realm of fair use. First, we survey the potential risks of developing and deploying foundation models based on copyrighted content. We review relevant U.S. case law, drawing parallels to existing and potential applications for generating text, source code, and visual art. Experiments confirm that popular foundation models can generate content considerably similar to copyrighted material. Second, we discuss technical mitigations that can help foundation models stay in line with fair use. We argue that more research is needed to align mitigation strategies with the current state of the law. Lastly, we suggest that the law and technical mitigations should co-evolve. For example, coupled with other policy mechanisms, the law could more explicitly consider safe harbors when strong technical tools are used to mitigate infringement harms. This co-evolution may help strike a balance between intellectual property and innovation, which speaks to the original goal of fair use. But we emphasize that the strategies we describe here are not a panacea and more work is needed to develop policies that address the potential harms of foundation models.

  • 6 authors
·
Mar 27, 2023 1

The Journey to Trustworthy AI- Part 1: Pursuit of Pragmatic Frameworks

This paper reviews Trustworthy Artificial Intelligence (TAI) and its various definitions. Considering the principles respected in any society, TAI is often characterized by a few attributes, some of which have led to confusion in regulatory or engineering contexts. We argue against using terms such as Responsible or Ethical AI as substitutes for TAI. And to help clarify any confusion, we suggest leaving them behind. Given the subjectivity and complexity inherent in TAI, developing a universal framework is deemed infeasible. Instead, we advocate for approaches centered on addressing key attributes and properties such as fairness, bias, risk, security, explainability, and reliability. We examine the ongoing regulatory landscape, with a focus on initiatives in the EU, China, and the USA. We recognize that differences in AI regulations based on geopolitical and geographical reasons pose an additional challenge for multinational companies. We identify risk as a core factor in AI regulation and TAI. For example, as outlined in the EU-AI Act, organizations must gauge the risk level of their AI products to act accordingly (or risk hefty fines). We compare modalities of TAI implementation and how multiple cross-functional teams are engaged in the overall process. Thus, a brute force approach for enacting TAI renders its efficiency and agility, moot. To address this, we introduce our framework Set-Formalize-Measure-Act (SFMA). Our solution highlights the importance of transforming TAI-aware metrics, drivers of TAI, stakeholders, and business/legal requirements into actual benchmarks or tests. Finally, over-regulation driven by panic of powerful AI models can, in fact, harm TAI too. Based on GitHub user-activity data, in 2023, AI open-source projects rose to top projects by contributor account. Enabling innovation in TAI hinges on the independent contributions of the open-source community.

  • 2 authors
·
Mar 19, 2024