new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models

We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.

  • 11 authors
·
Jun 26, 2024 1

You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense

With the rise of generative large language models (LLMs) like LLaMA and ChatGPT, these models have significantly transformed daily life and work by providing advanced insights. However, as jailbreak attacks continue to circumvent built-in safety mechanisms, exploiting carefully crafted scenarios or tokens, the safety risks of LLMs have come into focus. While numerous defense strategies--such as prompt detection, modification, and model fine-tuning--have been proposed to counter these attacks, a critical question arises: do these defenses compromise the utility and usability of LLMs for legitimate users? Existing research predominantly focuses on the effectiveness of defense strategies without thoroughly examining their impact on performance, leaving a gap in understanding the trade-offs between LLM safety and performance. Our research addresses this gap by conducting a comprehensive study on the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies. We propose USEBench, a novel benchmark designed to evaluate these aspects, along with USEIndex, a comprehensive metric for assessing overall model performance. Through experiments on seven state-of-the-art LLMs, we found that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously. Although model-finetuning performs the best overall, their effectiveness varies across LLMs. Furthermore, vertical comparisons reveal that developers commonly prioritize performance over safety when iterating or fine-tuning their LLMs.

  • 8 authors
·
Jan 21

The Psychogenic Machine: Simulating AI Psychosis, Delusion Reinforcement and Harm Enablement in Large Language Models

Background: Emerging reports of "AI psychosis" are on the rise, where user-LLM interactions may exacerbate or induce psychosis or adverse psychological symptoms. Whilst the sycophantic and agreeable nature of LLMs can be beneficial, it becomes a vector for harm by reinforcing delusional beliefs in vulnerable users. Methods: Psychosis-bench is a novel benchmark designed to systematically evaluate the psychogenicity of LLMs comprises 16 structured, 12-turn conversational scenarios simulating the progression of delusional themes(Erotic Delusions, Grandiose/Messianic Delusions, Referential Delusions) and potential harms. We evaluated eight prominent LLMs for Delusion Confirmation (DCS), Harm Enablement (HES), and Safety Intervention(SIS) across explicit and implicit conversational contexts. Findings: Across 1,536 simulated conversation turns, all LLMs demonstrated psychogenic potential, showing a strong tendency to perpetuate rather than challenge delusions (mean DCS of 0.91 pm0.88). Models frequently enabled harmful user requests (mean HES of 0.69 pm0.84) and offered safety interventions in only roughly a third of applicable turns (mean SIS of 0.37 pm0.48). 51 / 128 (39.8%) of scenarios had no safety interventions offered. Performance was significantly worse in implicit scenarios, models were more likely to confirm delusions and enable harm while offering fewer interventions (p < .001). A strong correlation was found between DCS and HES (rs = .77). Model performance varied widely, indicating that safety is not an emergent property of scale alone. Conclusion: This study establishes LLM psychogenicity as a quantifiable risk and underscores the urgent need for re-thinking how we train LLMs. We frame this issue not merely as a technical challenge but as a public health imperative requiring collaboration between developers, policymakers, and healthcare professionals.

  • 5 authors
·
Sep 13

MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?

Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.

  • 6 authors
·
Jun 22, 2024

SOSBENCH: Benchmarking Safety Alignment on Scientific Knowledge

Large language models (LLMs) exhibit advancing capabilities in complex tasks, such as reasoning and graduate-level question answering, yet their resilience against misuse, particularly involving scientifically sophisticated risks, remains underexplored. Existing safety benchmarks typically focus either on instructions requiring minimal knowledge comprehension (e.g., ``tell me how to build a bomb") or utilize prompts that are relatively low-risk (e.g., multiple-choice or classification tasks about hazardous content). Consequently, they fail to adequately assess model safety when handling knowledge-intensive, hazardous scenarios. To address this critical gap, we introduce SOSBench, a regulation-grounded, hazard-focused benchmark encompassing six high-risk scientific domains: chemistry, biology, medicine, pharmacology, physics, and psychology. The benchmark comprises 3,000 prompts derived from real-world regulations and laws, systematically expanded via an LLM-assisted evolutionary pipeline that introduces diverse, realistic misuse scenarios (e.g., detailed explosive synthesis instructions involving advanced chemical formulas). We evaluate frontier models within a unified evaluation framework using our SOSBench. Despite their alignment claims, advanced models consistently disclose policy-violating content across all domains, demonstrating alarmingly high rates of harmful responses (e.g., 79.1% for Deepseek-R1 and 47.3% for GPT-4.1). These results highlight significant safety alignment deficiencies and underscore urgent concerns regarding the responsible deployment of powerful LLMs.

  • 10 authors
·
May 27

Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models

Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

  • 27 authors
·
Sep 1

SAGE-Eval: Evaluating LLMs for Systematic Generalizations of Safety Facts

Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.

  • 3 authors
·
May 27

Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios

Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.

  • 10 authors
·
May 23 1

SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents

Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce SafeScientist, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose SciSafetyBench, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. red{Warning: this paper contains example data that may be offensive or harmful.}

  • 9 authors
·
May 29 2

Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach

Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt, posing serious safety risks in high-stakes applications where user vulnerabilities differ widely. Existing safety evaluations primarily rely on context-independent metrics - such as factuality, bias, or toxicity - overlooking the fact that the same response may carry divergent risks depending on the user's background or condition. We introduce personalized safety to fill this gap and present PENGUIN - a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants. Evaluating six leading LLMs, we demonstrate that personalized user information significantly improves safety scores by 43.2%, confirming the effectiveness of personalization in safety alignment. However, not all context attributes contribute equally to safety enhancement. To address this, we develop RAISE - a training-free, two-stage agent framework that strategically acquires user-specific background. RAISE improves safety scores by up to 31.6% over six vanilla LLMs, while maintaining a low interaction cost of just 2.7 user queries on average. Our findings highlight the importance of selective information gathering in safety-critical domains and offer a practical solution for personalizing LLM responses without model retraining. This work establishes a foundation for safety research that adapts to individual user contexts rather than assuming a universal harm standard.

  • 7 authors
·
May 24 2

Overriding Safety protections of Open-source Models

LLMs(Large Language Models) nowadays have widespread adoption as a tool for solving issues across various domain/tasks. These models since are susceptible to produce harmful or toxic results, inference-time adversarial attacks, therefore they do undergo safety alignment training and Red teaming for putting in safety guardrails. For using these models, usually fine-tuning is done for model alignment on the desired tasks, which can make model more aligned but also make it more susceptible to produce unsafe responses, if fine-tuned with harmful data.In this paper, we study how much of impact introduction of harmful data in fine-tuning can make, and if it can override the safety protection of those models. Conversely,it was also explored that if model is fine-tuned on safety data can make the model produce more safer responses. Further we explore if fine-tuning the model on harmful data makes it less helpful or less trustworthy because of increase in model uncertainty leading to knowledge drift. Our extensive experimental results shown that Safety protection in an open-source can be overridden, when fine-tuned with harmful data as observed by ASR increasing by 35% when compared to basemodel's ASR. Also, as observed, fine-tuning a model with harmful data made the harmful fine-tuned model highly uncertain with huge knowledge drift and less truthfulness in its responses. Furthermore, for the safe fine-tuned model, ASR decreases by 51.68% as compared to the basemodel, and Safe model also shown in minor drop in uncertainty and truthfulness as compared to basemodel. This paper's code is available at: https://github.com/techsachinkr/Overriding_Model_Safety_Protections

  • 1 authors
·
Sep 28, 2024

Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails

As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.

  • 7 authors
·
Jan 15

LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs

Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.

  • 9 authors
·
Oct 18, 2024 1

SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models

The past year has seen rapid acceleration in the development of large language models (LLMs). However, without proper steering and safeguards, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. We introduce SimpleSafetyTests (SST) as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 open-access and open-source LLMs and four closed-source LLMs, and find critical safety weaknesses. While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. Trained annotators labelled every model response to SST (n = 3,000). We use these annotations to evaluate five AI safety filters (which assess whether a models' response is unsafe given a prompt) as a way of automatically evaluating models' performance on SST. The filters' performance varies considerably. There are also differences across the five harm areas, and on the unsafe versus safe responses. The widely-used Perspective API has 72% accuracy and a newly-created zero-shot prompt to OpenAI's GPT-4 performs best with 89% accuracy. Content Warning: This paper contains prompts and responses that relate to child abuse, suicide, self-harm and eating disorders, scams and fraud, illegal items, and physical harm.

  • 7 authors
·
Nov 14, 2023

LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models

Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.

  • 11 authors
·
Apr 14 2

Shape it Up! Restoring LLM Safety during Finetuning

Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks.

  • 5 authors
·
May 22

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

  • 3 authors
·
Oct 31, 2023 9