Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePOLygraph: Polish Fake News Dataset
This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
Analyzing the Influence of Fake News in the 2024 Elections: A Comprehensive Dataset
This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image
This study investigates how fake news uses a thumbnail for a news article with a focus on whether a news article's thumbnail represents the news content correctly. A news article shared with an irrelevant thumbnail can mislead readers into having a wrong impression of the issue, especially in social media environments where users are less likely to click the link and consume the entire content. We propose to capture the degree of semantic incongruity in the multimodal relation by using the pretrained CLIP representation. From a source-level analysis, we found that fake news employs a more incongruous image to the main content than general news. Going further, we attempted to detect news articles with image-text incongruity. Evaluation experiments suggest that CLIP-based methods can successfully detect news articles in which the thumbnail is semantically irrelevant to news text. This study contributes to the research by providing a novel view on tackling online fake news and misinformation. Code and datasets are available at https://github.com/ssu-humane/fake-news-thumbnail.
FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections
In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.
News Category Dataset
People rely on news to know what is happening around the world and inform their daily lives. In today's world, when the proliferation of fake news is rampant, having a large-scale and high-quality source of authentic news articles with the published category information is valuable to learning authentic news' Natural Language syntax and semantics. As part of this work, we present a News Category Dataset that contains around 210k news headlines from the year 2012 to 2022 obtained from HuffPost, along with useful metadata to enable various NLP tasks. In this paper, we also produce some novel insights from the dataset and describe various existing and potential applications of our dataset.
DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature
The fluency and factual knowledge of large language models (LLMs) heightens the need for corresponding systems to detect whether a piece of text is machine-written. For example, students may use LLMs to complete written assignments, leaving instructors unable to accurately assess student learning. In this paper, we first demonstrate that text sampled from an LLM tends to occupy negative curvature regions of the model's log probability function. Leveraging this observation, we then define a new curvature-based criterion for judging if a passage is generated from a given LLM. This approach, which we call DetectGPT, does not require training a separate classifier, collecting a dataset of real or generated passages, or explicitly watermarking generated text. It uses only log probabilities computed by the model of interest and random perturbations of the passage from another generic pre-trained language model (e.g, T5). We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection, notably improving detection of fake news articles generated by 20B parameter GPT-NeoX from 0.81 AUROC for the strongest zero-shot baseline to 0.95 AUROC for DetectGPT. See https://ericmitchell.ai/detectgpt for code, data, and other project information.
Fighting an Infodemic: COVID-19 Fake News Dataset
Along with COVID-19 pandemic we are also fighting an `infodemic'. Fake news and rumors are rampant on social media. Believing in rumors can cause significant harm. This is further exacerbated at the time of a pandemic. To tackle this, we curate and release a manually annotated dataset of 10,700 social media posts and articles of real and fake news on COVID-19. We benchmark the annotated dataset with four machine learning baselines - Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.46% F1-score with SVM. The data and code is available at: https://github.com/parthpatwa/covid19-fake-news-dectection
Factify 2: A Multimodal Fake News and Satire News Dataset
The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which achieves 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.
AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset
Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks.
Defending Against Neural Fake News
Recent progress in natural language generation has raised dual-use concerns. While applications like summarization and translation are positive, the underlying technology also might enable adversaries to generate neural fake news: targeted propaganda that closely mimics the style of real news. Modern computer security relies on careful threat modeling: identifying potential threats and vulnerabilities from an adversary's point of view, and exploring potential mitigations to these threats. Likewise, developing robust defenses against neural fake news requires us first to carefully investigate and characterize the risks of these models. We thus present a model for controllable text generation called Grover. Given a headline like `Link Found Between Vaccines and Autism,' Grover can generate the rest of the article; humans find these generations to be more trustworthy than human-written disinformation. Developing robust verification techniques against generators like Grover is critical. We find that best current discriminators can classify neural fake news from real, human-written, news with 73% accuracy, assuming access to a moderate level of training data. Counterintuitively, the best defense against Grover turns out to be Grover itself, with 92% accuracy, demonstrating the importance of public release of strong generators. We investigate these results further, showing that exposure bias -- and sampling strategies that alleviate its effects -- both leave artifacts that similar discriminators can pick up on. We conclude by discussing ethical issues regarding the technology, and plan to release Grover publicly, helping pave the way for better detection of neural fake news.
A Bias Aware News Recommendation System
In this era of fake news and political polarization, it is desirable to have a system to enable users to access balanced news content. Current solutions focus on top down, server based approaches to decide whether a news article is fake or biased, and display only trusted news to the end users. In this paper, we follow a different approach to help the users make informed choices about which news they want to read, making users aware in real time of the bias in news articles they were browsing and recommending news articles from other sources on the same topic with different levels of bias. We use a recent Pew research report to collect news sources that readers with varying political inclinations prefer to read. We then scrape news articles on a variety of topics from these varied news sources. After this, we perform clustering to find similar topics of the articles, as well as calculate a bias score for each article. For a news article the user is currently reading, we display the bias score and also display other articles on the same topic, out of the previously collected articles, from different news sources. This we present to the user. This approach, we hope, would make it possible for users to access more balanced articles on given news topics. We present the implementation details of the system along with some preliminary results on news articles.
Ax-to-Grind Urdu: Benchmark Dataset for Urdu Fake News Detection
Misinformation can seriously impact society, affecting anything from public opinion to institutional confidence and the political horizon of a state. Fake News (FN) proliferation on online websites and Online Social Networks (OSNs) has increased profusely. Various fact-checking websites include news in English and barely provide information about FN in regional languages. Thus the Urdu FN purveyors cannot be discerned using factchecking portals. SOTA approaches for Fake News Detection (FND) count upon appropriately labelled and large datasets. FND in regional and resource-constrained languages lags due to the lack of limited-sized datasets and legitimate lexical resources. The previous datasets for Urdu FND are limited-sized, domain-restricted, publicly unavailable and not manually verified where the news is translated from English into Urdu. In this paper, we curate and contribute the first largest publicly available dataset for Urdu FND, Ax-to-Grind Urdu, to bridge the identified gaps and limitations of existing Urdu datasets in the literature. It constitutes 10,083 fake and real news on fifteen domains collected from leading and authentic Urdu newspapers and news channel websites in Pakistan and India. FN for the Ax-to-Grind dataset is collected from websites and crowdsourcing. The dataset contains news items in Urdu from the year 2017 to the year 2023. Expert journalists annotated the dataset. We benchmark the dataset with an ensemble model of mBERT,XLNet, and XLM RoBERTa. The selected models are originally trained on multilingual large corpora. The results of the proposed model are based on performance metrics, F1-score, accuracy, precision, recall and MCC value.
TI-CNN: Convolutional Neural Networks for Fake News Detection
With the development of social networks, fake news for various commercial and political purposes has been appearing in large numbers and gotten widespread in the online world. With deceptive words, people can get infected by the fake news very easily and will share them without any fact-checking. For instance, during the 2016 US president election, various kinds of fake news about the candidates widely spread through both official news media and the online social networks. These fake news is usually released to either smear the opponents or support the candidate on their side. The erroneous information in the fake news is usually written to motivate the voters' irrational emotion and enthusiasm. Such kinds of fake news sometimes can bring about devastating effects, and an important goal in improving the credibility of online social networks is to identify the fake news timely. In this paper, we propose to study the fake news detection problem. Automatic fake news identification is extremely hard, since pure model based fact-checking for news is still an open problem, and few existing models can be applied to solve the problem. With a thorough investigation of a fake news data, lots of useful explicit features are identified from both the text words and images used in the fake news. Besides the explicit features, there also exist some hidden patterns in the words and images used in fake news, which can be captured with a set of latent features extracted via the multiple convolutional layers in our model. A model named as TI-CNN (Text and Image information based Convolutinal Neural Network) is proposed in this paper. By projecting the explicit and latent features into a unified feature space, TI-CNN is trained with both the text and image information simultaneously. Extensive experiments carried on the real-world fake news datasets have demonstrate the effectiveness of TI-CNN.
Zoom Out and Observe: News Environment Perception for Fake News Detection
Fake news detection is crucial for preventing the dissemination of misinformation on social media. To differentiate fake news from real ones, existing methods observe the language patterns of the news post and "zoom in" to verify its content with knowledge sources or check its readers' replies. However, these methods neglect the information in the external news environment where a fake news post is created and disseminated. The news environment represents recent mainstream media opinion and public attention, which is an important inspiration of fake news fabrication because fake news is often designed to ride the wave of popular events and catch public attention with unexpected novel content for greater exposure and spread. To capture the environmental signals of news posts, we "zoom out" to observe the news environment and propose the News Environment Perception Framework (NEP). For each post, we construct its macro and micro news environment from recent mainstream news. Then we design a popularity-oriented and a novelty-oriented module to perceive useful signals and further assist final prediction. Experiments on our newly built datasets show that the NEP can efficiently improve the performance of basic fake news detectors.
Generalizing to the Future: Mitigating Entity Bias in Fake News Detection
The wide dissemination of fake news is increasingly threatening both individuals and society. Fake news detection aims to train a model on the past news and detect fake news of the future. Though great efforts have been made, existing fake news detection methods overlooked the unintended entity bias in the real-world data, which seriously influences models' generalization ability to future data. For example, 97\% of news pieces in 2010-2017 containing the entity `Donald Trump' are real in our data, but the percentage falls down to merely 33\% in 2018. This would lead the model trained on the former set to hardly generalize to the latter, as it tends to predict news pieces about `Donald Trump' as real for lower training loss. In this paper, we propose an entity debiasing framework (ENDEF) which generalizes fake news detection models to the future data by mitigating entity bias from a cause-effect perspective. Based on the causal graph among entities, news contents, and news veracity, we separately model the contribution of each cause (entities and contents) during training. In the inference stage, we remove the direct effect of the entities to mitigate entity bias. Extensive offline experiments on the English and Chinese datasets demonstrate that the proposed framework can largely improve the performance of base fake news detectors, and online tests verify its superiority in practice. To the best of our knowledge, this is the first work to explicitly improve the generalization ability of fake news detection models to the future data. The code has been released at https://github.com/ICTMCG/ENDEF-SIGIR2022.
Hoaxpedia: A Unified Wikipedia Hoax Articles Dataset
Hoaxes are a recognised form of disinformation created deliberately, with potential serious implications in the credibility of reference knowledge resources such as Wikipedia. What makes detecting Wikipedia hoaxes hard is that they often are written according to the official style guidelines. In this work, we first provide a systematic analysis of the similarities and discrepancies between legitimate and hoax Wikipedia articles, and introduce Hoaxpedia, a collection of 311 Hoax articles (from existing literature as well as official Wikipedia lists) alongside semantically similar real articles. We report results of binary classification experiments in the task of predicting whether a Wikipedia article is real or hoax, and analyze several settings as well as a range of language models. Our results suggest that detecting deceitful content in Wikipedia based on content alone, despite not having been explored much in the past, is a promising direction.
"Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection
Automatic fake news detection is a challenging problem in deception detection, and it has tremendous real-world political and social impacts. However, statistical approaches to combating fake news has been dramatically limited by the lack of labeled benchmark datasets. In this paper, we present liar: a new, publicly available dataset for fake news detection. We collected a decade-long, 12.8K manually labeled short statements in various contexts from PolitiFact.com, which provides detailed analysis report and links to source documents for each case. This dataset can be used for fact-checking research as well. Notably, this new dataset is an order of magnitude larger than previously largest public fake news datasets of similar type. Empirically, we investigate automatic fake news detection based on surface-level linguistic patterns. We have designed a novel, hybrid convolutional neural network to integrate meta-data with text. We show that this hybrid approach can improve a text-only deep learning model.
MiRAGeNews: Multimodal Realistic AI-Generated News Detection
The proliferation of inflammatory or misleading "fake" news content has become increasingly common in recent years. Simultaneously, it has become easier than ever to use AI tools to generate photorealistic images depicting any scene imaginable. Combining these two -- AI-generated fake news content -- is particularly potent and dangerous. To combat the spread of AI-generated fake news, we propose the MiRAGeNews Dataset, a dataset of 12,500 high-quality real and AI-generated image-caption pairs from state-of-the-art generators. We find that our dataset poses a significant challenge to humans (60% F-1) and state-of-the-art multi-modal LLMs (< 24% F-1). Using our dataset we train a multi-modal detector (MiRAGe) that improves by +5.1% F-1 over state-of-the-art baselines on image-caption pairs from out-of-domain image generators and news publishers. We release our code and data to aid future work on detecting AI-generated content.
Overview of Factify5WQA: Fact Verification through 5W Question-Answering
Researchers have found that fake news spreads much times faster than real news. This is a major problem, especially in today's world where social media is the key source of news for many among the younger population. Fact verification, thus, becomes an important task and many media sites contribute to the cause. Manual fact verification is a tedious task, given the volume of fake news online. The Factify5WQA shared task aims to increase research towards automated fake news detection by providing a dataset with an aspect-based question answering based fact verification method. Each claim and its supporting document is associated with 5W questions that help compare the two information sources. The objective performance measure in the task is done by comparing answers using BLEU score to measure the accuracy of the answers, followed by an accuracy measure of the classification. The task had submissions using custom training setup and pre-trained language-models among others. The best performing team posted an accuracy of 69.56%, which is a near 35% improvement over the baseline.
From a Tiny Slip to a Giant Leap: An LLM-Based Simulation for Fake News Evolution
With the growing spread of misinformation online, research has increasingly focused on detecting and tracking fake news. However, an overlooked issue is that fake news does not naturally exist in social networks -- it often originates from distorted facts or deliberate fabrication by malicious actors. Understanding how true news gradually evolves into fake news is critical for early detection and prevention, reducing its spread and impact. Hence, in this paper, we take the first step toward simulating and revealing this evolution, proposing a Fake News evolUtion Simulation framEwork (FUSE) based on large language models (LLMs). Specifically, we employ LLM as agents to represent individuals in a simulated social network. We define four types of agents commonly observed in daily interactions: spreaders, who propagate information; commentators, who provide opinions and interpretations; verifiers, who check the accuracy of information; and bystanders, who passively observe without engaging. For simulated environments, we model various social network structures, such as high-clustering networks and scale-free networks, to mirror real-world network dynamics. Each day, the agents engage in belief exchanges, reflect on their thought processes, and reintroduce the news accordingly. Given the lack of prior work in this area, we developed a FUSE-EVAL evaluation framework to measure the deviation from true news during the fake news evolution process. The results show that FUSE successfully captures the underlying patterns of how true news transforms into fake news and accurately reproduces previously discovered instances of fake news, aligning closely with human evaluations. Moreover, our work provides insights into the fact that combating fake news should not be delayed until it has fully evolved; instead, prevention in advance is key to achieving better outcomes.
r/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection
Fake news has altered society in negative ways in politics and culture. It has adversely affected both online social network systems as well as offline communities and conversations. Using automatic machine learning classification models is an efficient way to combat the widespread dissemination of fake news. However, a lack of effective, comprehensive datasets has been a problem for fake news research and detection model development. Prior fake news datasets do not provide multimodal text and image data, metadata, comment data, and fine-grained fake news categorization at the scale and breadth of our dataset. We present Fakeddit, a novel multimodal dataset consisting of over 1 million samples from multiple categories of fake news. After being processed through several stages of review, the samples are labeled according to 2-way, 3-way, and 6-way classification categories through distant supervision. We construct hybrid text+image models and perform extensive experiments for multiple variations of classification, demonstrating the importance of the novel aspect of multimodality and fine-grained classification unique to Fakeddit.
Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
Findings of Factify 2: Multimodal Fake News Detection
With social media usage growing exponentially in the past few years, fake news has also become extremely prevalent. The detrimental impact of fake news emphasizes the need for research focused on automating the detection of false information and verifying its accuracy. In this work, we present the outcome of the Factify 2 shared task, which provides a multi-modal fact verification and satire news dataset, as part of the DeFactify 2 workshop at AAAI'23. The data calls for a comparison based approach to the task by pairing social media claims with supporting documents, with both text and image, divided into 5 classes based on multi-modal relations. In the second iteration of this task we had over 60 participants and 9 final test-set submissions. The best performances came from the use of DeBERTa for text and Swinv2 and CLIP for image. The highest F1 score averaged for all five classes was 81.82%.
Sampling the News Producers: A Large News and Feature Data Set for the Study of the Complex Media Landscape
The complexity and diversity of today's media landscape provides many challenges for researchers studying news producers. These producers use many different strategies to get their message believed by readers through the writing styles they employ, by repetition across different media sources with or without attribution, as well as other mechanisms that are yet to be studied deeply. To better facilitate systematic studies in this area, we present a large political news data set, containing over 136K news articles, from 92 news sources, collected over 7 months of 2017. These news sources are carefully chosen to include well-established and mainstream sources, maliciously fake sources, satire sources, and hyper-partisan political blogs. In addition to each article we compute 130 content-based and social media engagement features drawn from a wide range of literature on political bias, persuasion, and misinformation. With the release of the data set, we also provide the source code for feature computation. In this paper, we discuss the first release of the data set and demonstrate 4 use cases of the data and features: news characterization, engagement characterization, news attribution and content copying, and discovering news narratives.
BanMANI: A Dataset to Identify Manipulated Social Media News in Bangla
Initial work has been done to address fake news detection and misrepresentation of news in the Bengali language. However, no work in Bengali yet addresses the identification of specific claims in social media news that falsely manipulates a related news article. At this point, this problem has been tackled in English and a few other languages, but not in the Bengali language. In this paper, we curate a dataset of social media content labeled with information manipulation relative to reference articles, called BanMANI. The dataset collection method we describe works around the limitations of the available NLP tools in Bangla. We expect these techniques will carry over to building similar datasets in other low-resource languages. BanMANI forms the basis both for evaluating the capabilities of existing NLP systems and for training or fine-tuning new models specifically on this task. In our analysis, we find that this task challenges current LLMs both under zero-shot and fine-tuned settings.
Detecting fake news by enhanced text representation with multi-EDU-structure awareness
Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.
J-Guard: Journalism Guided Adversarially Robust Detection of AI-generated News
The rapid proliferation of AI-generated text online is profoundly reshaping the information landscape. Among various types of AI-generated text, AI-generated news presents a significant threat as it can be a prominent source of misinformation online. While several recent efforts have focused on detecting AI-generated text in general, these methods require enhanced reliability, given concerns about their vulnerability to simple adversarial attacks. Furthermore, due to the eccentricities of news writing, applying these detection methods for AI-generated news can produce false positives, potentially damaging the reputation of news organizations. To address these challenges, we leverage the expertise of an interdisciplinary team to develop a framework, J-Guard, capable of steering existing supervised AI text detectors for detecting AI-generated news while boosting adversarial robustness. By incorporating stylistic cues inspired by the unique journalistic attributes, J-Guard effectively distinguishes between real-world journalism and AI-generated news articles. Our experiments on news articles generated by a vast array of AI models, including ChatGPT (GPT3.5), demonstrate the effectiveness of J-Guard in enhancing detection capabilities while maintaining an average performance decrease of as low as 7% when faced with adversarial attacks.
Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection
Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at https://github.com/ICTMCG/FTT-ACL23.
From Skepticism to Acceptance: Simulating the Attitude Dynamics Toward Fake News
In the digital era, the rapid propagation of fake news and rumors via social networks brings notable societal challenges and impacts public opinion regulation. Traditional fake news modeling typically forecasts the general popularity trends of different groups or numerically represents opinions shift. However, these methods often oversimplify real-world complexities and overlook the rich semantic information of news text. The advent of large language models (LLMs) provides the possibility of modeling subtle dynamics of opinion. Consequently, in this work, we introduce a Fake news Propagation Simulation framework (FPS) based on LLM, which studies the trends and control of fake news propagation in detail. Specifically, each agent in the simulation represents an individual with a distinct personality. They are equipped with both short-term and long-term memory, as well as a reflective mechanism to mimic human-like thinking. Every day, they engage in random opinion exchanges, reflect on their thinking, and update their opinions. Our simulation results uncover patterns in fake news propagation related to topic relevance, and individual traits, aligning with real-world observations. Additionally, we evaluate various intervention strategies and demonstrate that early and appropriately frequent interventions strike a balance between governance cost and effectiveness, offering valuable insights for practical applications. Our study underscores the significant utility and potential of LLMs in combating fake news.
FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detecction
Existing benchmarks for fake news detection have significantly contributed to the advancement of models in assessing the authenticity of news content. However, these benchmarks typically focus solely on news pertaining to a single semantic topic or originating from a single platform, thereby failing to capture the diversity of multi-domain news in real scenarios. In order to understand fake news across various domains, the external knowledge and fine-grained annotations are indispensable to provide precise evidence and uncover the diverse underlying strategies for fabrication, which are also ignored by existing benchmarks. To address this gap, we introduce a novel multi-domain knowledge-enhanced benchmark with fine-grained annotations, named FineFake. FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms. Each news item is enriched with multi-modal content, potential social context, semi-manually verified common knowledge, and fine-grained annotations that surpass conventional binary labels. Furthermore, we formulate three challenging tasks based on FineFake and propose a knowledge-enhanced domain adaptation network. Extensive experiments are conducted on FineFake under various scenarios, providing accurate and reliable benchmarks for future endeavors. The entire FineFake project is publicly accessible as an open-source repository at https://github.com/Accuser907/FineFake.
On the Role of Images for Analyzing Claims in Social Media
Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
Combating Misinformation in the Age of LLMs: Opportunities and Challenges
Misinformation such as fake news and rumors is a serious threat on information ecosystems and public trust. The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double-edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emergent question is: how to utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM-generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM-generated misinformation.
Check_square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first problem, claim check-worthiness prediction, we explore the fusion of syntactic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similarity, and perform KD-search to retrieve verified claims with respect to a query tweet.
Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims
False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations. The code and the dataset are at https://github.com/ICTMCG/MTM.
The COVID That Wasn't: Counterfactual Journalism Using GPT
In this paper, we explore the use of large language models to assess human interpretations of real world events. To do so, we use a language model trained prior to 2020 to artificially generate news articles concerning COVID-19 given the headlines of actual articles written during the pandemic. We then compare stylistic qualities of our artificially generated corpus with a news corpus, in this case 5,082 articles produced by CBC News between January 23 and May 5, 2020. We find our artificially generated articles exhibits a considerably more negative attitude towards COVID and a significantly lower reliance on geopolitical framing. Our methods and results hold importance for researchers seeking to simulate large scale cultural processes via recent breakthroughs in text generation.
The Surprising Performance of Simple Baselines for Misinformation Detection
As social media becomes increasingly prominent in our day to day lives, it is increasingly important to detect informative content and prevent the spread of disinformation and unverified rumours. While many sophisticated and successful models have been proposed in the literature, they are often compared with older NLP baselines such as SVMs, CNNs, and LSTMs. In this paper, we examine the performance of a broad set of modern transformer-based language models and show that with basic fine-tuning, these models are competitive with and can even significantly outperform recently proposed state-of-the-art methods. We present our framework as a baseline for creating and evaluating new methods for misinformation detection. We further study a comprehensive set of benchmark datasets, and discuss potential data leakage and the need for careful design of the experiments and understanding of datasets to account for confounding variables. As an extreme case example, we show that classifying only based on the first three digits of tweet ids, which contain information on the date, gives state-of-the-art performance on a commonly used benchmark dataset for fake news detection --Twitter16. We provide a simple tool to detect this problem and suggest steps to mitigate it in future datasets.
Large Language Model Agent for Fake News Detection
In the current digital era, the rapid spread of misinformation on online platforms presents significant challenges to societal well-being, public trust, and democratic processes, influencing critical decision making and public opinion. To address these challenges, there is a growing need for automated fake news detection mechanisms. Pre-trained large language models (LLMs) have demonstrated exceptional capabilities across various natural language processing (NLP) tasks, prompting exploration into their potential for verifying news claims. Instead of employing LLMs in a non-agentic way, where LLMs generate responses based on direct prompts in a single shot, our work introduces FactAgent, an agentic approach of utilizing LLMs for fake news detection. FactAgent enables LLMs to emulate human expert behavior in verifying news claims without any model training, following a structured workflow. This workflow breaks down the complex task of news veracity checking into multiple sub-steps, where LLMs complete simple tasks using their internal knowledge or external tools. At the final step of the workflow, LLMs integrate all findings throughout the workflow to determine the news claim's veracity. Compared to manual human verification, FactAgent offers enhanced efficiency. Experimental studies demonstrate the effectiveness of FactAgent in verifying claims without the need for any training process. Moreover, FactAgent provides transparent explanations at each step of the workflow and during final decision-making, offering insights into the reasoning process of fake news detection for end users. FactAgent is highly adaptable, allowing for straightforward updates to its tools that LLMs can leverage within the workflow, as well as updates to the workflow itself using domain knowledge. This adaptability enables FactAgent's application to news verification across various domains.
Characterizing Multi-Domain False News and Underlying User Effects on Chinese Weibo
False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health care), little work is found comparing false news across domains. In this article, we investigate false news across nine domains on Weibo, the largest Twitter-like social media platform in China, from 2009 to 2019. The newly collected data comprise 44,728 posts in the nine domains, published by 40,215 users, and reposted over 3.4 million times. Based on the distributions and spreads of the multi-domain dataset, we observe that false news in domains that are close to daily life like health and medicine generated more posts but diffused less effectively than those in other domains like politics, and that political false news had the most effective capacity for diffusion. The widely diffused false news posts on Weibo were associated strongly with certain types of users -- by gender, age, etc. Further, these posts provoked strong emotions in the reposts and diffused further with the active engagement of false-news starters. Our findings have the potential to help design false news detection systems in suspicious news discovery, veracity prediction, and display and explanation. The comparison of the findings on Weibo with those of existing work demonstrates nuanced patterns, suggesting the need for more research on data from diverse platforms, countries, or languages to tackle the global issue of false news. The code and new anonymized dataset are available at https://github.com/ICTMCG/Characterizing-Weibo-Multi-Domain-False-News.
Analysing State-Backed Propaganda Websites: a New Dataset and Linguistic Study
This paper analyses two hitherto unstudied sites sharing state-backed disinformation, Reliable Recent News (rrn.world) and WarOnFakes (waronfakes.com), which publish content in Arabic, Chinese, English, French, German, and Spanish. We describe our content acquisition methodology and perform cross-site unsupervised topic clustering on the resulting multilingual dataset. We also perform linguistic and temporal analysis of the web page translations and topics over time, and investigate articles with false publication dates. We make publicly available this new dataset of 14,053 articles, annotated with each language version, and additional metadata such as links and images. The main contribution of this paper for the NLP community is in the novel dataset which enables studies of disinformation networks, and the training of NLP tools for disinformation detection.
Integrating Pattern- and Fact-based Fake News Detection via Model Preference Learning
To defend against fake news, researchers have developed various methods based on texts. These methods can be grouped as 1) pattern-based methods, which focus on shared patterns among fake news posts rather than the claim itself; and 2) fact-based methods, which retrieve from external sources to verify the claim's veracity without considering patterns. The two groups of methods, which have different preferences of textual clues, actually play complementary roles in detecting fake news. However, few works consider their integration. In this paper, we study the problem of integrating pattern- and fact-based models into one framework via modeling their preference differences, i.e., making the pattern- and fact-based models focus on respective preferred parts in a post and mitigate interference from non-preferred parts as possible. To this end, we build a Preference-aware Fake News Detection Framework (Pref-FEND), which learns the respective preferences of pattern- and fact-based models for joint detection. We first design a heterogeneous dynamic graph convolutional network to generate the respective preference maps, and then use these maps to guide the joint learning of pattern- and fact-based models for final prediction. Experiments on two real-world datasets show that Pref-FEND effectively captures model preferences and improves the performance of models based on patterns, facts, or both.
MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.
UPB at SemEval-2020 Task 11: Propaganda Detection with Domain-Specific Trained BERT
Manipulative and misleading news have become a commodity for some online news outlets and these news have gained a significant impact on the global mindset of people. Propaganda is a frequently employed manipulation method having as goal to influence readers by spreading ideas meant to distort or manipulate their opinions. This paper describes our participation in the SemEval-2020, Task 11: Detection of Propaganda Techniques in News Articles competition. Our approach considers specializing a pre-trained BERT model on propagandistic and hyperpartisan news articles, enabling it to create more adequate representations for the two subtasks, namely propaganda Span Identification (SI) and propaganda Technique Classification (TC). Our proposed system achieved a F1-score of 46.060% in subtask SI, ranking 5th in the leaderboard from 36 teams and a micro-averaged F1 score of 54.302% for subtask TC, ranking 19th from 32 teams.
NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present a dataset of 713k articles collected between 02/2018-11/2018. These articles are collected directly from 194 news and media outlets including mainstream, hyper-partisan, and conspiracy sources. We incorporate ground truth ratings of the sources from 8 different assessment sites covering multiple dimensions of veracity, including reliability, bias, transparency, adherence to journalistic standards, and consumer trust. The NELA-GT-2018 dataset can be found at https://doi.org/10.7910/DVN/ULHLCB.
External Reliable Information-enhanced Multimodal Contrastive Learning for Fake News Detection
With the rapid development of the Internet, the information dissemination paradigm has changed and the efficiency has been improved greatly. While this also brings the quick spread of fake news and leads to negative impacts on cyberspace. Currently, the information presentation formats have evolved gradually, with the news formats shifting from texts to multimodal contents. As a result, detecting multimodal fake news has become one of the research hotspots. However, multimodal fake news detection research field still faces two main challenges: the inability to fully and effectively utilize multimodal information for detection, and the low credibility or static nature of the introduced external information, which limits dynamic updates. To bridge the gaps, we propose ERIC-FND, an external reliable information-enhanced multimodal contrastive learning framework for fake news detection. ERIC-FND strengthens the representation of news contents by entity-enriched external information enhancement method. It also enriches the multimodal news information via multimodal semantic interaction method where the multimodal constrative learning is employed to make different modality representations learn from each other. Moreover, an adaptive fusion method is taken to integrate the news representations from different dimensions for the eventual classification. Experiments are done on two commonly used datasets in different languages, X (Twitter) and Weibo. Experiment results demonstrate that our proposed model ERIC-FND outperforms existing state-of-the-art fake news detection methods under the same settings.
Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals
Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
Multimodal Fake News Detection via CLIP-Guided Learning
Multimodal fake news detection has attracted many research interests in social forensics. Many existing approaches introduce tailored attention mechanisms to guide the fusion of unimodal features. However, how the similarity of these features is calculated and how it will affect the decision-making process in FND are still open questions. Besides, the potential of pretrained multi-modal feature learning models in fake news detection has not been well exploited. This paper proposes a FND-CLIP framework, i.e., a multimodal Fake News Detection network based on Contrastive Language-Image Pretraining (CLIP). Given a targeted multimodal news, we extract the deep representations from the image and text using a ResNet-based encoder, a BERT-based encoder and two pair-wise CLIP encoders. The multimodal feature is a concatenation of the CLIP-generated features weighted by the standardized cross-modal similarity of the two modalities. The extracted features are further processed for redundancy reduction before feeding them into the final classifier. We introduce a modality-wise attention module to adaptively reweight and aggregate the features. We have conducted extensive experiments on typical fake news datasets. The results indicate that the proposed framework has a better capability in mining crucial features for fake news detection. The proposed FND-CLIP can achieve better performances than previous works, i.e., 0.7\%, 6.8\% and 1.3\% improvements in overall accuracy on Weibo, Politifact and Gossipcop, respectively. Besides, we justify that CLIP-based learning can allow better flexibility on multimodal feature selection.
Multilevel User Credibility Assessment in Social Networks
Online social networks serve as major platforms for disseminating both real and fake news. Many users--intentionally or unintentionally--spread harmful content, misinformation, and rumors in domains such as politics and business. Consequently, user credibility assessment has become a prominent area of research in recent years. Most existing methods suffer from two key limitations. First, they treat credibility as a binary task, labeling users as either genuine or fake, whereas real-world applications often demand a more nuanced, multilevel evaluation. Second, they rely on only a subset of relevant features, which constrains their predictive performance. In this paper, we address the lack of a dataset suitable for multilevel credibility assessment by first devising a collection method tailored to this task. We then propose the MultiCred model, which assigns users to one of several credibility tiers based on a rich and diverse set of features extracted from their profiles, tweets, and comments. MultiCred leverages deep language models for textual analysis and deep neural networks for non-textual data processing. Our extensive experiments demonstrate that MultiCred significantly outperforms existing approaches across multiple accuracy metrics. Our code is publicly available at https://github.com/Mohammad-Moradi/MultiCred.
Detecting Fake News Using Machine Learning : A Systematic Literature Review
Internet is one of the important inventions and a large number of persons are its users. These persons use this for different purposes. There are different social media platforms that are accessible to these users. Any user can make a post or spread the news through the online platforms. These platforms do not verify the users or their posts. So some of the users try to spread fake news through these platforms. These news can be propaganda against an individual, society, organization or political party. A human being is unable to detect all these fake news. So there is a need for machine learning classifiers that can detect these fake news automatically. Use of machine learning classifiers for detecting fake news is described in this systematic literature review.
Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues
Recently, fake news with text and images have achieved more effective diffusion than text-only fake news, raising a severe issue of multimodal fake news detection. Current studies on this issue have made significant contributions to developing multimodal models, but they are defective in modeling the multimodal content sufficiently. Most of them only preliminarily model the basic semantics of the images as a supplement to the text, which limits their performance on detection. In this paper, we find three valuable text-image correlations in multimodal fake news: entity inconsistency, mutual enhancement, and text complementation. To effectively capture these multimodal clues, we innovatively extract visual entities (such as celebrities and landmarks) to understand the news-related high-level semantics of images, and then model the multimodal entity inconsistency and mutual enhancement with the help of visual entities. Moreover, we extract the embedded text in images as the complementation of the original text. All things considered, we propose a novel entity-enhanced multimodal fusion framework, which simultaneously models three cross-modal correlations to detect diverse multimodal fake news. Extensive experiments demonstrate the superiority of our model compared to the state of the art.
Experimenting AI Technologies for Disinformation Combat: the IDMO Project
The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to identify textual entailmen (v) a game to raise awareness about fake news at national events.
Towards Real-Time Fake News Detection under Evidence Scarcity
Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.
Towards Detecting Harmful Agendas in News Articles
Manipulated news online is a growing problem which necessitates the use of automated systems to curtail its spread. We argue that while misinformation and disinformation detection have been studied, there has been a lack of investment in the important open challenge of detecting harmful agendas in news articles; identifying harmful agendas is critical to flag news campaigns with the greatest potential for real world harm. Moreover, due to real concerns around censorship, harmful agenda detectors must be interpretable to be effective. In this work, we propose this new task and release a dataset, NewsAgendas, of annotated news articles for agenda identification. We show how interpretable systems can be effective on this task and demonstrate that they can perform comparably to black-box models.
Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media
Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.
Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection
Detecting fake news requires both a delicate sense of diverse clues and a profound understanding of the real-world background, which remains challenging for detectors based on small language models (SLMs) due to their knowledge and capability limitations. Recent advances in large language models (LLMs) have shown remarkable performance in various tasks, but whether and how LLMs could help with fake news detection remains underexplored. In this paper, we investigate the potential of LLMs in fake news detection. First, we conduct an empirical study and find that a sophisticated LLM such as GPT 3.5 could generally expose fake news and provide desirable multi-perspective rationales but still underperforms the basic SLM, fine-tuned BERT. Our subsequent analysis attributes such a gap to the LLM's inability to select and integrate rationales properly to conclude. Based on these findings, we propose that current LLMs may not substitute fine-tuned SLMs in fake news detection but can be a good advisor for SLMs by providing multi-perspective instructive rationales. To instantiate this proposal, we design an adaptive rationale guidance network for fake news detection (ARG), in which SLMs selectively acquire insights on news analysis from the LLMs' rationales. We further derive a rationale-free version of ARG by distillation, namely ARG-D, which services cost-sensitive scenarios without querying LLMs. Experiments on two real-world datasets demonstrate that ARG and ARG-D outperform three types of baseline methods, including SLM-based, LLM-based, and combinations of small and large language models.
Using Neural Network for Identifying Clickbaits in Online News Media
Online news media sometimes use misleading headlines to lure users to open the news article. These catchy headlines that attract users but disappointed them at the end, are called Clickbaits. Because of the importance of automatic clickbait detection in online medias, lots of machine learning methods were proposed and employed to find the clickbait headlines. In this research, a model using deep learning methods is proposed to find the clickbaits in Clickbait Challenge 2017's dataset. The proposed model gained the first rank in the Clickbait Challenge 2017 in terms of Mean Squared Error. Also, data analytics and visualization techniques are employed to explore and discover the provided dataset to get more insight from the data.
RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans perceive the generated text remain both crucial and difficult. In this system demonstration, we present Real or Fake Text (RoFT), a website that tackles both of these challenges by inviting users to try their hand at detecting machine-generated text in a variety of domains. We introduce a novel evaluation task based on detecting the boundary at which a text passage that starts off human-written transitions to being machine-generated. We show preliminary results of using RoFT to evaluate detection of machine-generated news articles.
CrediBench: Building Web-Scale Network Datasets for Information Integrity
Online misinformation poses an escalating threat, amplified by the Internet's open nature and increasingly capable LLMs that generate persuasive yet deceptive content. Existing misinformation detection methods typically focus on either textual content or network structure in isolation, failing to leverage the rich, dynamic interplay between website content and hyperlink relationships that characterizes real-world misinformation ecosystems. We introduce CrediBench: a large-scale data processing pipeline for constructing temporal web graphs that jointly model textual content and hyperlink structure for misinformation detection. Unlike prior work, our approach captures the dynamic evolution of general misinformation domains, including changes in both content and inter-site references over time. Our processed one-month snapshot extracted from the Common Crawl archive in December 2024 contains 45 million nodes and 1 billion edges, representing the largest web graph dataset made publicly available for misinformation research to date. From our experiments on this graph snapshot, we demonstrate the strength of both structural and webpage content signals for learning credibility scores, which measure source reliability. The pipeline and experimentation code are all available here, and the dataset is in this folder.
Detection of news written by the ChatGPT through authorship attribution performed by a Bidirectional LSTM model
The large language based-model chatbot ChatGPT gained a lot of popularity since its launch and has been used in a wide range of situations. This research centers around a particular situation, when the ChatGPT is used to produce news that will be consumed by the population, causing the facilitation in the production of fake news, spread of misinformation and lack of trust in news sources. Aware of these problems, this research aims to build an artificial intelligence model capable of performing authorship attribution on news articles, identifying the ones written by the ChatGPT. To achieve this goal, a dataset containing equal amounts of human and ChatGPT written news was assembled and different natural processing language techniques were used to extract features from it that were used to train, validate and test three models built with different techniques. The best performance was produced by the Bidirectional Long Short Term Memory (LSTM) Neural Network model, achiving 91.57\% accuracy when tested against the data from the testing set.
FACTIFY3M: A Benchmark for Multimodal Fact Verification with Explainability through 5W Question-Answering
Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.
OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques
Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.
Detection Avoidance Techniques for Large Language Models
The increasing popularity of large language models has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed.
Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer
Both real and fake news in various domains, such as politics, health, and entertainment are spread via online social media every day, necessitating fake news detection for multiple domains. Among them, fake news in specific domains like politics and health has more serious potential negative impacts on the real world (e.g., the infodemic led by COVID-19 misinformation). Previous studies focus on multi-domain fake news detection, by equally mining and modeling the correlation between domains. However, these multi-domain methods suffer from a seesaw problem: the performance of some domains is often improved at the cost of hurting the performance of other domains, which could lead to an unsatisfying performance in specific domains. To address this issue, we propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND), which could improve the performance of specific target domains. To transfer coarse-grained domain-level knowledge, we train a general model with data of all domains from the meta-learning perspective. To transfer fine-grained instance-level knowledge and adapt the general model to a target domain, we train a language model on the target domain to evaluate the transferability of each data instance in source domains and re-weigh each instance's contribution. Offline experiments on two datasets demonstrate the effectiveness of DITFEND. Online experiments show that DITFEND brings additional improvements over the base models in a real-world scenario.
Can Community Notes Replace Professional Fact-Checkers?
Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking.
A Drop of Ink Makes a Million Think: The Spread of False Information in Large Language Models
Large language models (LLMs) have gained increasing prominence in artificial intelligence, making a profound impact on society and various industries like business and science. However, the presence of false information on the internet and in text corpus poses a significant risk to the reliability and safety of LLMs, underscoring the urgent need to understand the mechanisms of how false information influences the behaviors of LLMs. In this paper, we dive into this problem and investigate how false information spreads in LLMs and affects related responses. Specifically, in our series of experiments, we investigate different factors that can influence the spread of information in LLMs by comparing three degrees of information relevance (direct, indirect, and peripheral), four information source styles (Twitter, web blogs, news reports, and research papers) and two common knowledge injection paradigms (in-context injection and learning-based injection). The experimental results show that (1)False information will spread and contaminate related memories in LLMs via a semantic diffusion process, i.e., false information has global detrimental effects beyond its direct impact. (2)Current LLMs are susceptible to authority bias, i.e., LLMs are more likely to follow false information presented in trustworthy styles such as news reports and research papers, which usually cause deeper and wider pollution of information. (3)Current LLMs are more sensitive to false information through in-context injection than through learning-based injection, which severely challenges the reliability and safety of LLMs even when all training data are trusty and correct. The above findings raise the need for new false information defense algorithms to address the global impact of false information, and new alignment algorithms to unbiasedly lead LLMs to follow essential human values rather than superficial patterns.
Text-image guided Diffusion Model for generating Deepfake celebrity interactions
Deepfake images are fast becoming a serious concern due to their realism. Diffusion models have recently demonstrated highly realistic visual content generation, which makes them an excellent potential tool for Deepfake generation. To curb their exploitation for Deepfakes, it is imperative to first explore the extent to which diffusion models can be used to generate realistic content that is controllable with convenient prompts. This paper devises and explores a novel method in that regard. Our technique alters the popular stable diffusion model to generate a controllable high-quality Deepfake image with text and image prompts. In addition, the original stable model lacks severely in generating quality images that contain multiple persons. The modified diffusion model is able to address this problem, it add input anchor image's latent at the beginning of inferencing rather than Gaussian random latent as input. Hence, we focus on generating forged content for celebrity interactions, which may be used to spread rumors. We also apply Dreambooth to enhance the realism of our fake images. Dreambooth trains the pairing of center words and specific features to produce more refined and personalized output images. Our results show that with the devised scheme, it is possible to create fake visual content with alarming realism, such that the content can serve as believable evidence of meetings between powerful political figures.
AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild
The prevalence and harms of online misinformation is a perennial concern for internet platforms, institutions and society at large. Over time, information shared online has become more media-heavy and misinformation has readily adapted to these new modalities. The rise of generative AI-based tools, which provide widely-accessible methods for synthesizing realistic audio, images, video and human-like text, have amplified these concerns. Despite intense interest on the part of the public and significant press coverage, quantitative information on the prevalence and modality of media-based misinformation remains scarce. Here, we present the results of a two-year study using human raters to annotate online media-based misinformation, mostly focusing on images, based on claims assessed in a large sample of publicly-accessible fact checks with the ClaimReview markup. We present an image typology, designed to capture aspects of the image and manipulation relevant to the image's role in the misinformation claim. We visualize the distribution of these types over time. We show the the rise of generative AI-based content in misinformation claims, and that it's commonality is a relatively recent phenomenon, occurring significantly after heavy press coverage. We also show "simple" methods dominated historically, particularly context manipulations, and continued to hold a majority as of the end of data collection in November 2023. The dataset, Annotated Misinformation, Media-Based (AMMeBa), is publicly-available, and we hope that these data will serve as both a means of evaluating mitigation methods in a realistic setting and as a first-of-its-kind census of the types and modalities of online misinformation.
Combating Disinformation in a Social Media Age
The creation, dissemination, and consumption of disinformation and fabricated content on social media is a growing concern, especially with the ease of access to such sources, and the lack of awareness of the existence of such false information. In this paper, we present an overview of the techniques explored to date for the combating of disinformation with various forms. We introduce different forms of disinformation, discuss factors related to the spread of disinformation, elaborate on the inherent challenges in detecting disinformation, and show some approaches to mitigating disinformation via education, research, and collaboration. Looking ahead, we present some promising future research directions on disinformation.
Deepfake Text Detection in the Wild
Recent advances in large language models have enabled them to reach a level of text generation comparable to that of humans. These models show powerful capabilities across a wide range of content, including news article writing, story generation, and scientific writing. Such capability further narrows the gap between human-authored and machine-generated texts, highlighting the importance of deepfake text detection to avoid potential risks such as fake news propagation and plagiarism. However, previous work has been limited in that they testify methods on testbed of specific domains or certain language models. In practical scenarios, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a wild testbed by gathering texts from various human writings and deepfake texts generated by different LLMs. Human annotators are only slightly better than random guessing at identifying machine-generated texts. Empirical results on automatic detection methods further showcase the challenges of deepfake text detection in a wild testbed. In addition, out-of-distribution poses a greater challenge for a detector to be employed in realistic application scenarios. We release our resources at https://github.com/yafuly/DeepfakeTextDetect.
NewsEdits 2.0: Learning the Intentions Behind Updating News
As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models
Given the growing influx of misinformation across news and social media, there is a critical need for systems that can provide effective real-time verification of news claims. Large language or multimodal model based verification has been proposed to scale up online policing mechanisms for mitigating spread of false and harmful content. While these can potentially reduce burden on human fact-checkers, such efforts may be hampered by foundation model training data becoming outdated. In this work, we test the limits of improving foundation model performance without continual updating through an initial study of knowledge transfer using either existing intra- and inter- domain benchmarks or explanations generated from large language models (LLMs). We evaluate on 12 public benchmarks for fact-checking and misinformation detection as well as two other tasks relevant to content moderation -- toxicity and stance detection. Our results on two recent multi-modal fact-checking benchmarks, Mocheg and Fakeddit, indicate that knowledge transfer strategies can improve Fakeddit performance over the state-of-the-art by up to 1.7% and Mocheg performance by up to 2.9%.
Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions
Bias assessment of news sources is paramount for professionals, organizations, and researchers who rely on truthful evidence for information gathering and reporting. While certain bias indicators are discernible from content analysis, descriptors like political bias and fake news pose greater challenges. In this paper, we propose an extension to a recently presented news media reliability estimation method that focuses on modeling outlets and their longitudinal web interactions. Concretely, we assess the classification performance of four reinforcement learning strategies on a large news media hyperlink graph. Our experiments, targeting two challenging bias descriptors, factual reporting and political bias, showed a significant performance improvement at the source media level. Additionally, we validate our methods on the CLEF 2023 CheckThat! Lab challenge, outperforming the reported results in both, F1-score and the official MAE metric. Furthermore, we contribute by releasing the largest annotated dataset of news source media, categorized with factual reporting and political bias labels. Our findings suggest that profiling news media sources based on their hyperlink interactions over time is feasible, offering a bird's-eye view of evolving media landscapes.
TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation
The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.
Semi-Supervised Exaggeration Detection of Health Science Press Releases
Public trust in science depends on honest and factual communication of scientific papers. However, recent studies have demonstrated a tendency of news media to misrepresent scientific papers by exaggerating their findings. Given this, we present a formalization of and study into the problem of exaggeration detection in science communication. While there are an abundance of scientific papers and popular media articles written about them, very rarely do the articles include a direct link to the original paper, making data collection challenging. We address this by curating a set of labeled press release/abstract pairs from existing expert annotated studies on exaggeration in press releases of scientific papers suitable for benchmarking the performance of machine learning models on the task. Using limited data from this and previous studies on exaggeration detection in science, we introduce MT-PET, a multi-task version of Pattern Exploiting Training (PET), which leverages knowledge from complementary cloze-style QA tasks to improve few-shot learning. We demonstrate that MT-PET outperforms PET and supervised learning both when data is limited, as well as when there is an abundance of data for the main task.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
Mining Dual Emotion for Fake News Detection
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news often evokes high-arousal or activating emotions of people, so the emotions of news comments aroused in the crowd (i.e., social emotion) should not be ignored. Furthermore, it remains to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In this paper, we verify that dual emotion is distinctive between fake and real news and propose Dual Emotion Features to represent dual emotion and the relationship between them for fake news detection. Further, we exhibit that our proposed features can be easily plugged into existing fake news detectors as an enhancement. Extensive experiments on three real-world datasets (one in English and the others in Chinese) show that our proposed feature set: 1) outperforms the state-of-the-art task-related emotional features; 2) can be well compatible with existing fake news detectors and effectively improve the performance of detecting fake news.
Enriching GNNs with Text Contextual Representations for Detecting Disinformation Campaigns on Social Media
Disinformation on social media poses both societal and technical challenges. While previous studies have integrated textual information into propagation networks, they have yet to fully leverage the advancements in Transformer-based language models for high-quality contextual text representations. This work investigates the impact of incorporating textual features into Graph Neural Networks (GNNs) for fake news detection. Our experiments demonstrate that contextual representations improve performance by 9.3% in Macro F1 over static ones and 33.8% over GNNs without textual features. However, noisy data augmentation degrades performance and increases instability. We expect our methodology to open avenues for further research, and all code is made publicly available.
DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8\% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
HRDE: Retrieval-Augmented Large Language Models for Chinese Health Rumor Detection and Explainability
As people increasingly prioritize their health, the speed and breadth of health information dissemination on the internet have also grown. At the same time, the presence of false health information (health rumors) intermingled with genuine content poses a significant potential threat to public health. However, current research on Chinese health rumors still lacks a large-scale, public, and open-source dataset of health rumor information, as well as effective and reliable rumor detection methods. This paper addresses this gap by constructing a dataset containing 1.12 million health-related rumors (HealthRCN) through web scraping of common health-related questions and a series of data processing steps. HealthRCN is the largest known dataset of Chinese health information rumors to date. Based on this dataset, we propose retrieval-augmented large language models for Chinese health rumor detection and explainability (HRDE). This model leverages retrieved relevant information to accurately determine whether the input health information is a rumor and provides explanatory responses, effectively aiding users in verifying the authenticity of health information. In evaluation experiments, we compared multiple models and found that HRDE outperformed them all, including GPT-4-1106-Preview, in rumor detection accuracy and answer quality. HRDE achieved an average accuracy of 91.04% and an F1 score of 91.58%.
Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
The spread of misinformation is a prominent problem in today's society, and many researchers in academia and industry are trying to combat it. Due to the vast amount of misinformation that is created every day, it is unrealistic to leave this task to human fact-checkers. Data scientists and researchers have been working on automated misinformation detection for years, and it is still a challenging problem today. The goal of our research is to add a new level to automated misinformation detection; classifying segments of text with persuasive writing techniques in order to produce interpretable reasoning for why an article can be marked as misinformation. To accomplish this, we present a novel annotation scheme containing many common persuasive writing tactics, along with a dataset with human annotations accordingly. For this task, we make use of a RoBERTa model for text classification, due to its high performance in NLP. We develop several language model-based baselines and present the results of our persuasive strategy label predictions as well as the improvements these intermediate labels make in detecting misinformation and producing interpretable results.
A Survey on the Role of Crowds in Combating Online Misinformation: Annotators, Evaluators, and Creators
Online misinformation poses a global risk with significant real-world consequences. To combat misinformation, current research relies on professionals like journalists and fact-checkers for annotating and debunking misinformation, and develops automated machine learning methods for detecting misinformation. Complementary to these approaches, recent research has increasingly concentrated on utilizing the power of ordinary social media users, a.k.a. "crowd", who act as eyes-on-the-ground proactively questioning and countering misinformation. Notably, recent studies show that 96% of counter-misinformation responses originate from them. Acknowledging their prominent role, we present the first systematic and comprehensive survey of research papers that actively leverage the crowds to combat misinformation. We first identify 88 papers related to crowd-based efforts, following a meticulous annotation process adhering to the PRISMA framework. We then present key statistics related to misinformation, counter-misinformation, and crowd input in different formats and topics. Upon holistic analysis of the papers, we introduce a novel taxonomy of the roles played by the crowds: (i)annotators who actively identify misinformation; (ii)evaluators who assess counter-misinformation effectiveness; (iii)creators who create counter-misinformation. This taxonomy explores the crowd's capabilities in misinformation detection, identifies prerequisites for effective counter-misinformation, and analyzes crowd-generated counter-misinformation. Then, we delve into (i)distinguishing individual, collaborative, and machine-assisted labeling for annotators; (ii)analyzing the effectiveness of counter-misinformation through surveys, interviews, and in-lab experiments for evaluators; and (iii)characterizing creation patterns and creator profiles for creators. Finally, we outline potential future research in this field.
SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours
Media is full of false claims. Even Oxford Dictionaries named "post-truth" as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the kind of discourse there is around it. RumourEval is a SemEval shared task that aims to identify and handle rumours and reactions to them, in text. We present an annotation scheme, a large dataset covering multiple topics - each having their own families of claims and replies - and use these to pose two concrete challenges as well as the results achieved by participants on these challenges.
Media Forensics and DeepFakes: an overview
With the rapid progress of recent years, techniques that generate and manipulate multimedia content can now guarantee a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. So-called deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Potential abuses are limited only by human imagination. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes and, from the point of view of the forensic analyst, on modern data-driven forensic methods. The analysis will help to highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
Who Wrote This? Identifying Machine vs Human-Generated Text in Hausa
The advancement of large language models (LLMs) has allowed them to be proficient in various tasks, including content generation. However, their unregulated usage can lead to malicious activities such as plagiarism and generating and spreading fake news, especially for low-resource languages. Most existing machine-generated text detectors are trained on high-resource languages like English, French, etc. In this study, we developed the first large-scale detector that can distinguish between human- and machine-generated content in Hausa. We scrapped seven Hausa-language media outlets for the human-generated text and the Gemini-2.0 flash model to automatically generate the corresponding Hausa-language articles based on the human-generated article headlines. We fine-tuned four pre-trained Afri-centric models (AfriTeVa, AfriBERTa, AfroXLMR, and AfroXLMR-76L) on the resulting dataset and assessed their performance using accuracy and F1-score metrics. AfroXLMR achieved the highest performance with an accuracy of 99.23% and an F1 score of 99.21%, demonstrating its effectiveness for Hausa text detection. Our dataset is made publicly available to enable further research.
Memory-Guided Multi-View Multi-Domain Fake News Detection
The wide spread of fake news is increasingly threatening both individuals and society. Great efforts have been made for automatic fake news detection on a single domain (e.g., politics). However, correlations exist commonly across multiple news domains, and thus it is promising to simultaneously detect fake news of multiple domains. Based on our analysis, we pose two challenges in multi-domain fake news detection: 1) domain shift, caused by the discrepancy among domains in terms of words, emotions, styles, etc. 2) domain labeling incompleteness, stemming from the real-world categorization that only outputs one single domain label, regardless of topic diversity of a news piece. In this paper, we propose a Memory-guided Multi-view Multi-domain Fake News Detection Framework (M^3FEND) to address these two challenges. We model news pieces from a multi-view perspective, including semantics, emotion, and style. Specifically, we propose a Domain Memory Bank to enrich domain information which could discover potential domain labels based on seen news pieces and model domain characteristics. Then, with enriched domain information as input, a Domain Adapter could adaptively aggregate discriminative information from multiple views for news in various domains. Extensive offline experiments on English and Chinese datasets demonstrate the effectiveness of M^3FEND, and online tests verify its superiority in practice. Our code is available at https://github.com/ICTMCG/M3FEND.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
Identifying Informational Sources in News Articles
News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists.
Learning to Determine the Quality of News Headlines
Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models.
Detecting and Grounding Multi-Modal Media Manipulation
Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various deepfake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM^4). DGM^4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content (i.e., image bounding boxes and text tokens), which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM^4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning, and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. Finally, we build an extensive benchmark and set up rigorous evaluation metrics for this new research problem. Comprehensive experiments demonstrate the superiority of our model; several valuable observations are also revealed to facilitate future research in multi-modal media manipulation.
MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset
Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.
A Novel Contrastive Learning Method for Clickbait Detection on RoCliCo: A Romanian Clickbait Corpus of News Articles
To increase revenue, news websites often resort to using deceptive news titles, luring users into clicking on the title and reading the full news. Clickbait detection is the task that aims to automatically detect this form of false advertisement and avoid wasting the precious time of online users. Despite the importance of the task, to the best of our knowledge, there is no publicly available clickbait corpus for the Romanian language. To this end, we introduce a novel Romanian Clickbait Corpus (RoCliCo) comprising 8,313 news samples which are manually annotated with clickbait and non-clickbait labels. Furthermore, we conduct experiments with four machine learning methods, ranging from handcrafted models to recurrent and transformer-based neural networks, to establish a line-up of competitive baselines. We also carry out experiments with a weighted voting ensemble. Among the considered baselines, we propose a novel BERT-based contrastive learning model that learns to encode news titles and contents into a deep metric space such that titles and contents of non-clickbait news have high cosine similarity, while titles and contents of clickbait news have low cosine similarity. Our data set and code to reproduce the baselines are publicly available for download at https://github.com/dariabroscoteanu/RoCliCo.
NewsEdits: A News Article Revision Dataset and a Document-Level Reasoning Challenge
News article revision histories provide clues to narrative and factual evolution in news articles. To facilitate analysis of this evolution, we present the first publicly available dataset of news revision histories, NewsEdits. Our dataset is large-scale and multilingual; it contains 1.2 million articles with 4.6 million versions from over 22 English- and French-language newspaper sources based in three countries, spanning 15 years of coverage (2006-2021). We define article-level edit actions: Addition, Deletion, Edit and Refactor, and develop a high-accuracy extraction algorithm to identify these actions. To underscore the factual nature of many edit actions, we conduct analyses showing that added and deleted sentences are more likely to contain updating events, main content and quotes than unchanged sentences. Finally, to explore whether edit actions are predictable, we introduce three novel tasks aimed at predicting actions performed during version updates. We show that these tasks are possible for expert humans but are challenging for large NLP models. We hope this can spur research in narrative framing and help provide predictive tools for journalists chasing breaking news.
FaceForensics++: Learning to Detect Manipulated Facial Images
The rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans. To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection. In particular, the benchmark is based on DeepFakes, Face2Face, FaceSwap and NeuralTextures as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domainspecific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.
BanglaBait: Semi-Supervised Adversarial Approach for Clickbait Detection on Bangla Clickbait Dataset
Intentionally luring readers to click on a particular content by exploiting their curiosity defines a title as clickbait. Although several studies focused on detecting clickbait titles in English articles, low resource language like Bangla has not been given adequate attention. To tackle clickbait titles in Bangla, we have constructed the first Bangla clickbait detection dataset containing 15,056 labeled news articles and 65,406 unlabelled news articles extracted from clickbait dense news sites. Each article has been labeled by three expert linguists and includes an article's title, body, and other metadata. By incorporating labeled and unlabelled data, we finetune a pretrained Bangla transformer model in an adversarial fashion using Semi Supervised Generative Adversarial Networks (SS GANs). The proposed model acts as a good baseline for this dataset, outperforming traditional neural network models (LSTM, GRU, CNN) and linguistic feature based models. We expect that this dataset and the detailed analysis and comparison of these clickbait detection models will provide a fundamental basis for future research into detecting clickbait titles in Bengali articles. We have released the corresponding code and dataset.
Understanding News Creation Intents: Frame, Dataset, and Method
As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation
The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
3DLNews: A Three-decade Dataset of US Local News Articles
We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications.
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
