new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 24

MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records

One important challenge of applying deep learning to electronic health records (EHR) is the complexity of their multimodal structure. EHR usually contains a mixture of structured (codes) and unstructured (free-text) data with sparse and irregular longitudinal features -- all of which doctors utilize when making decisions. In the deep learning regime, determining how different modality representations should be fused together is a difficult problem, which is often addressed by handcrafted modeling and intuition. In this work, we extend state-of-the-art neural architecture search (NAS) methods and propose MUltimodal Fusion Architecture SeArch (MUFASA) to simultaneously search across multimodal fusion strategies and modality-specific architectures for the first time. We demonstrate empirically that our MUFASA method outperforms established unimodal NAS on public EHR data with comparable computation costs. In addition, MUFASA produces architectures that outperform Transformer and Evolved Transformer. Compared with these baselines on CCS diagnosis code prediction, our discovered models improve top-5 recall from 0.88 to 0.91 and demonstrate the ability to generalize to other EHR tasks. Studying our top architecture in depth, we provide empirical evidence that MUFASA's improvements are derived from its ability to both customize modeling for each data modality and find effective fusion strategies.

  • 3 authors
·
Feb 3, 2021

Florence-VL: Enhancing Vision-Language Models with Generative Vision Encoder and Depth-Breadth Fusion

We present Florence-VL, a new family of multimodal large language models (MLLMs) with enriched visual representations produced by Florence-2, a generative vision foundation model. Unlike the widely used CLIP-style vision transformer trained by contrastive learning, Florence-2 can capture different levels and aspects of visual features, which are more versatile to be adapted to diverse downstream tasks. We propose a novel feature-fusion architecture and an innovative training recipe that effectively integrates Florence-2's visual features into pretrained LLMs, such as Phi 3.5 and LLama 3. In particular, we propose "depth-breath fusion (DBFusion)" to fuse the visual features extracted from different depths and under multiple prompts. Our model training is composed of end-to-end pretraining of the whole model followed by finetuning of the projection layer and the LLM, on a carefully designed recipe of diverse open-source datasets that include high-quality image captions and instruction-tuning pairs. Our quantitative analysis and visualization of Florence-VL's visual features show its advantages over popular vision encoders on vision-language alignment, where the enriched depth and breath play important roles. Florence-VL achieves significant improvements over existing state-of-the-art MLLMs across various multi-modal and vision-centric benchmarks covering general VQA, perception, hallucination, OCR, Chart, knowledge-intensive understanding, etc. To facilitate future research, our models and the complete training recipe are open-sourced. https://github.com/JiuhaiChen/Florence-VL

  • 7 authors
·
Dec 5, 2024 4

MMFformer: Multimodal Fusion Transformer Network for Depression Detection

Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.

  • 6 authors
·
Aug 8

Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception

Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.

  • 7 authors
·
Mar 12, 2024

UniFusion: Vision-Language Model as Unified Encoder in Image Generation

Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.

adobe Adobe
·
Oct 14 3

Simplifying Traffic Anomaly Detection with Video Foundation Models

Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) strong pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.

  • 4 authors
·
Jul 12

MapFormer: Boosting Change Detection by Using Pre-change Information

Change detection in remote sensing imagery is essential for a variety of applications such as urban planning, disaster management, and climate research. However, existing methods for identifying semantically changed areas overlook the availability of semantic information in the form of existing maps describing features of the earth's surface. In this paper, we leverage this information for change detection in bi-temporal images. We show that the simple integration of the additional information via concatenation of latent representations suffices to significantly outperform state-of-the-art change detection methods. Motivated by this observation, we propose the new task of *Conditional Change Detection*, where pre-change semantic information is used as input next to bi-temporal images. To fully exploit the extra information, we propose *MapFormer*, a novel architecture based on a multi-modal feature fusion module that allows for feature processing conditioned on the available semantic information. We further employ a supervised, cross-modal contrastive loss to guide the learning of visual representations. Our approach outperforms existing change detection methods by an absolute 11.7\% and 18.4\% in terms of binary change IoU on DynamicEarthNet and HRSCD, respectively. Furthermore, we demonstrate the robustness of our approach to the quality of the pre-change semantic information and the absence pre-change imagery. The code is available at https://github.com/mxbh/mapformer.

  • 3 authors
·
Mar 31, 2023

When Language Overrules: Revealing Text Dominance in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a diverse range of multimodal tasks. However, these models suffer from a core problem known as text dominance: they depend heavily on text for their inference, while underutilizing other modalities. While prior work has acknowledged this phenomenon in vision-language tasks, often attributing it to data biases or model architectures. In this paper, we conduct the first systematic investigation of text dominance across diverse data modalities, including images, videos, audio, time-series, and graphs. To measure this imbalance, we propose two evaluation metrics: the Modality Dominance Index (MDI) and the Attention Efficiency Index (AEI). Our comprehensive analysis reveals that text dominance is both significant and pervasive across all tested modalities. Our in-depth analysis identifies three underlying causes: attention dilution from severe token redundancy in non-textual modalities, the influence of fusion architecture design, and task formulations that implicitly favor textual inputs. Furthermore, we propose a simple token compression method that effectively rebalances model attention. Applying this method to LLaVA-7B, for instance, drastically reduces its MDI from 10.23 to a well-balanced value of 0.86. Our analysis and methodological framework offer a foundation for the development of more equitable and comprehensive multimodal language models.

  • 4 authors
·
Aug 14

Learning to Holistically Detect Bridges from Large-Size VHR Remote Sensing Imagery

Bridge detection in remote sensing images (RSIs) plays a crucial role in various applications, but it poses unique challenges compared to the detection of other objects. In RSIs, bridges exhibit considerable variations in terms of their spatial scales and aspect ratios. Therefore, to ensure the visibility and integrity of bridges, it is essential to perform holistic bridge detection in large-size very-high-resolution (VHR) RSIs. However, the lack of datasets with large-size VHR RSIs limits the deep learning algorithms' performance on bridge detection. Due to the limitation of GPU memory in tackling large-size images, deep learning-based object detection methods commonly adopt the cropping strategy, which inevitably results in label fragmentation and discontinuous prediction. To ameliorate the scarcity of datasets, this paper proposes a large-scale dataset named GLH-Bridge comprising 6,000 VHR RSIs sampled from diverse geographic locations across the globe. These images encompass a wide range of sizes, varying from 2,048*2,048 to 16,38*16,384 pixels, and collectively feature 59,737 bridges. Furthermore, we present an efficient network for holistic bridge detection (HBD-Net) in large-size RSIs. The HBD-Net presents a separate detector-based feature fusion (SDFF) architecture and is optimized via a shape-sensitive sample re-weighting (SSRW) strategy. Based on the proposed GLH-Bridge dataset, we establish a bridge detection benchmark including the OBB and HBB tasks, and validate the effectiveness of the proposed HBD-Net. Additionally, cross-dataset generalization experiments on two publicly available datasets illustrate the strong generalization capability of the GLH-Bridge dataset.

  • 6 authors
·
Dec 4, 2023

Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs

While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.

  • 4 authors
·
Mar 5

GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model

Recent research on integrating Large Language Models (LLMs) with Graph Neural Networks (GNNs) typically follows two approaches: LLM-centered models, which convert graph data into tokens for LLM processing, and GNN-centered models, which use LLMs to encode text features into node and edge representations for GNN input. LLM-centered models often struggle to capture graph structures effectively, while GNN-centered models compress variable-length textual data into fixed-size vectors, limiting their ability to understand complex semantics. Additionally, GNN-centered approaches require converting tasks into a uniform, manually-designed format, restricting them to classification tasks and preventing language output. To address these limitations, we introduce a new architecture that deeply integrates GNN with LLM, featuring three key innovations: (1) Structure-Aware Transformers, which incorporate GNN's message-passing capabilities directly into LLM's transformer layers, allowing simultaneous processing of textual and structural information and generating outputs from both GNN and LLM; (2) Graph-Text Cross-Attention, which processes full, uncompressed text from graph nodes and edges, ensuring complete semantic integration; and (3) GNN-LLM Twin Predictor, enabling LLM's flexible autoregressive generation alongside GNN's scalable one-pass prediction. GL-Fusion achieves outstand performance on various tasks. Notably, it achieves state-of-the-art performance on OGBN-Arxiv and OGBG-Code2.

  • 6 authors
·
Dec 8, 2024

Lite Pose: Efficient Architecture Design for 2D Human Pose Estimation

Pose estimation plays a critical role in human-centered vision applications. However, it is difficult to deploy state-of-the-art HRNet-based pose estimation models on resource-constrained edge devices due to the high computational cost (more than 150 GMACs per frame). In this paper, we study efficient architecture design for real-time multi-person pose estimation on edge. We reveal that HRNet's high-resolution branches are redundant for models at the low-computation region via our gradual shrinking experiments. Removing them improves both efficiency and performance. Inspired by this finding, we design LitePose, an efficient single-branch architecture for pose estimation, and introduce two simple approaches to enhance the capacity of LitePose, including Fusion Deconv Head and Large Kernel Convs. Fusion Deconv Head removes the redundancy in high-resolution branches, allowing scale-aware feature fusion with low overhead. Large Kernel Convs significantly improve the model's capacity and receptive field while maintaining a low computational cost. With only 25% computation increment, 7x7 kernels achieve +14.0 mAP better than 3x3 kernels on the CrowdPose dataset. On mobile platforms, LitePose reduces the latency by up to 5.0x without sacrificing performance, compared with prior state-of-the-art efficient pose estimation models, pushing the frontier of real-time multi-person pose estimation on edge. Our code and pre-trained models are released at https://github.com/mit-han-lab/litepose.

  • 5 authors
·
May 2, 2022

FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback

Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose FASIONAD -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a 6.7% reduction in average L2 trajectory error and 28.1% lower collision rate.

  • 19 authors
·
Mar 11

A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition

Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.

  • 4 authors
·
Aug 12

Mamba-FCS: Joint Spatio- Frequency Feature Fusion, Change-Guided Attention, and SeK Loss for Enhanced Semantic Change Detection in Remote Sensing

Semantic Change Detection (SCD) from remote sensing imagery requires models balancing extensive spatial context, computational efficiency, and sensitivity to class-imbalanced land-cover transitions. While Convolutional Neural Networks excel at local feature extraction but lack global context, Transformers provide global modeling at high computational costs. Recent Mamba architectures based on state-space models offer compelling solutions through linear complexity and efficient long-range modeling. In this study, we introduce Mamba-FCS, a SCD framework built upon Visual State Space Model backbone incorporating, a Joint Spatio-Frequency Fusion block incorporating log-amplitude frequency domain features to enhance edge clarity and suppress illumination artifacts, a Change-Guided Attention (CGA) module that explicitly links the naturally intertwined BCD and SCD tasks, and a Separated Kappa (SeK) loss tailored for class-imbalanced performance optimization. Extensive evaluation on SECOND and Landsat-SCD datasets shows that Mamba-FCS achieves state-of-the-art metrics, 88.62% Overall Accuracy, 65.78% F_scd, and 25.50% SeK on SECOND, 96.25% Overall Accuracy, 89.27% F_scd, and 60.26% SeK on Landsat-SCD. Ablation analyses confirm distinct contributions of each novel component, with qualitative assessments highlighting significant improvements in SCD. Our results underline the substantial potential of Mamba architectures, enhanced by proposed techniques, setting a new benchmark for effective and scalable semantic change detection in remote sensing applications. The complete source code, configuration files, and pre-trained models will be publicly available upon publication.

  • 7 authors
·
Aug 11

M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation

Emotion Recognition in Conversations (ERC) is crucial in developing sympathetic human-machine interaction. In conversational videos, emotion can be present in multiple modalities, i.e., audio, video, and transcript. However, due to the inherent characteristics of these modalities, multi-modal ERC has always been considered a challenging undertaking. Existing ERC research focuses mainly on using text information in a discussion, ignoring the other two modalities. We anticipate that emotion recognition accuracy can be improved by employing a multi-modal approach. Thus, in this study, we propose a Multi-modal Fusion Network (M2FNet) that extracts emotion-relevant features from visual, audio, and text modality. It employs a multi-head attention-based fusion mechanism to combine emotion-rich latent representations of the input data. We introduce a new feature extractor to extract latent features from the audio and visual modality. The proposed feature extractor is trained with a novel adaptive margin-based triplet loss function to learn emotion-relevant features from the audio and visual data. In the domain of ERC, the existing methods perform well on one benchmark dataset but not on others. Our results show that the proposed M2FNet architecture outperforms all other methods in terms of weighted average F1 score on well-known MELD and IEMOCAP datasets and sets a new state-of-the-art performance in ERC.

  • 6 authors
·
Jun 5, 2022

FuseChat: Knowledge Fusion of Chat Models

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, it incurs substantial costs and may lead to redundancy in competencies. Knowledge fusion aims to integrate existing LLMs of diverse architectures and capabilities into a more potent LLM through lightweight continual training, thereby reducing the need for costly LLM development. In this work, we propose a new framework for the knowledge fusion of chat LLMs through two main stages, resulting in FuseChat. Firstly, we conduct pairwise knowledge fusion on source chat LLMs of varying structures and scales to create multiple target LLMs with identical structure and size via lightweight fine-tuning. During this process, a statistics-based token alignment approach is introduced as the cornerstone for fusing LLMs with different structures. Secondly, we merge these target LLMs within the parameter space, where we propose a novel method for determining the merging coefficients based on the magnitude of parameter updates before and after fine-tuning. We implement and validate FuseChat using six prominent chat LLMs with diverse architectures and scales, including OpenChat-3.5-7B, Starling-LM-7B-alpha, NH2-SOLAR-10.7B, InternLM2-Chat-20B, Mixtral-8x7B-Instruct, and Qwen-1.5-Chat-72B. Experimental results on two instruction-following benchmarks, AlpacaEval 2.0 and MT-Bench, demonstrate the superiority of FuseChat-7B over baselines of various sizes. Our model is even comparable to the larger Mixtral-8x7B-Instruct and approaches GPT-3.5-Turbo-1106 on MT-Bench. Our code, model weights, and data are public at https://github.com/fanqiwan/FuseAI.

  • 5 authors
·
Aug 15, 2024 2

MoMa: Efficient Early-Fusion Pre-training with Mixture of Modality-Aware Experts

We introduce MoMa, a novel modality-aware mixture-of-experts (MoE) architecture designed for pre-training mixed-modal, early-fusion language models. MoMa processes images and text in arbitrary sequences by dividing expert modules into modality-specific groups. These groups exclusively process designated tokens while employing learned routing within each group to maintain semantically informed adaptivity. Our empirical results reveal substantial pre-training efficiency gains through this modality-specific parameter allocation. Under a 1-trillion-token training budget, the MoMa 1.4B model, featuring 4 text experts and 4 image experts, achieves impressive FLOPs savings: 3.7x overall, with 2.6x for text and 5.2x for image processing compared to a compute-equivalent dense baseline, measured by pre-training loss. This outperforms the standard expert-choice MoE with 8 mixed-modal experts, which achieves 3x overall FLOPs savings (3x for text, 2.8x for image). Combining MoMa with mixture-of-depths (MoD) further improves pre-training FLOPs savings to 4.2x overall (text: 3.4x, image: 5.3x), although this combination hurts performance in causal inference due to increased sensitivity to router accuracy. These results demonstrate MoMa's potential to significantly advance the efficiency of mixed-modal, early-fusion language model pre-training, paving the way for more resource-efficient and capable multimodal AI systems.

  • 8 authors
·
Jul 31, 2024 5

V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction

Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on the spatio-temporal fusion in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with 11 fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatio-temporal relationships across multiple agents, frames, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X collaboration modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks. The codebase and dataset will be released to facilitate future V2X research.

  • 14 authors
·
Dec 2, 2024

Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.

  • 8 authors
·
Aug 3, 2023

FuseChat: Knowledge Fusion of Chat Models

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, this approach incurs substantial costs and may lead to potential redundancy in competencies. An alternative strategy is to combine existing LLMs into a more robust LLM, thereby diminishing the necessity for expensive pre-training. However, due to the diverse architectures of LLMs, direct parameter blending proves to be unfeasible. Recently, FuseLLM introduced the concept of knowledge fusion to transfer the collective knowledge of multiple structurally varied LLMs into a target LLM through lightweight continual training. In this report, we extend the scalability and flexibility of the FuseLLM framework to realize the fusion of chat LLMs, resulting in FuseChat. FuseChat comprises two main stages. Firstly, we undertake knowledge fusion for structurally and scale-varied source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning. Then, these target LLMs are merged within the parameter space, wherein we propose a novel method for determining the merging weights based on the variation ratio of parameter matrices before and after fine-tuning. We validate our approach using three prominent chat LLMs with diverse architectures and scales, namely NH2-Mixtral-8x7B, NH2-Solar-10.7B, and OpenChat-3.5-7B. Experimental results spanning various chat domains demonstrate the superiority of \textsc{FuseChat-7B} across a broad spectrum of chat LLMs at 7B and 34B scales, even surpassing GPT-3.5 (March) and approaching Mixtral-8x7B-Instruct. Our code, model weights, and data are openly accessible at https://github.com/fanqiwan/FuseLLM.

  • 6 authors
·
Feb 25, 2024 5

DiffuSIA: A Spiral Interaction Architecture for Encoder-Decoder Text Diffusion

Diffusion models have emerged as the new state-of-the-art family of deep generative models, and their promising potentials for text generation have recently attracted increasing attention. Existing studies mostly adopt a single encoder architecture with partially noising processes for conditional text generation, but its degree of flexibility for conditional modeling is limited. In fact, the encoder-decoder architecture is naturally more flexible for its detachable encoder and decoder modules, which is extensible to multilingual and multimodal generation tasks for conditions and target texts. However, the encoding process of conditional texts lacks the understanding of target texts. To this end, a spiral interaction architecture for encoder-decoder text diffusion (DiffuSIA) is proposed. Concretely, the conditional information from encoder is designed to be captured by the diffusion decoder, while the target information from decoder is designed to be captured by the conditional encoder. These two types of information flow run through multilayer interaction spirally for deep fusion and understanding. DiffuSIA is evaluated on four text generation tasks, including paraphrase, text simplification, question generation, and open-domain dialogue generation. Experimental results show that DiffuSIA achieves competitive performance among previous methods on all four tasks, demonstrating the effectiveness and generalization ability of the proposed method.

  • 3 authors
·
May 19, 2023

GVDepth: Zero-Shot Monocular Depth Estimation for Ground Vehicles based on Probabilistic Cue Fusion

Generalizing metric monocular depth estimation presents a significant challenge due to its ill-posed nature, while the entanglement between camera parameters and depth amplifies issues further, hindering multi-dataset training and zero-shot accuracy. This challenge is particularly evident in autonomous vehicles and mobile robotics, where data is collected with fixed camera setups, limiting the geometric diversity. Yet, this context also presents an opportunity: the fixed relationship between the camera and the ground plane imposes additional perspective geometry constraints, enabling depth regression via vertical image positions of objects. However, this cue is highly susceptible to overfitting, thus we propose a novel canonical representation that maintains consistency across varied camera setups, effectively disentangling depth from specific parameters and enhancing generalization across datasets. We also propose a novel architecture that adaptively and probabilistically fuses depths estimated via object size and vertical image position cues. A comprehensive evaluation demonstrates the effectiveness of the proposed approach on five autonomous driving datasets, achieving accurate metric depth estimation for varying resolutions, aspect ratios and camera setups. Notably, we achieve comparable accuracy to existing zero-shot methods, despite training on a single dataset with a single-camera setup.

  • 4 authors
·
Dec 8, 2024

CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking

To enable self-driving vehicles accurate detection and tracking of surrounding objects is essential. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high-performance systems, the appeal of camera-only solutions lies in their cost-effectiveness. Notably, despite the prevalent use of Radio Detection and Ranging (RADAR) sensors in automotive systems, their potential in 3D detection and tracking has been largely disregarded due to data sparsity and measurement noise. As a recent development, the combination of RADARs and cameras is emerging as a promising solution. This paper presents Camera-RADAR 3D Detection and Tracking (CR3DT), a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT). Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities, by incorporating the spatial and velocity information of the RADAR sensor. Experimental results demonstrate an absolute improvement in detection performance of 5.3% in mean Average Precision (mAP) and a 14.9% increase in Average Multi-Object Tracking Accuracy (AMOTA) on the nuScenes dataset when leveraging both modalities. CR3DT bridges the gap between high-performance and cost-effective perception systems in autonomous driving, by capitalizing on the ubiquitous presence of RADAR in automotive applications. The code is available at: https://github.com/ETH-PBL/CR3DT.

  • 8 authors
·
Mar 22, 2024

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in unsupervised domain adaptation (UDA). Even though a large number of methods propose new adaptation strategies, they are mostly based on outdated network architectures. As the influence of recent network architectures has not been systematically studied, we first benchmark different network architectures for UDA and newly reveal the potential of Transformers for UDA semantic segmentation. Based on the findings, we propose a novel UDA method, DAFormer. The network architecture of DAFormer consists of a Transformer encoder and a multi-level context-aware feature fusion decoder. It is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting to the source domain: While (1) Rare Class Sampling on the source domain improves the quality of the pseudo-labels by mitigating the confirmation bias of self-training toward common classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining. DAFormer represents a major advance in UDA. It improves the state of the art by 10.8 mIoU for GTA-to-Cityscapes and 5.4 mIoU for Synthia-to-Cityscapes and enables learning even difficult classes such as train, bus, and truck well. The implementation is available at https://github.com/lhoyer/DAFormer.

  • 3 authors
·
Nov 29, 2021

Transformer Fusion with Optimal Transport

Fusion is a technique for merging multiple independently-trained neural networks in order to combine their capabilities. Past attempts have been restricted to the case of fully-connected, convolutional, and residual networks. In this paper, we present a systematic approach for fusing two or more transformer-based networks exploiting Optimal Transport to (soft-)align the various architectural components. We flesh out an abstraction for layer alignment, that can generalize to arbitrary architectures -- in principle -- and we apply this to the key ingredients of Transformers such as multi-head self-attention, layer-normalization, and residual connections, and we discuss how to handle them via various ablation studies. Furthermore, our method allows the fusion of models of different sizes (heterogeneous fusion), providing a new and efficient way for compression of Transformers. The proposed approach is evaluated on both image classification tasks via Vision Transformer and natural language modeling tasks using BERT. Our approach consistently outperforms vanilla fusion, and, after a surprisingly short finetuning, also outperforms the individual converged parent models. In our analysis, we uncover intriguing insights about the significant role of soft alignment in the case of Transformers. Our results showcase the potential of fusing multiple Transformers, thus compounding their expertise, in the budding paradigm of model fusion and recombination.

  • 6 authors
·
Oct 9, 2023

Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection

Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.

  • 10 authors
·
Jul 12

Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration

Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.

  • 8 authors
·
Jun 4

HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation

Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.

DualToken-ViT: Position-aware Efficient Vision Transformer with Dual Token Fusion

Self-attention-based vision transformers (ViTs) have emerged as a highly competitive architecture in computer vision. Unlike convolutional neural networks (CNNs), ViTs are capable of global information sharing. With the development of various structures of ViTs, ViTs are increasingly advantageous for many vision tasks. However, the quadratic complexity of self-attention renders ViTs computationally intensive, and their lack of inductive biases of locality and translation equivariance demands larger model sizes compared to CNNs to effectively learn visual features. In this paper, we propose a light-weight and efficient vision transformer model called DualToken-ViT that leverages the advantages of CNNs and ViTs. DualToken-ViT effectively fuses the token with local information obtained by convolution-based structure and the token with global information obtained by self-attention-based structure to achieve an efficient attention structure. In addition, we use position-aware global tokens throughout all stages to enrich the global information, which further strengthening the effect of DualToken-ViT. Position-aware global tokens also contain the position information of the image, which makes our model better for vision tasks. We conducted extensive experiments on image classification, object detection and semantic segmentation tasks to demonstrate the effectiveness of DualToken-ViT. On the ImageNet-1K dataset, our models of different scales achieve accuracies of 75.4% and 79.4% with only 0.5G and 1.0G FLOPs, respectively, and our model with 1.0G FLOPs outperforms LightViT-T using global tokens by 0.7%.

  • 7 authors
·
Sep 21, 2023 2

Archon: An Architecture Search Framework for Inference-Time Techniques

Inference-time techniques are emerging as highly effective tools to enhance large language model (LLM) capabilities. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of individual inference-time techniques and the interactions between them. Additionally, efficiently and automatically searching the space of model choices, inference-time techniques, and their compositions is challenging due to the large design space. To address these challenges, we introduce Archon, a modular framework for selecting, combining, and stacking layers of inference-time techniques to construct optimized LLM systems for target benchmarks. Rather than relying on a single LLM called once, we leverage a diverse set of LLMs and inference-time techniques, creating LLM systems greater than the sum of their parts. Archon defines an extensible design space, encompassing techniques such as generation ensembling, repeated sampling, ranking, fusion, critiquing, verification, and unit testing. It transforms the problem of building LLM systems into a hyperparameter optimization objective. Given the available LLMs, inference-time techniques, and compute budget, Archon utilizes hyperparameter search techniques to discover optimized architectures for target benchmark(s). We evaluate Archon architectures across a range of instruction-following, reasoning, and coding benchmarks, including MT-Bench, Arena-Hard-Auto, AlpacaEval 2.0, MixEval, MixEval Hard, MATH, and CodeContests. Archon architectures outperform frontier models, such as GPT-4o and Claude 3.5 Sonnet, on these benchmarks, achieving an average accuracy increase of 15.1 percentage points by using all available LLMs. We make our code and datasets available publicly on Github: https://github.com/ScalingIntelligence/Archon.

  • 11 authors
·
Sep 23, 2024

Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone

Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones, bringing gains in terms of memory and performance. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is available at https://github.com/microsoft/FIBER.

  • 12 authors
·
Jun 15, 2022

PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation

Infrared and visible image fusion is a powerful technique that combines complementary information from different modalities for downstream semantic perception tasks. Existing learning-based methods show remarkable performance, but are suffering from the inherent vulnerability of adversarial attacks, causing a significant decrease in accuracy. In this work, a perception-aware fusion framework is proposed to promote segmentation robustness in adversarial scenes. We first conduct systematic analyses about the components of image fusion, investigating the correlation with segmentation robustness under adversarial perturbations. Based on these analyses, we propose a harmonized architecture search with a decomposition-based structure to balance standard accuracy and robustness. We also propose an adaptive learning strategy to improve the parameter robustness of image fusion, which can learn effective feature extraction under diverse adversarial perturbations. Thus, the goals of image fusion (i.e., extracting complementary features from source modalities and defending attack) can be realized from the perspectives of architectural and learning strategies. Extensive experimental results demonstrate that our scheme substantially enhances the robustness, with gains of 15.3% mIOU of segmentation in the adversarial scene, compared with advanced competitors. The source codes are available at https://github.com/LiuZhu-CV/PAIF.

  • 6 authors
·
Aug 7, 2023

The Evolution of Multimodal Model Architectures

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

  • 4 authors
·
May 28, 2024

Adaptive Ensemble Learning: Boosting Model Performance through Intelligent Feature Fusion in Deep Neural Networks

In this paper, we present an Adaptive Ensemble Learning framework that aims to boost the performance of deep neural networks by intelligently fusing features through ensemble learning techniques. The proposed framework integrates ensemble learning strategies with deep learning architectures to create a more robust and adaptable model capable of handling complex tasks across various domains. By leveraging intelligent feature fusion methods, the Adaptive Ensemble Learning framework generates more discriminative and effective feature representations, leading to improved model performance and generalization capabilities. We conducted extensive experiments and evaluations on several benchmark datasets, including image classification, object detection, natural language processing, and graph-based learning tasks. The results demonstrate that the proposed framework consistently outperforms baseline models and traditional feature fusion techniques, highlighting its effectiveness in enhancing deep learning models' performance. Furthermore, we provide insights into the impact of intelligent feature fusion on model performance and discuss the potential applications of the Adaptive Ensemble Learning framework in real-world scenarios. The paper also explores the design and implementation of adaptive ensemble models, ensemble training strategies, and meta-learning techniques, which contribute to the framework's versatility and adaptability. In conclusion, the Adaptive Ensemble Learning framework represents a significant advancement in the field of feature fusion and ensemble learning for deep neural networks, with the potential to transform a wide range of applications across multiple domains.

  • 1 authors
·
Apr 4, 2023

WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion

Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.

  • 4 authors
·
Aug 8 2

Fast FullSubNet: Accelerate Full-band and Sub-band Fusion Model for Single-channel Speech Enhancement

FullSubNet is our recently proposed real-time single-channel speech enhancement network that achieves outstanding performance on the Deep Noise Suppression (DNS) Challenge dataset. A number of variants of FullSubNet have been proposed, but they all focus on the structure design towards better performance and are rarely concerned with computational efficiency. For many speech enhancement applications, a key feature is that system runs on a real-time, latency-sensitive, battery-powered platform, which strictly limits the algorithm latency and computational complexity. In this work, we propose a new architecture named Fast FullSubNet dedicated to accelerating the computation of FullSubNet. Specifically, Fast FullSubNet processes sub-band speech spectra in the mel-frequency domain by using cascaded linear-to-mel full-band, sub-band, and mel-to-linear full-band models such that frequencies involved in the sub-band computation are vastly reduced. After that, a down-sampling operation is proposed for the sub-band input sequence to further reduce the computational complexity along the time axis. Experimental results show that, compared to FullSubNet, Fast FullSubNet has only 13\% computational complexity and 16\% processing time, and achieves comparable or even better performance. Code and audio samples are available at https://github.com/Audio-WestlakeU/FullSubNet.

  • 2 authors
·
Dec 18, 2022

KnFu: Effective Knowledge Fusion

Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.

  • 4 authors
·
Mar 18, 2024

Progressive Volume Distillation with Active Learning for Efficient NeRF Architecture Conversion

Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including the plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their combinations, entail distinct trade-offs. For instance, representations based on Hashtables enable faster rendering but lack clear geometric meaning, thereby posing challenges for spatial-relation-aware editing. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversion between diverse architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a three-level active learning technique provides continuous feedback from teacher to student during the distillation process, achieving high-performance outcomes. Experimental evidence showcases the effectiveness of our method across multiple benchmark datasets. For instance, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the MLP-based model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements like mobile devices. Project website: https://sk-fun.fun/PVD-AL.

  • 7 authors
·
Apr 8, 2023

OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion

A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.

  • 6 authors
·
Mar 1, 2022

From Generalized Laughter to Personalized Chuckles: Unleashing the Power of Data Fusion in Subjective Humor Detection

The vast area of subjectivity in Natural Language Processing (NLP) poses a challenge to the solutions typically used in generalized tasks. As exploration in the scope of generalized NLP is much more advanced, it implies the tremendous gap that is still to be addressed amongst all feasible tasks where an opinion, taste, or feelings are inherent, thus creating a need for a solution, where a data fusion could take place. We have chosen the task of funniness, as it heavily relies on the sense of humor, which is fundamentally subjective. Our experiments across five personalized and four generalized datasets involving several personalized deep neural architectures have shown that the task of humor detection greatly benefits from the inclusion of personalized data in the training process. We tested five scenarios of training data fusion that focused on either generalized (majority voting) or personalized approaches to humor detection. The best results were obtained for the setup, in which all available personalized datasets were joined to train the personalized reasoning model. It boosted the prediction performance by up to approximately 35% of the macro F1 score. Such a significant gain was observed for all five personalized test sets. At the same time, the impact of the model's architecture was much less than the personalization itself. It seems that concatenating personalized datasets, even with the cost of normalizing the range of annotations across all datasets, if combined with the personalized models, results in an enormous increase in the performance of humor detection.

  • 2 authors
·
Dec 18, 2023

DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction

Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring.

  • 5 authors
·
Jul 8

PLAIN: Scalable Estimation Architecture for Integrated Sensing and Communication

Integrated sensing and communication (ISAC) is envisioned be to one of the paradigms upon which next-generation mobile networks will be built, extending localization and tracking capabilities, as well as giving birth to environment-aware wireless access. A key aspect of sensing integration is parameter estimation, which involves extracting information about the surrounding environment, such as the direction, distance, and velocity of various objects within. This is typically of a high-dimensional nature, which leads to significant computational complexity, if performed jointly across multiple sensing dimensions, such as space, frequency, and time. Additionally, due to the incorporation of sensing on top of the data transmission, the time window available for sensing is likely to be short, resulting in an estimation problem where only a single snapshot is accessible. In this work, we propose PLAIN, a tensor-based estimation architecture that flexibly scales with multiple sensing dimensions and can handle high dimensionality, limited measurement time, and super-resolution requirements. It consists of three stages: a compression stage, where the high dimensional input is converted into lower dimensionality, without sacrificing resolution; a decoupled estimation stage, where the parameters across the different dimensions are estimated in parallel with low complexity; an input-based fusion stage, where the decoupled parameters are fused together to form a paired multidimensional estimate. We investigate the performance of the architecture for different configurations and compare it against practical sequential and joint estimation baselines, as well as theoretical bounds. Our results show that PLAIN, using tools from tensor algebra, subspace-based processing, and compressed sensing, can scale flexibly with dimensionality, while operating with low complexity and maintaining super-resolution.

  • 3 authors
·
Mar 27

Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled Architectures

Large language model (LLM)-based inference workloads increasingly dominate data center costs and resource utilization. Therefore, understanding the inference workload characteristics on evolving CPU-GPU coupled architectures is crucial for optimization. This paper presents an in-depth analysis of LLM inference behavior on loosely-coupled (PCIe A100/H100) and closely-coupled (GH200) systems. We analyze performance dynamics using fine-grained operator-to-kernel trace analysis, facilitated by our novel profiler SKIP and metrics like Total Kernel Launch and Queuing Time (TKLQT). Results show that closely-coupled (CC) GH200 significantly outperforms loosely-coupled (LC) systems at large batch sizes, achieving 1.9x-2.7x faster prefill latency for Llama 3.2-1B. However, our analysis also reveals that GH200 remains CPU-bound up to 4x larger batch sizes than LC systems. In this extended CPU-bound region, we identify the performance characteristics of the Grace CPU as a key factor contributing to higher inference latency at low batch sizes on GH200. We demonstrate that TKLQT accurately identifies this CPU/GPU-bound transition point. Based on this analysis, we further show that kernel fusion offers significant potential to mitigate GH200's low-batch latency bottleneck by reducing kernel launch overhead. This detailed kernel-level characterization provides critical insights for optimizing diverse CPU-GPU coupling strategies. This work is an initial effort, and we plan to explore other major AI/DL workloads that demand different degrees of CPU-GPU heterogeneous architectures.

  • 6 authors
·
Apr 16

AutoLoRA: Automatic LoRA Retrieval and Fine-Grained Gated Fusion for Text-to-Image Generation

Despite recent advances in photorealistic image generation through large-scale models like FLUX and Stable Diffusion v3, the practical deployment of these architectures remains constrained by their inherent intractability to parameter fine-tuning. While low-rank adaptation (LoRA) have demonstrated efficacy in enabling model customization with minimal parameter overhead, the effective utilization of distributed open-source LoRA modules faces three critical challenges: sparse metadata annotation, the requirement for zero-shot adaptation capabilities, and suboptimal fusion strategies for multi-LoRA fusion strategies. To address these limitations, we introduce a novel framework that enables semantic-driven LoRA retrieval and dynamic aggregation through two key components: (1) weight encoding-base LoRA retriever that establishes a shared semantic space between LoRA parameter matrices and text prompts, eliminating dependence on original training data, and (2) fine-grained gated fusion mechanism that computes context-specific fusion weights across network layers and diffusion timesteps to optimally integrate multiple LoRA modules during generation. Our approach achieves significant improvement in image generation perfermance, thereby facilitating scalable and data-efficient enhancement of foundational models. This work establishes a critical bridge between the fragmented landscape of community-developed LoRAs and practical deployment requirements, enabling collaborative model evolution through standardized adapter integration.

  • 7 authors
·
Aug 4

Revisiting Multi-modal Emotion Learning with Broad State Space Models and Probability-guidance Fusion

Multi-modal Emotion Recognition in Conversation (MERC) has received considerable attention in various fields, e.g., human-computer interaction and recommendation systems. Most existing works perform feature disentanglement and fusion to extract emotional contextual information from multi-modal features and emotion classification. After revisiting the characteristic of MERC, we argue that long-range contextual semantic information should be extracted in the feature disentanglement stage and the inter-modal semantic information consistency should be maximized in the feature fusion stage. Inspired by recent State Space Models (SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in this work, we fully consider the above insights to further improve the performance of MERC. Specifically, on the one hand, in the feature disentanglement stage, we propose a Broad Mamba, which does not rely on a self-attention mechanism for sequence modeling, but uses state space models to compress emotional representation, and utilizes broad learning systems to explore the potential data distribution in broad space. Different from previous SSMs, we design a bidirectional SSM convolution to extract global context information. On the other hand, we design a multi-modal fusion strategy based on probability guidance to maximize the consistency of information between modalities. Experimental results show that the proposed method can overcome the computational and memory limitations of Transformer when modeling long-distance contexts, and has great potential to become a next-generation general architecture in MERC.

  • 5 authors
·
Apr 27, 2024

SeqDialN: Sequential Visual Dialog Networks in Joint Visual-Linguistic Representation Space

In this work, we formulate a visual dialog as an information flow in which each piece of information is encoded with the joint visual-linguistic representation of a single dialog round. Based on this formulation, we consider the visual dialog task as a sequence problem consisting of ordered visual-linguistic vectors. For featurization, we use a Dense Symmetric Co-Attention network as a lightweight vison-language joint representation generator to fuse multimodal features (i.e., image and text), yielding better computation and data efficiencies. For inference, we propose two Sequential Dialog Networks (SeqDialN): the first uses LSTM for information propagation (IP) and the second uses a modified Transformer for multi-step reasoning (MR). Our architecture separates the complexity of multimodal feature fusion from that of inference, which allows simpler design of the inference engine. IP based SeqDialN is our baseline with a simple 2-layer LSTM design that achieves decent performance. MR based SeqDialN, on the other hand, recurrently refines the semantic question/history representations through the self-attention stack of Transformer and produces promising results on the visual dialog task. On VisDial v1.0 test-std dataset, our best single generative SeqDialN achieves 62.54% NDCG and 48.63% MRR; our ensemble generative SeqDialN achieves 63.78% NDCG and 49.98% MRR, which set a new state-of-the-art generative visual dialog model. We fine-tune discriminative SeqDialN with dense annotations and boost the performance up to 72.41% NDCG and 55.11% MRR. In this work, we discuss the extensive experiments we have conducted to demonstrate the effectiveness of our model components. We also provide visualization for the reasoning process from the relevant conversation rounds and discuss our fine-tuning methods. Our code is available at https://github.com/xiaoxiaoheimei/SeqDialN

  • 1 authors
·
Aug 2, 2020

BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation

Real-time semantic segmentation presents the dual challenge of designing efficient architectures that capture large receptive fields for semantic understanding while also refining detailed contours. Vision transformers model long-range dependencies effectively but incur high computational cost. To address these challenges, we introduce the Large Kernel Attention (LKA) mechanism. Our proposed Bilateral Efficient Visual Attention Network (BEVANet) expands the receptive field to capture contextual information and extracts visual and structural features using Sparse Decomposed Large Separable Kernel Attentions (SDLSKA). The Comprehensive Kernel Selection (CKS) mechanism dynamically adapts the receptive field to further enhance performance. Furthermore, the Deep Large Kernel Pyramid Pooling Module (DLKPPM) enriches contextual features by synergistically combining dilated convolutions and large kernel attention. The bilateral architecture facilitates frequent branch communication, and the Boundary Guided Adaptive Fusion (BGAF) module enhances boundary delineation by integrating spatial and semantic features under boundary guidance. BEVANet achieves real-time segmentation at 33 FPS, yielding 79.3% mIoU without pretraining and 81.0% mIoU on Cityscapes after ImageNet pretraining, demonstrating state-of-the-art performance. The code and model is available at https://github.com/maomao0819/BEVANet.

  • 5 authors
·
Aug 10

CromSS: Cross-modal pre-training with noisy labels for remote sensing image segmentation

We explore the potential of large-scale noisily labeled data to enhance feature learning by pretraining semantic segmentation models within a multi-modal framework for geospatial applications. We propose a novel Cross-modal Sample Selection (CromSS) method, a weakly supervised pretraining strategy designed to improve feature representations through cross-modal consistency and noise mitigation techniques. Unlike conventional pretraining approaches, CromSS exploits massive amounts of noisy and easy-to-come-by labels for improved feature learning beneficial to semantic segmentation tasks. We investigate middle and late fusion strategies to optimize the multi-modal pretraining architecture design. We also introduce a cross-modal sample selection module to mitigate the adverse effects of label noise, which employs a cross-modal entangling strategy to refine the estimated confidence masks within each modality to guide the sampling process. Additionally, we introduce a spatial-temporal label smoothing technique to counteract overconfidence for enhanced robustness against noisy labels. To validate our approach, we assembled the multi-modal dataset, NoLDO-S12, which consists of a large-scale noisy label subset from Google's Dynamic World (DW) dataset for pretraining and two downstream subsets with high-quality labels from Google DW and OpenStreetMap (OSM) for transfer learning. Experimental results on two downstream tasks and the publicly available DFC2020 dataset demonstrate that when effectively utilized, the low-cost noisy labels can significantly enhance feature learning for segmentation tasks. All data, code, and pretrained weights will be made publicly available.

  • 4 authors
·
May 2, 2024

Object Detection with Multimodal Large Vision-Language Models: An In-depth Review

The fusion of language and vision in large vision-language models (LVLMs) has revolutionized deep learning-based object detection by enhancing adaptability, contextual reasoning, and generalization beyond traditional architectures. This in-depth review presents a structured exploration of the state-of-the-art in LVLMs, systematically organized through a three-step research review process. First, we discuss the functioning of vision language models (VLMs) for object detection, describing how these models harness natural language processing (NLP) and computer vision (CV) techniques to revolutionize object detection and localization. We then explain the architectural innovations, training paradigms, and output flexibility of recent LVLMs for object detection, highlighting how they achieve advanced contextual understanding for object detection. The review thoroughly examines the approaches used in integration of visual and textual information, demonstrating the progress made in object detection using VLMs that facilitate more sophisticated object detection and localization strategies. This review presents comprehensive visualizations demonstrating LVLMs' effectiveness in diverse scenarios including localization and segmentation, and then compares their real-time performance, adaptability, and complexity to traditional deep learning systems. Based on the review, its is expected that LVLMs will soon meet or surpass the performance of conventional methods in object detection. The review also identifies a few major limitations of the current LVLM modes, proposes solutions to address those challenges, and presents a clear roadmap for the future advancement in this field. We conclude, based on this study, that the recent advancement in LVLMs have made and will continue to make a transformative impact on object detection and robotic applications in the future.

  • 2 authors
·
Aug 25

Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning

Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.

  • 10 authors
·
May 28, 2024 3

FMViT: A multiple-frequency mixing Vision Transformer

The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.

  • 3 authors
·
Nov 9, 2023 1

Safe-Sora: Safe Text-to-Video Generation via Graphical Watermarking

The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. We will release our code upon publication.

  • 9 authors
·
May 18 2

NoteLLM-2: Multimodal Large Representation Models for Recommendation

Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.

  • 8 authors
·
May 26, 2024

P2AT: Pyramid Pooling Axial Transformer for Real-time Semantic Segmentation

Recently, Transformer-based models have achieved promising results in various vision tasks, due to their ability to model long-range dependencies. However, transformers are computationally expensive, which limits their applications in real-time tasks such as autonomous driving. In addition, an efficient local and global feature selection and fusion are vital for accurate dense prediction, especially driving scene understanding tasks. In this paper, we propose a real-time semantic segmentation architecture named Pyramid Pooling Axial Transformer (P2AT). The proposed P2AT takes a coarse feature from the CNN encoder to produce scale-aware contextual features, which are then combined with the multi-level feature aggregation scheme to produce enhanced contextual features. Specifically, we introduce a pyramid pooling axial transformer to capture intricate spatial and channel dependencies, leading to improved performance on semantic segmentation. Then, we design a Bidirectional Fusion module (BiF) to combine semantic information at different levels. Meanwhile, a Global Context Enhancer is introduced to compensate for the inadequacy of concatenating different semantic levels. Finally, a decoder block is proposed to help maintain a larger receptive field. We evaluate P2AT variants on three challenging scene-understanding datasets. In particular, our P2AT variants achieve state-of-art results on the Camvid dataset 80.5%, 81.0%, 81.1% for P2AT-S, P2ATM, and P2AT-L, respectively. Furthermore, our experiment on Cityscapes and Pascal VOC 2012 have demonstrated the efficiency of the proposed architecture, with results showing that P2AT-M, achieves 78.7% on Cityscapes. The source code will be available at

  • 4 authors
·
Oct 23, 2023

TraHGR: Transformer for Hand Gesture Recognition via ElectroMyography

Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram (sEMG) signals has recently shown significant potential for development of advanced myoelectric-controlled prosthesis. Existing deep learning approaches, typically, include only one model as such can hardly maintain acceptable generalization performance in changing scenarios. In this paper, we aim to address this challenge by capitalizing on the recent advances of hybrid models and transformers. In other words, we propose a hybrid framework based on the transformer architecture, which is a relatively new and revolutionizing deep learning model. The proposed hybrid architecture, referred to as the Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel paths followed by a linear layer that acts as a fusion center to integrate the advantage of each module and provide robustness over different scenarios. We evaluated the proposed architecture TraHGR based on the commonly used second Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset are measured in the real-life conditions from 40 healthy users, each performing 49 gestures. We have conducted extensive set of experiments to test and validate the proposed TraHGR architecture, and have compared its achievable accuracy with more than five recently proposed HGR classification algorithms over the same dataset. We have also compared the results of the proposed TraHGR architecture with each individual path and demonstrated the distinguishing power of the proposed hybrid architecture. The recognition accuracies of the proposed TraHGR architecture are 86.18%, 88.91%, 81.44%, and 93.84%, which are 2.48%, 5.12%, 8.82%, and 4.30% higher than the state-ofthe-art performance for DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures), respectively.

  • 4 authors
·
Mar 28, 2022

In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data

Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.

  • 3 authors
·
Mar 25, 2024 1

Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation

Recent progress in unified models for image understanding and generation has been impressive, yet most approaches remain limited to single-modal generation conditioned on multiple modalities. In this paper, we present Mogao, a unified framework that advances this paradigm by enabling interleaved multi-modal generation through a causal approach. Mogao integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance, which allow it to harness the strengths of both autoregressive models for text generation and diffusion models for high-quality image synthesis. These practical improvements also make Mogao particularly effective to process interleaved sequences of text and images arbitrarily. To further unlock the potential of unified models, we introduce an efficient training strategy on a large-scale, in-house dataset specifically curated for joint text and image generation. Extensive experiments show that Mogao not only achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs. Its emergent capabilities in zero-shot image editing and compositional generation highlight Mogao as a practical omni-modal foundation model, paving the way for future development and scaling the unified multi-modal systems.

  • 10 authors
·
May 8

Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks

Retrieval-augmented Generation (RAG) has markedly enhanced the capabilities of Large Language Models (LLMs) in tackling knowledge-intensive tasks. The increasing demands of application scenarios have driven the evolution of RAG, leading to the integration of advanced retrievers, LLMs and other complementary technologies, which in turn has amplified the intricacy of RAG systems. However, the rapid advancements are outpacing the foundational RAG paradigm, with many methods struggling to be unified under the process of "retrieve-then-generate". In this context, this paper examines the limitations of the existing RAG paradigm and introduces the modular RAG framework. By decomposing complex RAG systems into independent modules and specialized operators, it facilitates a highly reconfigurable framework. Modular RAG transcends the traditional linear architecture, embracing a more advanced design that integrates routing, scheduling, and fusion mechanisms. Drawing on extensive research, this paper further identifies prevalent RAG patterns-linear, conditional, branching, and looping-and offers a comprehensive analysis of their respective implementation nuances. Modular RAG presents innovative opportunities for the conceptualization and deployment of RAG systems. Finally, the paper explores the potential emergence of new operators and paradigms, establishing a solid theoretical foundation and a practical roadmap for the continued evolution and practical deployment of RAG technologies.

  • 4 authors
·
Jul 25, 2024

Referring Atomic Video Action Recognition

We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.

  • 11 authors
·
Jul 1, 2024

Automatic channel selection and spatial feature integration for multi-channel speech recognition across various array topologies

Automatic Speech Recognition (ASR) has shown remarkable progress, yet it still faces challenges in real-world distant scenarios across various array topologies each with multiple recording devices. The focal point of the CHiME-7 Distant ASR task is to devise a unified system capable of generalizing various array topologies that have multiple recording devices and offering reliable recognition performance in real-world environments. Addressing this task, we introduce an ASR system that demonstrates exceptional performance across various array topologies. First of all, we propose two attention-based automatic channel selection modules to select the most advantageous subset of multi-channel signals from multiple recording devices for each utterance. Furthermore, we introduce inter-channel spatial features to augment the effectiveness of multi-frame cross-channel attention, aiding it in improving the capability of spatial information awareness. Finally, we propose a multi-layer convolution fusion module drawing inspiration from the U-Net architecture to integrate the multi-channel output into a single-channel output. Experimental results on the CHiME-7 corpus with oracle segmentation demonstrate that the improvements introduced in our proposed ASR system lead to a relative reduction of 40.1% in the Macro Diarization Attributed Word Error Rates (DA-WER) when compared to the baseline ASR system on the Eval sets.

  • 6 authors
·
Dec 15, 2023

Self-Supervised Model Adaptation for Multimodal Semantic Segmentation

Learning to reliably perceive and understand the scene is an integral enabler for robots to operate in the real-world. This problem is inherently challenging due to the multitude of object types as well as appearance changes caused by varying illumination and weather conditions. Leveraging complementary modalities can enable learning of semantically richer representations that are resilient to such perturbations. Despite the tremendous progress in recent years, most multimodal convolutional neural network approaches directly concatenate feature maps from individual modality streams rendering the model incapable of focusing only on relevant complementary information for fusion. To address this limitation, we propose a mutimodal semantic segmentation framework that dynamically adapts the fusion of modality-specific features while being sensitive to the object category, spatial location and scene context in a self-supervised manner. Specifically, we propose an architecture consisting of two modality-specific encoder streams that fuse intermediate encoder representations into a single decoder using our proposed self-supervised model adaptation fusion mechanism which optimally combines complementary features. As intermediate representations are not aligned across modalities, we introduce an attention scheme for better correlation. In addition, we propose a computationally efficient unimodal segmentation architecture termed AdapNet++ that incorporates a new encoder with multiscale residual units and an efficient atrous spatial pyramid pooling that has a larger effective receptive field with more than 10x fewer parameters, complemented with a strong decoder with a multi-resolution supervision scheme that recovers high-resolution details. Comprehensive empirical evaluations on several benchmarks demonstrate that both our unimodal and multimodal architectures achieve state-of-the-art performance.

  • 3 authors
·
Aug 11, 2018

Hadamard product in deep learning: Introduction, Advances and Challenges

While convolution and self-attention mechanisms have dominated architectural design in deep learning, this survey examines a fundamental yet understudied primitive: the Hadamard product. Despite its widespread implementation across various applications, the Hadamard product has not been systematically analyzed as a core architectural primitive. We present the first comprehensive taxonomy of its applications in deep learning, identifying four principal domains: higher-order correlation, multimodal data fusion, dynamic representation modulation, and efficient pairwise operations. The Hadamard product's ability to model nonlinear interactions with linear computational complexity makes it particularly valuable for resource-constrained deployments and edge computing scenarios. We demonstrate its natural applicability in multimodal fusion tasks, such as visual question answering, and its effectiveness in representation masking for applications including image inpainting and pruning. This systematic review not only consolidates existing knowledge about the Hadamard product's role in deep learning architectures but also establishes a foundation for future architectural innovations. Our analysis reveals the Hadamard product as a versatile primitive that offers compelling trade-offs between computational efficiency and representational power, positioning it as a crucial component in the deep learning toolkit.

  • 5 authors
·
Apr 17

OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/

  • 9 authors
·
Aug 26 2

V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language Models

Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on detection and tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates an LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. Our project website: https://eddyhkchiu.github.io/v2vllm.github.io/ .

  • 6 authors
·
Feb 14 4

CoInfra: A Large-Scale Cooperative Infrastructure Perception System and Dataset in Adverse Weather

We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.

  • 12 authors
·
Jul 2

Sea ice detection using concurrent multispectral and synthetic aperture radar imagery

Synthetic Aperture Radar (SAR) imagery is the primary data type used for sea ice mapping due to its spatio-temporal coverage and the ability to detect sea ice independent of cloud and lighting conditions. Automatic sea ice detection using SAR imagery remains problematic due to the presence of ambiguous signal and noise within the image. Conversely, ice and water are easily distinguishable using multispectral imagery (MSI), but in the polar regions the ocean's surface is often occluded by cloud or the sun may not appear above the horizon for many months. To address some of these limitations, this paper proposes a new tool trained using concurrent multispectral Visible and SAR imagery for sea Ice Detection (ViSual\_IceD). ViSual\_IceD is a convolution neural network (CNN) that builds on the classic U-Net architecture by containing two parallel encoder stages, enabling the fusion and concatenation of MSI and SAR imagery containing different spatial resolutions. The performance of ViSual\_IceD is compared with U-Net models trained using concatenated MSI and SAR imagery as well as models trained exclusively on MSI or SAR imagery. ViSual\_IceD outperforms the other networks, with a F1 score 1.60\% points higher than the next best network, and results indicate that ViSual\_IceD is selective in the image type it uses during image segmentation. Outputs from ViSual\_IceD are compared to sea ice concentration products derived from the AMSR2 Passive Microwave (PMW) sensor. Results highlight how ViSual\_IceD is a useful tool to use in conjunction with PMW data, particularly in coastal regions. As the spatial-temporal coverage of MSI and SAR imagery continues to increase, ViSual\_IceD provides a new opportunity for robust, accurate sea ice coverage detection in polar regions.

  • 6 authors
·
Jan 11, 2024

IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet

Accurate localization and segmentation of intervertebral disc (IVD) is crucial for the assessment of spine disease diagnosis. Despite the technological advances in medical imaging, IVD localization and segmentation are still manually performed, which is time-consuming and prone to errors. If, in addition, multi-modal imaging is considered, the burden imposed on disease assessments increases substantially. In this paper, we propose an architecture for IVD localization and segmentation in multi-modal MRI, which extends the well-known UNet. Compared to single images, multi-modal data brings complementary information, contributing to better data representation and discriminative power. Our contributions are three-fold. First, how to effectively integrate and fully leverage multi-modal data remains almost unexplored. In this work, each MRI modality is processed in a different path to better exploit their unique information. Second, inspired by HyperDenseNet, the network is densely-connected both within each path and across different paths, granting the model the freedom to learn where and how the different modalities should be processed and combined. Third, we improved standard U-Net modules by extending inception modules with two dilated convolutions blocks of different scale, which helps handling multi-scale context. We report experiments over the data set of the public MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization and Segmentation, with 13 multi-modal MRI images used for training and 3 for validation. We trained IVD-Net on an NVidia TITAN XP GPU with 16 GBs RAM, using ADAM as optimizer and a learning rate of 10e-5 during 200 epochs. Training took about 5 hours, and segmentation of a whole volume about 2-3 seconds, on average. Several baselines, with different multi-modal fusion strategies, were used to demonstrate the effectiveness of the proposed architecture.

  • 3 authors
·
Nov 19, 2018

HierLight-YOLO: A Hierarchical and Lightweight Object Detection Network for UAV Photography

The real-time detection of small objects in complex scenes, such as the unmanned aerial vehicle (UAV) photography captured by drones, has dual challenges of detecting small targets (<32 pixels) and maintaining real-time efficiency on resource-constrained platforms. While YOLO-series detectors have achieved remarkable success in real-time large object detection, they suffer from significantly higher false negative rates for drone-based detection where small objects dominate, compared to large object scenarios. This paper proposes HierLight-YOLO, a hierarchical feature fusion and lightweight model that enhances the real-time detection of small objects, based on the YOLOv8 architecture. We propose the Hierarchical Extended Path Aggregation Network (HEPAN), a multi-scale feature fusion method through hierarchical cross-level connections, enhancing the small object detection accuracy. HierLight-YOLO includes two innovative lightweight modules: Inverted Residual Depthwise Convolution Block (IRDCB) and Lightweight Downsample (LDown) module, which significantly reduce the model's parameters and computational complexity without sacrificing detection capabilities. Small object detection head is designed to further enhance spatial resolution and feature fusion to tackle the tiny object (4 pixels) detection. Comparison experiments and ablation studies on the VisDrone2019 benchmark demonstrate state-of-the-art performance of HierLight-YOLO.

  • 3 authors
·
Sep 26

INFWIDE: Image and Feature Space Wiener Deconvolution Network for Non-blind Image Deblurring in Low-Light Conditions

Under low-light environment, handheld photography suffers from severe camera shake under long exposure settings. Although existing deblurring algorithms have shown promising performance on well-exposed blurry images, they still cannot cope with low-light snapshots. Sophisticated noise and saturation regions are two dominating challenges in practical low-light deblurring. In this work, we propose a novel non-blind deblurring method dubbed image and feature space Wiener deconvolution network (INFWIDE) to tackle these problems systematically. In terms of algorithm design, INFWIDE proposes a two-branch architecture, which explicitly removes noise and hallucinates saturated regions in the image space and suppresses ringing artifacts in the feature space, and integrates the two complementary outputs with a subtle multi-scale fusion network for high quality night photograph deblurring. For effective network training, we design a set of loss functions integrating a forward imaging model and backward reconstruction to form a close-loop regularization to secure good convergence of the deep neural network. Further, to optimize INFWIDE's applicability in real low-light conditions, a physical-process-based low-light noise model is employed to synthesize realistic noisy night photographs for model training. Taking advantage of the traditional Wiener deconvolution algorithm's physically driven characteristics and arisen deep neural network's representation ability, INFWIDE can recover fine details while suppressing the unpleasant artifacts during deblurring. Extensive experiments on synthetic data and real data demonstrate the superior performance of the proposed approach.

  • 5 authors
·
Jul 17, 2022

Large Spatial Model: End-to-end Unposed Images to Semantic 3D

Reconstructing and understanding 3D structures from a limited number of images is a well-established problem in computer vision. Traditional methods usually break this task into multiple subtasks, each requiring complex transformations between different data representations. For instance, dense reconstruction through Structure-from-Motion (SfM) involves converting images into key points, optimizing camera parameters, and estimating structures. Afterward, accurate sparse reconstructions are required for further dense modeling, which is subsequently fed into task-specific neural networks. This multi-step process results in considerable processing time and increased engineering complexity. In this work, we present the Large Spatial Model (LSM), which processes unposed RGB images directly into semantic radiance fields. LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation, and it can generate versatile label maps by interacting with language at novel viewpoints. Leveraging a Transformer-based architecture, LSM integrates global geometry through pixel-aligned point maps. To enhance spatial attribute regression, we incorporate local context aggregation with multi-scale fusion, improving the accuracy of fine local details. To tackle the scarcity of labeled 3D semantic data and enable natural language-driven scene manipulation, we incorporate a pre-trained 2D language-based segmentation model into a 3D-consistent semantic feature field. An efficient decoder then parameterizes a set of semantic anisotropic Gaussians, facilitating supervised end-to-end learning. Extensive experiments across various tasks show that LSM unifies multiple 3D vision tasks directly from unposed images, achieving real-time semantic 3D reconstruction for the first time.

  • 13 authors
·
Oct 24, 2024

Deep Learning based Visually Rich Document Content Understanding: A Survey

Visually Rich Documents (VRDs) are essential in academia, finance, medical fields, and marketing due to their multimodal information content. Traditional methods for extracting information from VRDs depend on expert knowledge and manual labor, making them costly and inefficient. The advent of deep learning has revolutionized this process, introducing models that leverage multimodal information vision, text, and layout along with pretraining tasks to develop comprehensive document representations. These models have achieved state-of-the-art performance across various downstream tasks, significantly enhancing the efficiency and accuracy of information extraction from VRDs. In response to the growing demands and rapid developments in Visually Rich Document Understanding (VRDU), this paper provides a comprehensive review of deep learning-based VRDU frameworks. We systematically survey and analyze existing methods and benchmark datasets, categorizing them based on adopted strategies and downstream tasks. Furthermore, we compare different techniques used in VRDU models, focusing on feature representation and fusion, model architecture, and pretraining methods, while highlighting their strengths, limitations, and appropriate scenarios. Finally, we identify emerging trends and challenges in VRDU, offering insights into future research directions and practical applications. This survey aims to provide a thorough understanding of VRDU advancements, benefiting both academic and industrial sectors.

  • 3 authors
·
Aug 2, 2024

UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects -- an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus.

  • 4 authors
·
Dec 10, 2019

Inverse-LLaVA: Eliminating Alignment Pre-training Through Text-to-Vision Mapping

Traditional multimodal learning approaches require expensive alignment pre-training to bridge vision and language modalities, typically projecting visual features into discrete text token spaces. We challenge both fundamental assumptions underlying this paradigm by proposing Inverse-LLaVA, a novel approach that eliminates alignment pre-training entirely while inverting the conventional mapping direction. Rather than projecting visual features to text space, our method maps text embeddings into continuous visual representation space and performs fusion within transformer intermediate layers. Through selective additive components in attention mechanisms, we enable dynamic integration of visual and textual representations without requiring massive image-text alignment datasets. Comprehensive experiments across nine multimodal benchmarks demonstrate nuanced performance trade-offs: Inverse-LLaVA achieves notable improvements on reasoning-intensive and cognitive tasks (MM-VET: +0.2%, VizWiz: +1.8%, ScienceQA: +0.2%, cognitive reasoning: +27.2%), while showing expected decreases in perception tasks requiring memorized visual-text associations (celebrity recognition: -49.5%, OCR: -21.3%). These results provide the first empirical evidence that alignment pre-training is not necessary for effective multimodal learning, particularly for complex reasoning tasks. Our work establishes the feasibility of a new paradigm that reduces computational requirements by 45%, challenges conventional wisdom about modality fusion, and opens new research directions for efficient multimodal architectures that preserve modality-specific characteristics. Our project website with code and additional resources is available at https://inverse-llava.github.io.

  • 2 authors
·
Aug 17 2

Audio-Visual Deception Detection: DOLOS Dataset and Parameter-Efficient Crossmodal Learning

Deception detection in conversations is a challenging yet important task, having pivotal applications in many fields such as credibility assessment in business, multimedia anti-frauds, and custom security. Despite this, deception detection research is hindered by the lack of high-quality deception datasets, as well as the difficulties of learning multimodal features effectively. To address this issue, we introduce DOLOSThe name ``DOLOS" comes from Greek mythology., the largest gameshow deception detection dataset with rich deceptive conversations. DOLOS includes 1,675 video clips featuring 213 subjects, and it has been labeled with audio-visual feature annotations. We provide train-test, duration, and gender protocols to investigate the impact of different factors. We benchmark our dataset on previously proposed deception detection approaches. To further improve the performance by fine-tuning fewer parameters, we propose Parameter-Efficient Crossmodal Learning (PECL), where a Uniform Temporal Adapter (UT-Adapter) explores temporal attention in transformer-based architectures, and a crossmodal fusion module, Plug-in Audio-Visual Fusion (PAVF), combines crossmodal information from audio-visual features. Based on the rich fine-grained audio-visual annotations on DOLOS, we also exploit multi-task learning to enhance performance by concurrently predicting deception and audio-visual features. Experimental results demonstrate the desired quality of the DOLOS dataset and the effectiveness of the PECL. The DOLOS dataset and the source codes are available at https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning/tree/main.

  • 6 authors
·
Mar 9, 2023

A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions

Retrieval-Augmented Generation (RAG) represents a major advancement in natural language processing (NLP), combining large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance. This paper presents a comprehensive systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations across diverse applications. The review begins by outlining the motivations behind RAG, particularly its ability to mitigate hallucinations and outdated knowledge in parametric models. Core technical components-retrieval mechanisms, sequence-to-sequence generation models, and fusion strategies are examined in detail. A year-by-year analysis highlights key milestones and research trends, providing insight into RAG's rapid growth. The paper further explores the deployment of RAG in enterprise systems, addressing practical challenges related to retrieval of proprietary data, security, and scalability. A comparative evaluation of RAG implementations is conducted, benchmarking performance on retrieval accuracy, generation fluency, latency, and computational efficiency. Persistent challenges such as retrieval quality, privacy concerns, and integration overhead are critically assessed. Finally, the review highlights emerging solutions, including hybrid retrieval approaches, privacy-preserving techniques, optimized fusion strategies, and agentic RAG architectures. These innovations point toward a future of more reliable, efficient, and context-aware knowledge-intensive NLP systems.

  • 4 authors
·
Jul 24

Tandem spoofing-robust automatic speaker verification based on time-domain embeddings

Spoofing-robust automatic speaker verification (SASV) systems are a crucial technology for the protection against spoofed speech. In this study, we focus on logical access attacks and introduce a novel approach to SASV tasks. A novel representation of genuine and spoofed speech is employed, based on the probability mass function (PMF) of waveform amplitudes in the time domain. This methodology generates novel time embeddings derived from the PMF of selected groups within the training set. This paper highlights the role of gender segregation and its positive impact on performance. We propose a countermeasure (CM) system that employs time-domain embeddings derived from the PMF of spoofed and genuine speech, as well as gender recognition based on male and female time-based embeddings. The method exhibits notable gender recognition capabilities, with mismatch rates of 0.94% and 1.79% for males and females, respectively. The male and female CM systems achieve an equal error rate (EER) of 8.67% and 10.12%, respectively. By integrating this approach with traditional speaker verification systems, we demonstrate improved generalization ability and tandem detection cost function evaluation using the ASVspoof2019 challenge database. Furthermore, we investigate the impact of fusing the time embedding approach with traditional CM and illustrate how this fusion enhances generalization in SASV architectures.

  • 3 authors
·
Dec 22, 2024

FemtoDet: An Object Detection Baseline for Energy Versus Performance Tradeoffs

Efficient detectors for edge devices are often optimized for parameters or speed count metrics, which remain in weak correlation with the energy of detectors. However, some vision applications of convolutional neural networks, such as always-on surveillance cameras, are critical for energy constraints. This paper aims to serve as a baseline by designing detectors to reach tradeoffs between energy and performance from two perspectives: 1) We extensively analyze various CNNs to identify low-energy architectures, including selecting activation functions, convolutions operators, and feature fusion structures on necks. These underappreciated details in past work seriously affect the energy consumption of detectors; 2) To break through the dilemmatic energy-performance problem, we propose a balanced detector driven by energy using discovered low-energy components named FemtoDet. In addition to the novel construction, we improve FemtoDet by considering convolutions and training strategy optimizations. Specifically, we develop a new instance boundary enhancement (IBE) module for convolution optimization to overcome the contradiction between the limited capacity of CNNs and detection tasks in diverse spatial representations, and propose a recursive warm-restart (RecWR) for optimizing training strategy to escape the sub-optimization of light-weight detectors by considering the data shift produced in popular augmentations. As a result, FemtoDet with only 68.77k parameters achieves a competitive score of 46.3 AP50 on PASCAL VOC and 1.11 W & 64.47 FPS on Qualcomm Snapdragon 865 CPU platforms. Extensive experiments on COCO and TJU-DHD datasets indicate that the proposed method achieves competitive results in diverse scenes.

  • 6 authors
·
Jan 17, 2023