Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHard-Attention Gates with Gradient Routing for Endoscopic Image Computing
To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection. This technique aims to boost Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) by promoting sparse connectivity, thereby reducing overfitting and enhancing generalization. HAG achieves this through sparsification with learnable weights, serving as a regularization strategy. GR further refines this process by optimizing HAG parameters via dual forward passes, independently from the main model, to improve feature re-weighting. Our evaluation spanned multiple datasets, including CIFAR-100 for a broad impact assessment and specialized endoscopic datasets (REAL-Colon, Misawa, and SUN) focusing on polyp size estimation, covering over 200 polyps in more than 370,000 frames. The findings indicate that our HAG-enhanced networks substantially enhance performance in both binary and triclass classification tasks related to polyp sizing. Specifically, CNNs experienced an F1 Score improvement to 87.8% in binary classification, while in triclass classification, the ViT-T model reached an F1 Score of 76.5%, outperforming traditional CNNs and ViT-T models. To facilitate further research, we are releasing our codebase, which includes implementations for CNNs, multistream CNNs, ViT, and HAG-augmented variants. This resource aims to standardize the use of endoscopic datasets, providing public training-validation-testing splits for reliable and comparable research in gastroenterological polyp size estimation. The codebase is available at github.com/cosmoimd/feature-selection-gates.
Weight-dependent Gates for Network Pruning
In this paper, a simple yet effective network pruning framework is proposed to simultaneously address the problems of pruning indicator, pruning ratio, and efficiency constraint. This paper argues that the pruning decision should depend on the convolutional weights, and thus proposes novel weight-dependent gates (W-Gates) to learn the information from filter weights and obtain binary gates to prune or keep the filters automatically. To prune the network under efficiency constraints, a switchable Efficiency Module is constructed to predict the hardware latency or FLOPs of candidate pruned networks. Combined with the proposed Efficiency Module, W-Gates can perform filter pruning in an efficiency-aware manner and achieve a compact network with a better accuracy-efficiency trade-off. We have demonstrated the effectiveness of the proposed method on ResNet34, ResNet50, and MobileNet V2, respectively achieving up to 1.33/1.28/1.1 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art methods, W-Gates also achieves superior performance.
Throttling Web Agents Using Reasoning Gates
AI web agents use Internet resources at far greater speed, scale, and complexity -- changing how users and services interact. Deployed maliciously or erroneously, these agents could overload content providers. At the same time, web agents can bypass CAPTCHAs and other defenses by mimicking user behavior or flood authentication systems with fake accounts. Yet providers must protect their services and content from denial-of-service attacks and scraping by web agents. In this paper, we design a framework that imposes tunable costs on agents before providing access to resources; we call this Web Agent Throttling. We start by formalizing Throttling Gates as challenges issued to an agent that are asymmetric, scalable, robust, and compatible with any agent. Focusing on a common component -- the language model -- we require the agent to solve reasoning puzzles, thereby incurring excessive token-generation costs. However, we find that using existing puzzles, e.g., coding or math, as throttling gates fails to satisfy our properties. To address this, we introduce rebus-based Reasoning Gates, synthetic text puzzles that require multi-hop reasoning over world knowledge (thereby throttling an agent's model). We design a scalable generation and verification protocol for such reasoning gates. Our framework achieves computational asymmetry, i.e., the response-generation cost is 9.2x higher than the generation cost for SOTA models. We further deploy reasoning gates on a custom website and Model Context Protocol (MCP) servers and evaluate with real-world web agents. Finally, we discuss the limitations and environmental impact of real-world deployment of our framework.
Multi-Controlled Quantum Gates in Linear Nearest Neighbor
Multi-controlled single-target (MC) gates are some of the most crucial building blocks for varied quantum algorithms. How to implement them optimally is thus a pivotal question. To answer this question in an architecture-independent manner, and to get a worst-case estimate, we should look at a linear nearest-neighbor (LNN) architecture, as this can be embedded in almost any qubit connectivity. Motivated by the above, here we describe a method which implements MC gates using no more than sim 4k+8n CNOT gates -- up-to 60% reduction over state-of-the-art -- while allowing for complete flexibility to choose the locations of n controls, the target, and a dirty ancilla out of k qubits. More strikingly, in case k approx n, our upper bound is sim 12n -- the best known for unrestricted connectivity -- and if n = 1, our upper bound is sim 4k -- the best known for a single long-range CNOT gate over k qubits -- therefore, if our upper bound can be reduced, then the cost of one or both of these simpler versions of MC gates will be immediately reduced accordingly. In practice, our method provides circuits that tend to require fewer CNOT gates than our upper bound for almost any given instance of MC gates.
Designing High-Fidelity Zeno Gates for Dissipative Cat Qubits
Bosonic cat qubits stabilized with a driven two-photon dissipation are systems with exponentially biased noise, opening the door to low-overhead, fault-tolerant and universal quantum computing. However, current gate proposals for such qubits induce substantial noise of the unprotected type, whose poor scaling with the relevant experimental parameters limits their practical use. In this work, we provide a new perspective on dissipative cat qubits by reconsidering the reservoir mode used to engineer the tailored two-photon dissipation, and show how it can be leveraged to mitigate gate-induced errors. Doing so, we introduce four new designs of high-fidelity and bias-preserving cat qubit gates, and compare them to the prevalent gate methods. These four designs should give a broad overview of gate engineering for dissipative systems with different and complementary ideas. In particular, we propose both already achievable low-error gate designs and longer-term implementations.
FineGates: LLMs Finetuning with Compression using Stochastic Gates
Large Language Models (LLMs), with billions of parameters, present significant challenges for full finetuning due to the high computational demands, memory requirements, and impracticality of many real-world applications. When faced with limited computational resources or small datasets, updating all model parameters can often result in overfitting. To address this, lightweight finetuning techniques have been proposed, like learning low-rank adapter layers. These methods aim to train only a few additional parameters combined with the base model, which remains frozen, reducing resource usage and mitigating overfitting risks. In this work, we propose an adaptor model based on stochastic gates that simultaneously sparsify the frozen base model with task-specific adaptation. Our method comes with a small number of trainable parameters and allows us to speed up the base model inference with competitive accuracy. We evaluate it in additional variants by equipping it with additional low-rank parameters and comparing it to several recent baselines. Our results show that the proposed method improves the finetuned model accuracy comparatively to the several baselines and allows the removal of up to 20-40\% without significant accuracy loss.
A Generative Modeling Approach Using Quantum Gates
In recent years, quantum computing has emerged as a promising technology for solving complex computational problems. Generative modeling is a technique that allows us to learn and generate new data samples similar to the original dataset. In this paper, we propose a generative modeling approach using quantum gates to generate new samples from a given dataset. We start with a brief introduction to quantum computing and generative modeling. Then, we describe our proposed approach, which involves encoding the dataset into quantum states and using quantum gates to manipulate these states to generate new samples. We also provide mathematical details of our approach and demonstrate its effectiveness through experimental results on various datasets.
Upgraded W-Net with Attention Gates and its Application in Unsupervised 3D Liver Segmentation
Segmentation of biomedical images can assist radiologists to make a better diagnosis and take decisions faster by helping in the detection of abnormalities, such as tumors. Manual or semi-automated segmentation, however, can be a time-consuming task. Most deep learning based automated segmentation methods are supervised and rely on manually segmented ground-truth. A possible solution for the problem would be an unsupervised deep learning based approach for automated segmentation, which this research work tries to address. We use a W-Net architecture and modified it, such that it can be applied to 3D volumes. In addition, to suppress noise in the segmentation we added attention gates to the skip connections. The loss for the segmentation output was calculated using soft N-Cuts and for the reconstruction output using SSIM. Conditional Random Fields were used as a post-processing step to fine-tune the results. The proposed method has shown promising results, with a dice coefficient of 0.88 for the liver segmentation compared against manual segmentation.
Learning to Segment from Scribbles using Multi-scale Adversarial Attention Gates
Large, fine-grained image segmentation datasets, annotated at pixel-level, are difficult to obtain, particularly in medical imaging, where annotations also require expert knowledge. Weakly-supervised learning can train models by relying on weaker forms of annotation, such as scribbles. Here, we learn to segment using scribble annotations in an adversarial game. With unpaired segmentation masks, we train a multi-scale GAN to generate realistic segmentation masks at multiple resolutions, while we use scribbles to learn their correct position in the image. Central to the model's success is a novel attention gating mechanism, which we condition with adversarial signals to act as a shape prior, resulting in better object localization at multiple scales. Subject to adversarial conditioning, the segmentor learns attention maps that are semantic, suppress the noisy activations outside the objects, and reduce the vanishing gradient problem in the deeper layers of the segmentor. We evaluated our model on several medical (ACDC, LVSC, CHAOS) and non-medical (PPSS) datasets, and we report performance levels matching those achieved by models trained with fully annotated segmentation masks. We also demonstrate extensions in a variety of settings: semi-supervised learning; combining multiple scribble sources (a crowdsourcing scenario) and multi-task learning (combining scribble and mask supervision). We release expert-made scribble annotations for the ACDC dataset, and the code used for the experiments, at https://vios-s.github.io/multiscale-adversarial-attention-gates
Utilizing Explainability Techniques for Reinforcement Learning Model Assurance
Explainable Reinforcement Learning (XRL) can provide transparency into the decision-making process of a Deep Reinforcement Learning (DRL) model and increase user trust and adoption in real-world use cases. By utilizing XRL techniques, researchers can identify potential vulnerabilities within a trained DRL model prior to deployment, therefore limiting the potential for mission failure or mistakes by the system. This paper introduces the ARLIN (Assured RL Model Interrogation) Toolkit, an open-source Python library that identifies potential vulnerabilities and critical points within trained DRL models through detailed, human-interpretable explainability outputs. To illustrate ARLIN's effectiveness, we provide explainability visualizations and vulnerability analysis for a publicly available DRL model. The open-source code repository is available for download at https://github.com/mitre/arlin.
SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase
We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak V-band absolute magnitude of -18.2 pm 0.07, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than sim 70 days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 rm M_{odot} progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of M = 0.01 rm M_{odot} yr^{-1} from the r1w6 model matches best with the early-time spectra, higher than M approx 2.4 times 10^{-3} rm M_{odot} yr^{-1} derived from the ionized H{alpha} luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H_{0}=73.1^{+3.68}_{-3.50} km s^{-1} Mpc^{-1}, consistent with the results from SNe~Ia and many other independent methods.
