new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections

Post-training processes are essential phases in grounding pre-trained language models to real-world tasks, with learning from demonstrations or preference signals playing a crucial role in this adaptation. We present a unified theoretical framework bridging Supervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training. Through rigorous mathematical derivation, we demonstrate that both SFT and preference learning methods like Direct Preference Optimization (DPO) operate within the same optimal policy-reward subspace, with SFT representing a special case of implicit reward learning. Our analysis reveals a critical limitation in conventional SFT: the KL divergence term in distribution matching becomes constant with respect to the policy during optimization, failing to constrain model updates. To address this, we propose a simple yet effective learning rate reduction approach that yields significant performance improvements (up to 25\% relative gain and 6\% absolute win rate increase in instruction following tasks. Additionally, we derive alternative SFT objectives from various f-divergence functions that preserve the KL term during optimization, further enhancing post-DPO model performance. Finally, we extend the theoretical relationship between LLM logits and Q-functions from preference learning to the SFT context, providing mathematical derivations and experimental validation.

  • 10 authors
·
Jun 15

Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF

Reinforcement learning from human feedback (RLHF) has emerged as a central tool for language model alignment. We consider online exploration in RLHF, which exploits interactive access to human or AI feedback by deliberately encouraging the model to produce diverse, maximally informative responses. By allowing RLHF to confidently stray from the pre-trained model, online exploration offers the possibility of novel, potentially super-human capabilities, but its full potential as a paradigm for language model training has yet to be realized, owing to computational and statistical bottlenecks in directly adapting existing reinforcement learning techniques. We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO), which is simple and practical -- a one-line change to (online) Direct Preference Optimization (DPO; Rafailov et al., 2023) -- yet enjoys the strongest known provable guarantees and promising empirical performance. XPO augments the DPO objective with a novel and principled exploration bonus, empowering the algorithm to explore outside the support of the initial model and human feedback data. In theory, we show that XPO is provably sample-efficient and converges to a near-optimal language model policy under natural exploration conditions, irrespective of whether the initial model has good coverage. Our analysis, which builds on the observation that DPO implicitly performs a form of Q^{star}-approximation (or, Bellman error minimization), combines previously disparate techniques from language modeling and theoretical reinforcement learning in a serendipitous fashion through the perspective of KL-regularized Markov decision processes. Empirically, we find that XPO is more sample-efficient than non-exploratory DPO variants in a preliminary evaluation.

  • 6 authors
·
May 31, 2024

On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an EXplicit Reward Model (EXRM) as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO (denoted as DPORM) can approximate an EXRM in the limit. DPORM's effectiveness directly implies the optimality of the learned policy, and also has practical implication for LLM alignment methods including iterative DPO. However, it is unclear how well DPORM empirically matches the performance of EXRM. This work studies the accuracy at distinguishing preferred and rejected answers for both DPORM and EXRM. Our findings indicate that even though DPORM fits the training dataset comparably, it generalizes less effectively than EXRM, especially when the validation datasets contain distribution shifts. Across five out-of-distribution settings, DPORM has a mean drop in accuracy of 3% and a maximum drop of 7%. These findings highlight that DPORM has limited generalization ability and substantiates the integration of an explicit reward model in iterative DPO approaches.

  • 9 authors
·
Sep 5, 2024

InfiFPO: Implicit Model Fusion via Preference Optimization in Large Language Models

Model fusion combines multiple Large Language Models (LLMs) with different strengths into a more powerful, integrated model through lightweight training methods. Existing works on model fusion focus primarily on supervised fine-tuning (SFT), leaving preference alignment (PA) --a critical phase for enhancing LLM performance--largely unexplored. The current few fusion methods on PA phase, like WRPO, simplify the process by utilizing only response outputs from source models while discarding their probability information. To address this limitation, we propose InfiFPO, a preference optimization method for implicit model fusion. InfiFPO replaces the reference model in Direct Preference Optimization (DPO) with a fused source model that synthesizes multi-source probabilities at the sequence level, circumventing complex vocabulary alignment challenges in previous works and meanwhile maintaining the probability information. By introducing probability clipping and max-margin fusion strategies, InfiFPO enables the pivot model to align with human preferences while effectively distilling knowledge from source models. Comprehensive experiments on 11 widely-used benchmarks demonstrate that InfiFPO consistently outperforms existing model fusion and preference optimization methods. When using Phi-4 as the pivot model, InfiFPO improve its average performance from 79.95 to 83.33 on 11 benchmarks, significantly improving its capabilities in mathematics, coding, and reasoning tasks.

  • 7 authors
·
May 19

Ranking-based Preference Optimization for Diffusion Models from Implicit User Feedback

Direct preference optimization (DPO) methods have shown strong potential in aligning text-to-image diffusion models with human preferences by training on paired comparisons. These methods improve training stability by avoiding the REINFORCE algorithm but still struggle with challenges such as accurately estimating image probabilities due to the non-linear nature of the sigmoid function and the limited diversity of offline datasets. In this paper, we introduce Diffusion Denoising Ranking Optimization (Diffusion-DRO), a new preference learning framework grounded in inverse reinforcement learning. Diffusion-DRO removes the dependency on a reward model by casting preference learning as a ranking problem, thereby simplifying the training objective into a denoising formulation and overcoming the non-linear estimation issues found in prior methods. Moreover, Diffusion-DRO uniquely integrates offline expert demonstrations with online policy-generated negative samples, enabling it to effectively capture human preferences while addressing the limitations of offline data. Comprehensive experiments show that Diffusion-DRO delivers improved generation quality across a range of challenging and unseen prompts, outperforming state-of-the-art baselines in both both quantitative metrics and user studies. Our source code and pre-trained models are available at https://github.com/basiclab/DiffusionDRO.

  • 4 authors
·
Oct 21 1

Aligning Large Language Models with Implicit Preferences from User-Generated Content

Learning from preference feedback is essential for aligning large language models (LLMs) with human values and improving the quality of generated responses. However, existing preference learning methods rely heavily on curated data from humans or advanced LLMs, which is costly and difficult to scale. In this work, we present PUGC, a novel framework that leverages implicit human Preferences in unlabeled User-Generated Content (UGC) to generate preference data. Although UGC is not explicitly created to guide LLMs in generating human-preferred responses, it often reflects valuable insights and implicit preferences from its creators that has the potential to address readers' questions. PUGC transforms UGC into user queries and generates responses from the policy model. The UGC is then leveraged as a reference text for response scoring, aligning the model with these implicit preferences. This approach improves the quality of preference data while enabling scalable, domain-specific alignment. Experimental results on Alpaca Eval 2 show that models trained with DPO and PUGC achieve a 9.37% performance improvement over traditional methods, setting a 35.93% state-of-the-art length-controlled win rate using Mistral-7B-Instruct. Further studies highlight gains in reward quality, domain-specific alignment effectiveness, robustness against UGC quality, and theory of mind capabilities. Our code and dataset are available at https://zhaoxuan.info/PUGC.github.io/

  • 13 authors
·
Jun 4

Curry-DPO: Enhancing Alignment using Curriculum Learning & Ranked Preferences

Direct Preference Optimization (DPO) is an effective technique that leverages pairwise preference data (usually one chosen and rejected response pair per user prompt) to align LLMs to human preferences. In practice, multiple responses can exist for a given prompt with varying quality relative to each other. With availability of such quality ratings for multiple responses, we propose utilizing these responses to create multiple preference pairs for a given prompt. Our work focuses on systematically using the constructed multiple preference pair in DPO training via curriculum learning methodology. In particular, we order these multiple pairs of preference data from easy to hard (emulating curriculum training) according to various criteria. We show detailed comparisons of our proposed approach to the standard single-pair DPO setting. Our method, which we call Curry-DPO consistently shows increased performance gains on MTbench, Vicuna, WizardLM, and the UltraFeedback test set, highlighting its effectiveness. More specifically, Curry-DPO achieves a score of 7.43 on MT-bench with Zephy-7B model outperforming majority of existing LLMs with similar parameter size. Curry-DPO also achieves the highest adjusted win rates on Vicuna, WizardLM, and UltraFeedback test datasets (90.7%, 87.1%, and 87.9% respectively) in our experiments, with notable gains of upto 7.5% when compared to standard DPO technique.

  • 5 authors
·
Mar 11, 2024

Length Desensitization in Direct Preference Optimization

Direct Preference Optimization (DPO) is widely utilized in the Reinforcement Learning from Human Feedback (RLHF) phase to align Large Language Models (LLMs) with human preferences, thereby enhancing both their harmlessness and efficacy. However, it has been observed that DPO tends to over-optimize for verbosity, which can detrimentally affect both performance and user experience. In this paper, we conduct an in-depth theoretical analysis of DPO's optimization objective and reveal a strong correlation between its implicit reward and data length. This correlation misguides the optimization direction, resulting in length sensitivity during the DPO training and leading to verbosity. To address this issue, we propose a length-desensitization improvement method for DPO, termed LD-DPO. The proposed method aims to desensitize DPO to data length by decoupling explicit length preference, which is relatively insignificant, from the other implicit preferences, thereby enabling more effective learning of the intrinsic preferences. We utilized two settings (Base and Instruct) of Llama2-13B, Llama3-8B, and Qwen2-7B for experimental validation on various benchmarks including MT-Bench and AlpacaEval 2. The experimental results indicate that LD-DPO consistently outperforms DPO and other baseline methods, achieving more concise responses with a 10-40% reduction in length compared to DPO. We conducted in-depth experimental analyses to demonstrate that LD-DPO can indeed achieve length desensitization and align the model more closely with human-like preferences.

  • 8 authors
·
Sep 10, 2024

In-context Ranking Preference Optimization

Recent developments in Direct Preference Optimization (DPO) allow large language models (LLMs) to function as implicit ranking models by maximizing the margin between preferred and non-preferred responses. In practice, user feedback on such lists typically involves identifying a few relevant items in context rather than providing detailed pairwise comparisons for every possible item pair. Moreover, many complex information retrieval tasks, such as conversational agents and summarization systems, critically depend on ranking the highest-quality outputs at the top, emphasizing the need to support natural and flexible forms of user feedback. To address the challenge of limited and sparse pairwise feedback in the in-context setting, we propose an In-context Ranking Preference Optimization (IRPO) framework that directly optimizes LLMs based on ranking lists constructed during inference. To further capture flexible forms of feedback, IRPO extends the DPO objective by incorporating both the relevance of items and their positions in the list. Modeling these aspects jointly is non-trivial, as ranking metrics are inherently discrete and non-differentiable, making direct optimization difficult. To overcome this, IRPO introduces a differentiable objective based on positional aggregation of pairwise item preferences, enabling effective gradient-based optimization of discrete ranking metrics. We further provide theoretical insights showing that IRPO (i) automatically emphasizes items with greater disagreement between the model and the reference ranking, and (ii) links its gradient to an importance sampling estimator, yielding an unbiased estimator with reduced variance. Empirical results show IRPO outperforms standard DPO approaches in ranking performance, highlighting its effectiveness in aligning LLMs with direct in-context ranking preferences.

  • 9 authors
·
Apr 21

Scalable Ranked Preference Optimization for Text-to-Image Generation

Direct Preference Optimization (DPO) has emerged as a powerful approach to align text-to-image (T2I) models with human feedback. Unfortunately, successful application of DPO to T2I models requires a huge amount of resources to collect and label large-scale datasets, e.g., millions of generated paired images annotated with human preferences. In addition, these human preference datasets can get outdated quickly as the rapid improvements of T2I models lead to higher quality images. In this work, we investigate a scalable approach for collecting large-scale and fully synthetic datasets for DPO training. Specifically, the preferences for paired images are generated using a pre-trained reward function, eliminating the need for involving humans in the annotation process, greatly improving the dataset collection efficiency. Moreover, we demonstrate that such datasets allow averaging predictions across multiple models and collecting ranked preferences as opposed to pairwise preferences. Furthermore, we introduce RankDPO to enhance DPO-based methods using the ranking feedback. Applying RankDPO on SDXL and SD3-Medium models with our synthetically generated preference dataset ``Syn-Pic'' improves both prompt-following (on benchmarks like T2I-Compbench, GenEval, and DPG-Bench) and visual quality (through user studies). This pipeline presents a practical and scalable solution to develop better preference datasets to enhance the performance of text-to-image models.

  • 6 authors
·
Oct 23, 2024 2

Online Process Reward Leanring for Agentic Reinforcement Learning

Large language models (LLMs) are increasingly trained with reinforcement learning (RL) as autonomous agents that reason and act over long horizons in interactive environments. However, sparse and sometimes unverifiable rewards make temporal credit assignment extremely challenging. Recent work attempts to integrate process supervision into agent learning but suffers from biased annotation, reward hacking, high-variance from overly fine-grained signals or failtures when state overlap is rare. We therefore introduce Online Process Reward Learning (OPRL), a general credit-assignment strategy for agentic RL that integrates seamlessly with standard on-policy algorithms without relying on additional rollouts or explicit step labels. In OPRL, we optimize an implicit process reward model (PRM) alternately with the agent's policy to transform trajectory preferences into implicit step rewards through a trajectory-based DPO objective. These step rewards are then used to compute step-level advantages, which are combined with episode-level advantages from outcome rewards for policy update, creating a self-reinforcing loop. Theoretical findings guarantee that the learned step rewards are consistent with trajectory preferences and act as potential-based shaping rewards, providing bounded gradients to stabilize training. Empirically, we evaluate OPRL on three distinct agent benmarks, including WebShop and VisualSokoban, as well as open-ended social interactions with unverfiable rewards in SOTOPIA. Crucially, OPRL shows superior performance over frontier LLMs and strong RL baselines across domains, achieving state-of-the-art results with higher sample-efficiency and lower variance during training. Further analysis also demonstrates the efficient exploration by OPRL using fewer actions, underscoring its potential for agentic learning in real-world scenarios.

  • 7 authors
·
Sep 23

Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences

Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: preferences vary across individuals and should be represented with more granularity. To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.

  • 5 authors
·
Jun 3

ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood

Direct Preference Optimization (DPO) is a method for enhancing model performance by directly optimizing for the preferences or rankings of outcomes, instead of traditional loss functions. This approach has proven effective in aligning Large Language Models (LLMs) with human preferences. Despite its widespread use across various tasks, DPO has been criticized for its sensitivity to the effectiveness of Supervised Fine-Tuning (SFT) and its limitations in enabling models to learn human-preferred responses, leading to less satisfactory performance. To address these limitations, we propose Aligned Supervised Fine-Tuning (ASFT), an effective approach that better aligns LLMs with pair-wise datasets by optimizing absolute likelihood for each response, rather than using the Bradley-Terry model, and eliminates the need for a reference model. Through theoretical gradient analysis, we demonstrate that ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data at a faster rate than it increases the probability of producing preferred data. Additionally, we compare ASFT to DPO and its latest variants, such as the single-step approach ORPO, using the latest instruction-tuned model Llama3, which has been fine-tuned on UltraFeedback and HH-RLHF. We evaluated performance on instruction-following benchmarks like MT-Bench and traditional text generation metrics such as BLEU-4 and ROUGE-L. Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.

  • 4 authors
·
Sep 14, 2024

Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step

Recently, Direct Preference Optimization (DPO) has extended its success from aligning large language models (LLMs) to aligning text-to-image diffusion models with human preferences. Unlike most existing DPO methods that assume all diffusion steps share a consistent preference order with the final generated images, we argue that this assumption neglects step-specific denoising performance and that preference labels should be tailored to each step's contribution. To address this limitation, we propose Step-aware Preference Optimization (SPO), a novel post-training approach that independently evaluates and adjusts the denoising performance at each step, using a step-aware preference model and a step-wise resampler to ensure accurate step-aware supervision. Specifically, at each denoising step, we sample a pool of images, find a suitable win-lose pair, and, most importantly, randomly select a single image from the pool to initialize the next denoising step. This step-wise resampler process ensures the next win-lose image pair comes from the same image, making the win-lose comparison independent of the previous step. To assess the preferences at each step, we train a separate step-aware preference model that can be applied to both noisy and clean images. Our experiments with Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms the latest Diffusion-DPO in aligning generated images with complex, detailed prompts and enhancing aesthetics, while also achieving more than 20x times faster in training efficiency. Code and model: https://rockeycoss.github.io/spo.github.io/

  • 7 authors
·
Jun 6, 2024 2

Diffusion Model Alignment Using Direct Preference Optimization

Large language models (LLMs) are fine-tuned using human comparison data with Reinforcement Learning from Human Feedback (RLHF) methods to make them better aligned with users' preferences. In contrast to LLMs, human preference learning has not been widely explored in text-to-image diffusion models; the best existing approach is to fine-tune a pretrained model using carefully curated high quality images and captions to improve visual appeal and text alignment. We propose Diffusion-DPO, a method to align diffusion models to human preferences by directly optimizing on human comparison data. Diffusion-DPO is adapted from the recently developed Direct Preference Optimization (DPO), a simpler alternative to RLHF which directly optimizes a policy that best satisfies human preferences under a classification objective. We re-formulate DPO to account for a diffusion model notion of likelihood, utilizing the evidence lower bound to derive a differentiable objective. Using the Pick-a-Pic dataset of 851K crowdsourced pairwise preferences, we fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO. Our fine-tuned base model significantly outperforms both base SDXL-1.0 and the larger SDXL-1.0 model consisting of an additional refinement model in human evaluation, improving visual appeal and prompt alignment. We also develop a variant that uses AI feedback and has comparable performance to training on human preferences, opening the door for scaling of diffusion model alignment methods.

  • 10 authors
·
Nov 21, 2023 3

A Survey of Direct Preference Optimization

Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.

  • 12 authors
·
Mar 12

Sem-DPO: Mitigating Semantic Inconsistency in Preference Optimization for Prompt Engineering

Generative AI can now synthesize strikingly realistic images from text, yet output quality remains highly sensitive to how prompts are phrased. Direct Preference Optimization (DPO) offers a lightweight, off-policy alternative to RL for automatic prompt engineering, but its token-level regularization leaves semantic inconsistency unchecked as prompts that win higher preference scores can still drift away from the user's intended meaning. We introduce Sem-DPO, a variant of DPO that preserves semantic consistency yet retains its simplicity and efficiency. Sem-DPO adjusts the DPO loss using a weight based on how different the winning prompt is from the original, reducing the impact of training examples that are semantically misaligned. We provide the first analytical bound on semantic drift for preference-tuned prompt generators, showing that Sem-DPO keeps learned prompts within a provably bounded neighborhood of the original text. On three standard text-to-image prompt-optimization benchmarks and two language models, Sem-DPO achieves 8-12% higher CLIP similarity and 5-9% higher human-preference scores (HPSv2.1, PickScore) than DPO, while also outperforming state-of-the-art baselines. These findings suggest that strong flat baselines augmented with semantic weighting should become the new standard for prompt-optimization studies and lay the groundwork for broader, semantics-aware preference optimization in language models.

  • 8 authors
·
Jul 27

SimPO: Simple Preference Optimization with a Reference-Free Reward

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.

  • 3 authors
·
May 23, 2024 1

Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models

Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce Advantage Weighted Matching (AWM), a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a 24times speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.

adobe Adobe
·
Sep 29 1

3D-Properties: Identifying Challenges in DPO and Charting a Path Forward

Aligning large language models (LLMs) with human preference has recently gained tremendous attention, with the canonical yet costly RLHF-PPO and the simple and straightforward Direct Preference Optimization (DPO) as two examples. Despite the efficiency, DPO has rarely be used in the state-of-the-art production-level LLMs, implying its potential pathologies. In this work, we revisit DPO with a comprehensive examination of its empirical efficacy and a systematic comparison with RLHF-PPO. We identify the 3D-properties of DPO's learning outcomes: the Drastic drop in the likelihood of rejected responses, the Degradation into LLM unlearning, and the Dispersion effect on unseen responses through experiments with both a carefully designed toy model and practical LLMs on tasks including mathematical problem-solving and instruction following. These findings inherently connect to some observations made by related works and we additionally contribute a plausible theoretical explanation for them. Accordingly, we propose easy regularization methods to mitigate the issues caused by 3D-properties, improving the training stability and final performance of DPO. Our contributions also include an investigation into how the distribution of the paired preference data impacts the effectiveness of DPO. We hope this work could offer research directions to narrow the gap between reward-free preference learning methods and reward-based ones.

  • 7 authors
·
Jun 11, 2024

More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment

Aligning large language models (LLMs) with human values is an increasingly critical step in post-training. Direct Preference Optimization (DPO) has emerged as a simple, yet effective alternative to reinforcement learning from human feedback (RLHF). Synthetic preference data with its low cost and high quality enable effective alignment through single- or multi-model generated preference data. Our study reveals a striking, safety-specific phenomenon associated with DPO alignment: Although multi-model generated data enhances performance on general tasks (ARC, Hellaswag, MMLU, TruthfulQA, Winogrande) by providing diverse responses, it also tends to facilitate reward hacking during training. This can lead to a high attack success rate (ASR) when models encounter jailbreaking prompts. The issue is particularly pronounced when employing stronger models like GPT-4o or larger models in the same family to generate chosen responses paired with target model self-generated rejected responses, resulting in dramatically poorer safety outcomes. Furthermore, with respect to safety, using solely self-generated responses (single-model generation) for both chosen and rejected pairs significantly outperforms configurations that incorporate responses from stronger models, whether used directly as chosen data or as part of a multi-model response pool. We demonstrate that multi-model preference data exhibits high linear separability between chosen and rejected responses, which allows models to exploit superficial cues rather than internalizing robust safety constraints. Our experiments, conducted on models from the Llama, Mistral, and Qwen families, consistently validate these findings.

  • 10 authors
·
Apr 2

From r to Q^*: Your Language Model is Secretly a Q-Function

Reinforcement Learning From Human Feedback (RLHF) has been a critical to the success of the latest generation of generative AI models. In response to the complex nature of the classical RLHF pipeline, direct alignment algorithms such as Direct Preference Optimization (DPO) have emerged as an alternative approach. Although DPO solves the same objective as the standard RLHF setup, there is a mismatch between the two approaches. Standard RLHF deploys reinforcement learning in a specific token-level MDP, while DPO is derived as a bandit problem in which the whole response of the model is treated as a single arm. In this work we rectify this difference, first we theoretically show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation. Using our theoretical results, we provide three concrete empirical insights. First, we show that because of its token level interpretation, DPO is able to perform some type of credit assignment. Next, we prove that under the token level formulation, classical search-based algorithms, such as MCTS, which have recently been applied to the language generation space, are equivalent to likelihood-based search on a DPO policy. Empirically we show that a simple beam search yields meaningful improvement over the base DPO policy. Finally, we show how the choice of reference policy causes implicit rewards to decline during training. We conclude by discussing applications of our work, including information elicitation in multi-tun dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.

  • 4 authors
·
Apr 18, 2024

Efficient Safety Retrofitting Against Jailbreaking for LLMs

Direct Preference Optimization (DPO) is an efficient alignment technique that steers LLMs towards preferable outputs by training on preference data, bypassing the need for explicit reward models. Its simplicity enables easy adaptation to various domains and safety requirements. This paper examines DPO's effectiveness in model safety against jailbreaking attacks while minimizing data requirements and training costs. We introduce Egida, a dataset expanded from multiple sources, which includes 27 different safety topics and 18 different attack styles, complemented with synthetic and human labels. This data is used to boost the safety of state-of-the-art LLMs (Llama-3.1-8B/70B-Instruct, Qwen-2.5-7B/72B-Instruct) across topics and attack styles. In addition to safety evaluations, we assess their post-alignment performance degradation in general purpose tasks, and their tendency to over refusal. Following the proposed methodology, trained models reduce their Attack Success Rate by 10%-30%, using small training efforts (2,000 samples) with low computational cost (3\ for 8B models, 20 for 72B models). Safety aligned models generalize to unseen topics and attack styles, with the most successful attack style reaching a success rate around 5%. Size and family are found to strongly influence model malleability towards safety, pointing at the importance of pre-training choices. To validate our findings, a large independent assessment of human preference agreement with Llama-Guard-3-8B is conducted by the authors and the associated dataset Egida-HSafe is released. Overall, this study illustrates how affordable and accessible it is to enhance LLM safety using DPO while outlining its current limitations. All datasets and models are released to enable reproducibility and further research.

  • 7 authors
·
Feb 19

TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct Preference Optimization

Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challenge, this work decomposes the sequence-level PPO into a sequence of token-level proximal policy optimization problems and then frames the problem of token-level PPO with token-level reward guidance, from which closed-form optimal token-level policy and the corresponding token-level reward can be derived. Using the obtained reward and Bradley-Terry model, this work establishes a framework of computable loss functions with token-level reward guidance for DPO, and proposes a practical reward guidance based on the induced DPO reward. This formulation enables different tokens to exhibit varying degrees of deviation from reference policy based on their respective rewards. Experiment results demonstrate that our method achieves substantial performance improvements over DPO, with win rate gains of up to 7.5 points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3 points on Arena-Hard. Code is available at https://github.com/dvlab-research/TGDPO.

  • 6 authors
·
Jun 17

Online DPO: Online Direct Preference Optimization with Fast-Slow Chasing

Direct Preference Optimization (DPO) improves the alignment of large language models (LLMs) with human values by training directly on human preference datasets, eliminating the need for reward models. However, due to the presence of cross-domain human preferences, direct continual training can lead to catastrophic forgetting, limiting DPO's performance and efficiency. Inspired by intraspecific competition driving species evolution, we propose a Online Fast-Slow chasing DPO (OFS-DPO) for preference alignment, simulating competition through fast and slow chasing among models to facilitate rapid adaptation. Specifically, we first derive the regret upper bound for online learning, validating our motivation with a min-max optimization pattern. Based on this, we introduce two identical modules using Low-rank Adaptive (LoRA) with different optimization speeds to simulate intraspecific competition, and propose a new regularization term to guide their learning. To further mitigate catastrophic forgetting in cross-domain scenarios, we extend the OFS-DPO with LoRA modules combination strategy, resulting in the Cross domain Online Fast-Slow chasing DPO (COFS-DPO). This method leverages linear combinations of fast modules parameters from different task domains, fully utilizing historical information to achive continual value alignment. Experimental results show that OFS-DPO outperforms DPO in in-domain alignment, while COFS-DPO excels in cross-domain continual learning scenarios.

  • 6 authors
·
Jun 8, 2024

BRAIn: Bayesian Reward-conditioned Amortized Inference for natural language generation from feedback

Following the success of Proximal Policy Optimization (PPO) for Reinforcement Learning from Human Feedback (RLHF), new techniques such as Sequence Likelihood Calibration (SLiC) and Direct Policy Optimization (DPO) have been proposed that are offline in nature and use rewards in an indirect manner. These techniques, in particular DPO, have recently become the tools of choice for LLM alignment due to their scalability and performance. However, they leave behind important features of the PPO approach. Methods such as SLiC or RRHF make use of the Reward Model (RM) only for ranking/preference, losing fine-grained information and ignoring the parametric form of the RM (eg., Bradley-Terry, Plackett-Luce), while methods such as DPO do not use even a separate reward model. In this work, we propose a novel approach, named BRAIn, that re-introduces the RM as part of a distribution matching approach.BRAIn considers the LLM distribution conditioned on the assumption of output goodness and applies Bayes theorem to derive an intractable posterior distribution where the RM is explicitly represented. BRAIn then distills this posterior into an amortized inference network through self-normalized importance sampling, leading to a scalable offline algorithm that significantly outperforms prior art in summarization and AntropicHH tasks. BRAIn also has interesting connections to PPO and DPO for specific RM choices.

  • 9 authors
·
Feb 4, 2024 2

Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models

Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO

  • 10 authors
·
Jul 13

TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs

Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.

  • 6 authors
·
Jul 29 2

DPO Meets PPO: Reinforced Token Optimization for RLHF

In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (RTO), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, RTO is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, RTO innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.

  • 7 authors
·
Apr 29, 2024

Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model

Using reinforcement learning with human feedback (RLHF) has shown significant promise in fine-tuning diffusion models. Previous methods start by training a reward model that aligns with human preferences, then leverage RL techniques to fine-tune the underlying models. However, crafting an efficient reward model demands extensive datasets, optimal architecture, and manual hyperparameter tuning, making the process both time and cost-intensive. The direct preference optimization (DPO) method, effective in fine-tuning large language models, eliminates the necessity for a reward model. However, the extensive GPU memory requirement of the diffusion model's denoising process hinders the direct application of the DPO method. To address this issue, we introduce the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) method to directly fine-tune diffusion models. The theoretical analysis demonstrates that although D3PO omits training a reward model, it effectively functions as the optimal reward model trained using human feedback data to guide the learning process. This approach requires no training of a reward model, proving to be more direct, cost-effective, and minimizing computational overhead. In experiments, our method uses the relative scale of objectives as a proxy for human preference, delivering comparable results to methods using ground-truth rewards. Moreover, D3PO demonstrates the ability to reduce image distortion rates and generate safer images, overcoming challenges lacking robust reward models.

  • 9 authors
·
Nov 22, 2023 5

The Hitchhiker's Guide to Human Alignment with *PO

With the growing utilization of large language models (LLMs) across domains, alignment towards human preferences has become one of the most critical aspects of training models. At the forefront of state-of-the-art human alignment methods are preference optimization methods (*PO). However, prior research has often concentrated on identifying the best-performing method, typically involving a grid search over hyperparameters, which can be impractical for general practitioners. In this paper, we aim to identify the algorithm that, while being performant, is simultaneously more robust to varying hyperparameters, thereby increasing the likelihood of achieving better results. We focus on a realistic out-of-distribution (OOD) scenario that mirrors real-world applications of human alignment, offering practical insights into the strengths and weaknesses of these methods. Furthermore, to better understand the shortcomings of generations from the different methods, we analyze the model generations through the lens of KL divergence of the SFT model and the response length statistics. Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality that are very close to the SFT responses. Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality compared to the policy obtained by vanilla DPO.

  • 7 authors
·
Jul 21, 2024

Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs

Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.

Beyond Reverse KL: Generalizing Direct Preference Optimization with Diverse Divergence Constraints

The increasing capabilities of large language models (LLMs) raise opportunities for artificial general intelligence but concurrently amplify safety concerns, such as potential misuse of AI systems, necessitating effective AI alignment. Reinforcement Learning from Human Feedback (RLHF) has emerged as a promising pathway towards AI alignment but brings forth challenges due to its complexity and dependence on a separate reward model. Direct Preference Optimization (DPO) has been proposed as an alternative, and it remains equivalent to RLHF under the reverse KL regularization constraint. This paper presents f-DPO, a generalized approach to DPO by incorporating diverse divergence constraints. We show that under certain f-divergences, including Jensen-Shannon divergence, forward KL divergences and alpha-divergences, the complex relationship between the reward and optimal policy can also be simplified by addressing the Karush-Kuhn-Tucker conditions. This eliminates the need for estimating the normalizing constant in the Bradley-Terry model and enables a tractable mapping between the reward function and the optimal policy. Our approach optimizes LLMs to align with human preferences in a more efficient and supervised manner under a broad set of divergence constraints. Empirically, adopting these divergences ensures a balance between alignment performance and generation diversity. Importantly, f-DPO outperforms PPO-based methods in divergence efficiency, and divergence constraints directly influence expected calibration error (ECE).

  • 5 authors
·
Sep 28, 2023

Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs

Mathematical reasoning presents a significant challenge for Large Language Models (LLMs) due to the extensive and precise chain of reasoning required for accuracy. Ensuring the correctness of each reasoning step is critical. To address this, we aim to enhance the robustness and factuality of LLMs by learning from human feedback. However, Direct Preference Optimization (DPO) has shown limited benefits for long-chain mathematical reasoning, as models employing DPO struggle to identify detailed errors in incorrect answers. This limitation stems from a lack of fine-grained process supervision. We propose a simple, effective, and data-efficient method called Step-DPO, which treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically. Additionally, we have developed a data construction pipeline for Step-DPO, enabling the creation of a high-quality dataset containing 10K step-wise preference pairs. We also observe that in DPO, self-generated data is more effective than data generated by humans or GPT-4, due to the latter's out-of-distribution nature. Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters. Notably, Step-DPO, when applied to Qwen2-72B-Instruct, achieves scores of 70.8% and 94.0% on the test sets of MATH and GSM8K, respectively, surpassing a series of closed-source models, including GPT-4-1106, Claude-3-Opus, and Gemini-1.5-Pro. Our code, data, and models are available at https://github.com/dvlab-research/Step-DPO.

  • 6 authors
·
Jun 26, 2024 2

Insights into Alignment: Evaluating DPO and its Variants Across Multiple Tasks

Large Language Models (LLMs) have demonstrated remarkable performance across a spectrum of tasks. Recently, Direct Preference Optimization (DPO) has emerged as an RL-free approach to optimize the policy model on human preferences. However, several limitations hinder the widespread adoption of this method. To address these shortcomings, various versions of DPO have been introduced. Yet, a comprehensive evaluation of these variants across diverse tasks is still lacking. In this study, we aim to bridge this gap by investigating the performance of alignment methods across three distinct scenarios: (1) keeping the Supervised Fine-Tuning (SFT) part, (2) skipping the SFT part, and (3) skipping the SFT part and utilizing an instruction-tuned model. Furthermore, we explore the impact of different training sizes on their performance. Our evaluation spans a range of tasks including dialogue systems, reasoning, mathematical problem-solving, question answering, truthfulness, and multi-task understanding, encompassing 13 benchmarks such as MT-Bench, Big Bench, and Open LLM Leaderboard. Key observations reveal that alignment methods achieve optimal performance with smaller training data subsets, exhibit limited effectiveness in reasoning tasks yet significantly impact mathematical problem-solving, and employing an instruction-tuned model notably influences truthfulness. We anticipate that our findings will catalyze further research aimed at developing more robust models to address alignment challenges.

  • 3 authors
·
Apr 22, 2024

InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment

Without using explicit reward, direct preference optimization (DPO) employs paired human preference data to fine-tune generative models, a method that has garnered considerable attention in large language models (LLMs). However, exploration of aligning text-to-image (T2I) diffusion models with human preferences remains limited. In comparison to supervised fine-tuning, existing methods that align diffusion model suffer from low training efficiency and subpar generation quality due to the long Markov chain process and the intractability of the reverse process. To address these limitations, we introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models. Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively. In order to accomplish this objective, we first assign implicit rewards to any latent variable directly via a reparameterization technique. Then we construct an Inversion technique to estimate appropriate latent variables for preference optimization. This modification process enables the diffusion model to only fine-tune the outputs of latent variables that have a strong correlation with the preference dataset. Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning, surpassing all preference aligning baselines for T2I diffusion models in human preference evaluation tasks.

  • 6 authors
·
Mar 24

AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models

Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models (DPMs) with user-provided concepts. This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents. Since the sampling procedure of DPMs involves recursive calls to the denoising UNet, na\"ive gradient backpropagation requires storing the intermediate states of all iterations, resulting in extremely high memory consumption. To overcome this issue, we propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs. It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters (including conditioning signals, network weights, and initial noises) by solving another augmented ODE. To reduce numerical errors in both the forward generation and gradient backpropagation processes, we further reparameterize the probability-flow ODE and augmented ODE as simple non-stiff ODEs using exponential integration. Finally, we demonstrate the effectiveness of AdjointDPM on three interesting tasks: converting visual effects into identification text embeddings, finetuning DPMs for specific types of stylization, and optimizing initial noise to generate adversarial samples for security auditing.

  • 5 authors
·
Jul 20, 2023

TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees

In the domain of complex reasoning tasks, such as mathematical reasoning, recent advancements have proposed the use of Direct Preference Optimization (DPO) to suppress output of dispreferred responses, thereby enhancing the long-chain reasoning capabilities of large language models (LLMs). To this end, these studies employed LLMs to generate preference trees via Tree-of-thoughts (ToT) and sample the paired preference responses required by the DPO algorithm. However, the DPO algorithm based on binary preference optimization is unable to learn multiple responses with varying degrees of preference/dispreference that provided by the preference trees, resulting in incomplete preference learning. In this work, we introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree; instead, it directly learns from the entire preference tree during the fine-tuning. Specifically, TPO formulates the language model alignment as a Preference List Ranking problem, where the policy can potentially learn more effectively from a ranked preference list of responses given the prompt. In addition, to further assist LLMs in identifying discriminative steps within long-chain reasoning and increase the relative reward margin in the preference list, TPO utilizes Adaptive Step Reward to adjust the reward values of each step in trajectory for performing fine-grained preference optimization. We carry out extensive experiments on mathematical reasoning tasks to evaluate TPO. The experimental results indicate that TPO consistently outperforms DPO across three public large language models on four datasets.

  • 3 authors
·
Oct 10, 2024

Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization

Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.

  • 6 authors
·
Oct 11, 2024

Editing Implicit Assumptions in Text-to-Image Diffusion Models

Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.

  • 3 authors
·
Mar 14, 2023 2

Margin Adaptive DPO: Leveraging Reward Model for Granular Control in Preference Optimization

Direct Preference Optimization (DPO) has emerged as a simple and effective method for aligning large language models. However, its reliance on a fixed temperature parameter leads to suboptimal training on diverse preference data, causing overfitting on easy examples and under-learning from informative ones. Recent methods have emerged to counter this. While IPO addresses general overfitting, its uniform regularization can be overly conservative. The more targeted approach of beta-DPO suffers from its own limitations: its batch-level adaptation applies a single, compromised temperature to mixed-margin pairs, its linear update rule can produce unstable negative beta values, and its filtering mechanism discards potentially useful training signals. In this work, we introduce Margin-Adaptive Direct Preference Optimization (MADPO), a method that provides a stable, data-preserving, and instance-level solution. MADPO employs a practical two-step approach: it first trains a reward model to estimate preference margins and then uses these margins to apply a continuous, adaptive weight to the DPO loss for each individual training sample. This re-weighting scheme creates an effective target margin that is amplified for hard pairs and dampened for easy pairs, allowing for granular control over the learning signal. We provide a comprehensive theoretical analysis, proving that MADPO has a well-behaved optimization landscape and is robust to reward model estimation errors. We validate our theory with experiments on a sentiment generation task, where MADPO consistently and significantly outperforms strong baselines across datasets of varying quality. It achieves performance gains of up to +33.3\% on High Quality data and +10.5\% on Low Quality data over the next-best method. Our results establish MADPO as a more robust and principled approach to preference alignment.

  • 1 authors
·
Oct 6 2

Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion

The application of diffusion models in 3D LiDAR scene completion is limited due to diffusion's slow sampling speed. Score distillation accelerates diffusion sampling but with performance degradation, while post-training with direct policy optimization (DPO) boosts performance using preference data. This paper proposes Distillation-DPO, a novel diffusion distillation framework for LiDAR scene completion with preference aligment. First, the student model generates paired completion scenes with different initial noises. Second, using LiDAR scene evaluation metrics as preference, we construct winning and losing sample pairs. Such construction is reasonable, since most LiDAR scene metrics are informative but non-differentiable to be optimized directly. Third, Distillation-DPO optimizes the student model by exploiting the difference in score functions between the teacher and student models on the paired completion scenes. Such procedure is repeated until convergence. Extensive experiments demonstrate that, compared to state-of-the-art LiDAR scene completion diffusion models, Distillation-DPO achieves higher-quality scene completion while accelerating the completion speed by more than 5-fold. Our method is the first to explore adopting preference learning in distillation to the best of our knowledge and provide insights into preference-aligned distillation. Our code is public available on https://github.com/happyw1nd/DistillationDPO.

  • 8 authors
·
Apr 15 2

PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation

Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.

  • 7 authors
·
Dec 4, 2024

FocusDPO: Dynamic Preference Optimization for Multi-Subject Personalized Image Generation via Adaptive Focus

Multi-subject personalized image generation aims to synthesize customized images containing multiple specified subjects without requiring test-time optimization. However, achieving fine-grained independent control over multiple subjects remains challenging due to difficulties in preserving subject fidelity and preventing cross-subject attribute leakage. We present FocusDPO, a framework that adaptively identifies focus regions based on dynamic semantic correspondence and supervision image complexity. During training, our method progressively adjusts these focal areas across noise timesteps, implementing a weighted strategy that rewards information-rich patches while penalizing regions with low prediction confidence. The framework dynamically adjusts focus allocation during the DPO process according to the semantic complexity of reference images and establishes robust correspondence mappings between generated and reference subjects. Extensive experiments demonstrate that our method substantially enhances the performance of existing pre-trained personalized generation models, achieving state-of-the-art results on both single-subject and multi-subject personalized image synthesis benchmarks. Our method effectively mitigates attribute leakage while preserving superior subject fidelity across diverse generation scenarios, advancing the frontier of controllable multi-subject image synthesis.

  • 7 authors
·
Sep 1

Understanding the Logic of Direct Preference Alignment through Logic

Recent direct preference alignment algorithms (DPA), such as DPO, have shown great promise in aligning large language models to human preferences. While this has motivated the development of many new variants of the original DPO loss, understanding the differences between these recent proposals, as well as developing new DPA loss functions, remains difficult given the lack of a technical and conceptual framework for reasoning about the underlying semantics of these algorithms. In this paper, we attempt to remedy this by formalizing DPA losses in terms of discrete reasoning problems. Specifically, we ask: Given an existing DPA loss, can we systematically derive a symbolic expression that characterizes its semantics? How do the semantics of two losses relate to each other? We propose a novel formalism for characterizing preference losses for single model and reference model based approaches, and identify symbolic forms for a number of commonly used DPA variants. Further, we show how this formal view of preference learning sheds new light on both the size and structure of the DPA loss landscape, making it possible to not only rigorously characterize the relationships between recent loss proposals but also to systematically explore the landscape and derive new loss functions from first principles. We hope our framework and findings will help provide useful guidance to those working on human AI alignment.

  • 3 authors
·
Dec 23, 2024

Mitigating Hallucinations in Large Vision-Language Models via DPO: On-Policy Data Hold the Key

Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples. Our implementation is available at https://github.com/zhyang2226/OPA-DPO.

  • 5 authors
·
Jan 16

Reinforcement Learning Foundations for Deep Research Systems: A Survey

Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.

Quantifying and Optimizing Global Faithfulness in Persona-driven Role-playing

Persona-driven role-playing (PRP) aims to build AI characters that can respond to user queries by faithfully sticking with all persona statements. Unfortunately, existing faithfulness criteria for PRP are limited to coarse-grained LLM-based scoring without a clear definition or formulation. This paper presents a pioneering exploration to quantify PRP faithfulness as a fine-grained and explainable criterion, which also serves as a reliable reference for optimization. Our criterion first discriminates persona statements into active and passive constraints by identifying the query-statement relevance. Then, we incorporate all constraints following the principle that the AI character's response should be (a) entailed by active (relevant) constraints and (b) not contradicted by passive (irrelevant) constraints. We translate this principle mathematically into a novel Active-Passive-Constraint (APC) score, a constraint-wise sum of natural language inference (NLI) scores weighted by relevance scores. In practice, we build the APC scoring system by symbolically distilling small discriminators from GPT-4 for efficiency. We validate the quality of the APC score against human evaluation based on example personas with tens of statements, and the results show a high correlation. We further leverage it as a reward system in direct preference optimization (DPO) for better AI characters. Our experiments offer a fine-grained and explainable comparison between existing PRP techniques, revealing their advantages and limitations. We further find APC-based DPO to be one of the most competitive techniques for sticking with all constraints and can be well incorporated with other techniques. We then extend the scale of the experiments to real persons with hundreds of statements and reach a consistent conclusion.

  • 2 authors
·
May 13, 2024

DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation

With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.

  • 5 authors
·
Feb 19

Differential Information: An Information-Theoretic Perspective on Preference Optimization

Direct Preference Optimization (DPO) has become a standard technique for aligning language models with human preferences in a supervised manner. Despite its empirical success, the theoretical justification behind its log-ratio reward parameterization remains incomplete. In this work, we address this gap by utilizing the Differential Information Distribution (DID): a distribution over token sequences that captures the information gained during policy updates. First, we show that when preference labels encode the differential information required to transform a reference policy into a target policy, the log-ratio reward in DPO emerges as the uniquely optimal form for learning the target policy via preference optimization. This result naturally yields a closed-form expression for the optimal sampling distribution over rejected responses. Second, we find that the condition for preferences to encode differential information is fundamentally linked to an implicit assumption regarding log-margin ordered policies-an inductive bias widely used in preference optimization yet previously unrecognized. Finally, by analyzing the entropy of the DID, we characterize how learning low-entropy differential information reinforces the policy distribution, while high-entropy differential information induces a smoothing effect, which explains the log-likelihood displacement phenomenon. We validate our theoretical findings in synthetic experiments and extend them to real-world instruction-following datasets. Our results suggest that learning high-entropy differential information is crucial for general instruction-following, while learning low-entropy differential information benefits knowledge-intensive question answering. Overall, our work presents a unifying perspective on the DPO objective, the structure of preference data, and resulting policy behaviors through the lens of differential information.

  • 4 authors
·
May 29 2

Offline Reinforcement Learning for LLM Multi-Step Reasoning

Improving the multi-step reasoning ability of large language models (LLMs) with offline reinforcement learning (RL) is essential for quickly adapting them to complex tasks. While Direct Preference Optimization (DPO) has shown promise in aligning LLMs with human preferences, it is less suitable for multi-step reasoning tasks because (1) DPO relies on paired preference data, which is not readily available for multi-step reasoning tasks, and (2) it treats all tokens uniformly, making it ineffective for credit assignment in multi-step reasoning tasks, which often come with sparse reward. In this work, we propose OREO (Offline Reasoning Optimization), an offline RL method for enhancing LLM multi-step reasoning. Building on insights from previous works of maximum entropy reinforcement learning, it jointly learns a policy model and value function by optimizing the soft Bellman Equation. We show in principle that it reduces the need to collect pairwise data and enables better credit assignment. Empirically, OREO surpasses existing offline learning methods on multi-step reasoning benchmarks, including mathematical reasoning tasks (GSM8K, MATH) and embodied agent control (ALFWorld). The approach can be extended to a multi-iteration framework when additional resources are available. Furthermore, the learned value function can be leveraged to guide the tree search for free, which can further boost performance during test time.

  • 7 authors
·
Dec 20, 2024 6

OSPO: Object-centric Self-improving Preference Optimization for Text-to-Image Generation

Recent advances in Multimodal Large Language Models (MLLMs) have enabled models to perform both understanding and generation of multimodal data in a unified manner. However, achieving a fine-grained alignment between input prompts and generated images remains a major challenge especially in text-to-image generation. Therefore, recent works have introduced self-improving mechanisms based on self-generated data and self-feedback to efficiently mitigate this challenge without relying on external large-scale data or models. However, existing self-improving approaches have not focused on fine-grained visual details especially at the object level in generating training data or providing a feedback, and thus they still struggle to resolve the object hallucination problem in text-to-image generation. To tackle this problem, we propose an Object-centric Self-improving Preference Optimization (OSPO), a self-improving framework for enhancing object-level text-image alignment. OSPO is designed to explicitly address the need for constructing and leveraging object-level hard negative data and an object-centric optimization in improving object-specific fidelity. In specific, OSPO consists of: (1) Initial Prompt Generation (2) Hard Preference Pair Generation (3) Filtering and Selection (4) Object-centric Preference Optimization with Conditional Preference Loss. Extensive experiments on compositional image generation benchmarks demonstrate that OSPO significantly improves fine-grained alignment in text-to-image generation, surpassing not only prior self-improving methods but also diffusion-based specialized image generation models.

  • 5 authors
·
May 27

Personalized Preference Fine-tuning of Diffusion Models

RLHF techniques like DPO can significantly improve the generation quality of text-to-image diffusion models. However, these methods optimize for a single reward that aligns model generation with population-level preferences, neglecting the nuances of individual users' beliefs or values. This lack of personalization limits the efficacy of these models. To bridge this gap, we introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences. With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way, enabling generalization to unseen users. Specifically, our approach (1) leverages a vision-language model (VLM) to extract personal preference embeddings from a small set of pairwise preference examples, and then (2) incorporates the embeddings into diffusion models through cross attention. Conditioning on user embeddings, the text-to-image models are fine-tuned with the DPO objective, simultaneously optimizing for alignment with the preferences of multiple users. Empirical results demonstrate that our method effectively optimizes for multiple reward functions and can interpolate between them during inference. In real-world user scenarios, with as few as four preference examples from a new user, our approach achieves an average win rate of 76\% over Stable Cascade, generating images that more accurately reflect specific user preferences.

  • 5 authors
·
Jan 11

Accelerated Preference Optimization for Large Language Model Alignment

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences. Direct Preference Optimization (DPO), one of the most popular approaches, formulates RLHF as a policy optimization problem without explicitly estimating the reward function. It overcomes the stability and efficiency issues of two-step approaches, which typically involve first estimating the reward function and then optimizing the policy via proximal policy optimization (PPO). Since RLHF is essentially an optimization problem, and it is well-known that momentum techniques can accelerate optimization both theoretically and empirically, a natural question arises: Can RLHF be accelerated by momentum? This paper answers this question in the affirmative. In detail, we first show that the iterative preference optimization method can be viewed as a proximal point method. Based on this observation, we propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms and employs Nesterov's momentum technique to speed up the alignment of LLMs. Theoretically, we demonstrate that APO can achieve a faster convergence rate than the standard iterative preference optimization methods, including DPO and Self-Play Preference Optimization (SPPO). Empirically, we show the superiority of APO over DPO, iterative DPO, and other strong baselines for RLHF on the AlpacaEval 2.0 benchmark.

  • 3 authors
·
Oct 8, 2024 2

Reward-Augmented Data Enhances Direct Preference Alignment of LLMs

Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.

  • 9 authors
·
Oct 10, 2024

Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator

While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.

  • 7 authors
·
Mar 2 2

Self-Improving Robust Preference Optimization

Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%.

  • 5 authors
·
Jun 3, 2024 1

FinePOSE: Fine-Grained Prompt-Driven 3D Human Pose Estimation via Diffusion Models

The 3D Human Pose Estimation (3D HPE) task uses 2D images or videos to predict human joint coordinates in 3D space. Despite recent advancements in deep learning-based methods, they mostly ignore the capability of coupling accessible texts and naturally feasible knowledge of humans, missing out on valuable implicit supervision to guide the 3D HPE task. Moreover, previous efforts often study this task from the perspective of the whole human body, neglecting fine-grained guidance hidden in different body parts. To this end, we present a new Fine-Grained Prompt-Driven Denoiser based on a diffusion model for 3D HPE, named FinePOSE. It consists of three core blocks enhancing the reverse process of the diffusion model: (1) Fine-grained Part-aware Prompt learning (FPP) block constructs fine-grained part-aware prompts via coupling accessible texts and naturally feasible knowledge of body parts with learnable prompts to model implicit guidance. (2) Fine-grained Prompt-pose Communication (FPC) block establishes fine-grained communications between learned part-aware prompts and poses to improve the denoising quality. (3) Prompt-driven Timestamp Stylization (PTS) block integrates learned prompt embedding and temporal information related to the noise level to enable adaptive adjustment at each denoising step. Extensive experiments on public single-human pose estimation datasets show that FinePOSE outperforms state-of-the-art methods. We further extend FinePOSE to multi-human pose estimation. Achieving 34.3mm average MPJPE on the EgoHumans dataset demonstrates the potential of FinePOSE to deal with complex multi-human scenarios. Code is available at https://github.com/PKU-ICST-MIPL/FinePOSE_CVPR2024.

  • 3 authors
·
May 8, 2024

Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization

Large Language Models (LLMs) perform well across diverse tasks, but aligning them with human demonstrations is challenging. Recently, Reinforcement Learning (RL)-free methods like Direct Preference Optimization (DPO) have emerged, offering improved stability and scalability while retaining competitive performance relative to RL-based methods. However, while RL-free methods deliver satisfactory performance, they require significant data to develop a robust Supervised Fine-Tuned (SFT) model and an additional step to fine-tune this model on a preference dataset, which constrains their utility and scalability. In this paper, we introduce Triple Preference Optimization (TPO), a new preference learning method designed to align an LLM with three preferences without requiring a separate SFT step and using considerably less data. Through a combination of practical experiments and theoretical analysis, we show the efficacy of TPO as a single-step alignment strategy. Specifically, we fine-tuned the Phi-2 (2.7B) and Mistral (7B) models using TPO directly on the UltraFeedback dataset, achieving superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO. Moreover, the performance of TPO without the SFT component led to notable improvements in the MT-Bench score, with increases of +1.27 and +0.63 over SFT and DPO, respectively. Additionally, TPO showed higher average accuracy, surpassing DPO and SFT by 4.2% and 4.97% on the Open LLM Leaderboard benchmarks. Our code is publicly available at https://github.com/sahsaeedi/triple-preference-optimization .

  • 4 authors
·
May 26, 2024

One-Step Diffusion Distillation through Score Implicit Matching

Despite their strong performances on many generative tasks, diffusion models require a large number of sampling steps in order to generate realistic samples. This has motivated the community to develop effective methods to distill pre-trained diffusion models into more efficient models, but these methods still typically require few-step inference or perform substantially worse than the underlying model. In this paper, we present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models, while maintaining almost the same sample generation ability as the original model as well as being data-free with no need of training samples for distillation. The method rests upon the fact that, although the traditional score-based loss is intractable to minimize for generator models, under certain conditions we can efficiently compute the gradients for a wide class of score-based divergences between a diffusion model and a generator. SIM shows strong empirical performances for one-step generators: on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image (T2I) generation that attains an aesthetic score of 6.42 with no performance decline over the original multi-step counterpart, clearly outperforming the other one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of 5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step transformer-based T2I generator along with this paper.

  • 5 authors
·
Oct 22, 2024

Understanding Likelihood Over-optimisation in Direct Alignment Algorithms

Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation (DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives to online Reinforcement Learning from Human Feedback (RLHF) algorithms such as Proximal Policy Optimisation (PPO) for aligning language models to human preferences, without the need for explicit reward modelling. These methods generally aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones, while staying close to the original model's behaviour. In this work, we explore the relationship between completion likelihood and model performance in state-of-the-art DAAs, and identify a critical issue of likelihood over-optimisation. Contrary to expectations, we find that higher likelihood of better completions and larger margins between better and worse completion likelihoods do not necessarily lead to better performance, and may even degrade it. Our analysis reveals that while higher likelihood correlates with better memorisation of factual knowledge patterns, a slightly lower completion likelihood tends to improve output diversity, thus leading to better generalisation to unseen scenarios. Moreover, we identify two key indicators that signal when over-optimised output diversity begins to harm performance: Decreasing Entropy over Top-k Tokens and Diminishing Top-k Probability Mass. Our experimental results validate that these indicators are reliable signs of declining performance under different regularisations, helping prevent over-optimisation and improve alignment with human preferences.

  • 5 authors
·
Oct 15, 2024

ICON: Implicit Clothed humans Obtained from Normals

Current methods for learning realistic and animatable 3D clothed avatars need either posed 3D scans or 2D images with carefully controlled user poses. In contrast, our goal is to learn an avatar from only 2D images of people in unconstrained poses. Given a set of images, our method estimates a detailed 3D surface from each image and then combines these into an animatable avatar. Implicit functions are well suited to the first task, as they can capture details like hair and clothes. Current methods, however, are not robust to varied human poses and often produce 3D surfaces with broken or disembodied limbs, missing details, or non-human shapes. The problem is that these methods use global feature encoders that are sensitive to global pose. To address this, we propose ICON ("Implicit Clothed humans Obtained from Normals"), which, instead, uses local features. ICON has two main modules, both of which exploit the SMPL(-X) body model. First, ICON infers detailed clothed-human normals (front/back) conditioned on the SMPL(-X) normals. Second, a visibility-aware implicit surface regressor produces an iso-surface of a human occupancy field. Importantly, at inference time, a feedback loop alternates between refining the SMPL(-X) mesh using the inferred clothed normals and then refining the normals. Given multiple reconstructed frames of a subject in varied poses, we use SCANimate to produce an animatable avatar from them. Evaluation on the AGORA and CAPE datasets shows that ICON outperforms the state of the art in reconstruction, even with heavily limited training data. Additionally, it is much more robust to out-of-distribution samples, e.g., in-the-wild poses/images and out-of-frame cropping. ICON takes a step towards robust 3D clothed human reconstruction from in-the-wild images. This enables creating avatars directly from video with personalized and natural pose-dependent cloth deformation.

  • 4 authors
·
Dec 16, 2021

Preference Learning Algorithms Do Not Learn Preference Rankings

Preference learning algorithms (e.g., RLHF and DPO) are frequently used to steer LLMs to produce generations that are more preferred by humans, but our understanding of their inner workings is still limited. In this work, we study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs, measured via ranking accuracy. Surprisingly, we find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets. We furthermore derive the idealized ranking accuracy that a preference-tuned LLM would achieve if it optimized the DPO or RLHF objective perfectly. We demonstrate that existing models exhibit a significant alignment gap -- i.e., a gap between the observed and idealized ranking accuracies. We attribute this discrepancy to the DPO objective, which is empirically and theoretically ill-suited to fix even mild ranking errors in the reference model, and derive a simple and efficient formula for quantifying the difficulty of learning a given preference datapoint. Finally, we demonstrate that ranking accuracy strongly correlates with the empirically popular win rate metric when the model is close to the reference model used in the objective, shedding further light on the differences between on-policy (e.g., RLHF) and off-policy (e.g., DPO) preference learning algorithms.

  • 7 authors
·
May 29, 2024

PaMi-VDPO: Mitigating Video Hallucinations by Prompt-Aware Multi-Instance Video Preference Learning

Direct Preference Optimization (DPO) helps reduce hallucinations in Video Multimodal Large Language Models (VLLMs), but its reliance on offline preference data limits adaptability and fails to capture true video-response misalignment. We propose Video Direct Preference Optimization (VDPO), an online preference learning framework that eliminates the need for preference annotation by leveraging video augmentations to generate rejected samples while keeping responses fixed. However, selecting effective augmentations is non-trivial, as some clips may be semantically identical to the original under specific prompts, leading to false rejections and disrupting alignment. To address this, we introduce Prompt-aware Multi-instance Learning VDPO (PaMi-VDPO), which selects augmentations based on prompt context. Instead of a single rejection, we construct a candidate set of augmented clips and apply a close-to-far selection strategy, initially ensuring all clips are semantically relevant while then prioritizing the most prompt-aware distinct clip. This allows the model to better capture meaningful visual differences, mitigating hallucinations, while avoiding false rejections, and improving alignment. PaMi-VDPOseamlessly integrates into existing VLLMs without additional parameters, GPT-4/human supervision. With only 10k SFT data, it improves the base model by 5.3% on VideoHallucer, surpassing GPT-4o, while maintaining stable performance on general video benchmarks.

  • 6 authors
·
Apr 8

Dual Caption Preference Optimization for Diffusion Models

Recent advancements in human preference optimization, originally developed for Large Language Models (LLMs), have shown significant potential in improving text-to-image diffusion models. These methods aim to learn the distribution of preferred samples while distinguishing them from less preferred ones. However, existing preference datasets often exhibit overlap between these distributions, leading to a conflict distribution. Additionally, we identified that input prompts contain irrelevant information for less preferred images, limiting the denoising network's ability to accurately predict noise in preference optimization methods, known as the irrelevant prompt issue. To address these challenges, we propose Dual Caption Preference Optimization (DCPO), a novel approach that utilizes two distinct captions to mitigate irrelevant prompts. To tackle conflict distribution, we introduce the Pick-Double Caption dataset, a modified version of Pick-a-Pic v2 with separate captions for preferred and less preferred images. We further propose three different strategies for generating distinct captions: captioning, perturbation, and hybrid methods. Our experiments show that DCPO significantly improves image quality and relevance to prompts, outperforming Stable Diffusion (SD) 2.1, SFT_Chosen, Diffusion-DPO, and MaPO across multiple metrics, including Pickscore, HPSv2.1, GenEval, CLIPscore, and ImageReward, fine-tuned on SD 2.1 as the backbone.

  • 7 authors
·
Feb 9 2

Differentially Private Synthetic Data via Foundation Model APIs 1: Images

Generating differentially private (DP) synthetic data that closely resembles the original private data is a scalable way to mitigate privacy concerns in the current data-driven world. In contrast to current practices that train customized models for this task, we aim to generate DP Synthetic Data via APIs (DPSDA), where we treat foundation models as blackboxes and only utilize their inference APIs. Such API-based, training-free approaches are easier to deploy as exemplified by the recent surge in the number of API-based apps. These approaches can also leverage the power of large foundation models which are only accessible via their inference APIs. However, this comes with greater challenges due to strictly more restrictive model access and the need to protect privacy from the API provider. In this paper, we present a new framework called Private Evolution (PE) to solve this problem and show its initial promise on synthetic images. Surprisingly, PE can match or even outperform state-of-the-art (SOTA) methods without any model training. For example, on CIFAR10 (with ImageNet as the public data), we achieve FID <= 7.9 with privacy cost {\epsilon} = 0.67, significantly improving the previous SOTA from {\epsilon} = 32. We further demonstrate the promise of applying PE on large foundation models such as Stable Diffusion to tackle challenging private datasets with a small number of high-resolution images. The code and data are released at https://github.com/microsoft/DPSDA.

  • 5 authors
·
May 24, 2023

Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing

Large-scale text-to-image generative models have been a ground-breaking development in generative AI, with diffusion models showing their astounding ability to synthesize convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are susceptible to unintended modifications of regions outside the targeted area, such as on the background or on distractor objects which have some semantic or visual relationship with the targeted object. According to our experimental findings, inaccurate cross-attention maps are at the root of this problem. Based on this observation, we propose Dynamic Prompt Learning (DPL) to force cross-attention maps to focus on correct noun words in the text prompt. By updating the dynamic tokens for nouns in the textual input with the proposed leakage repairment losses, we achieve fine-grained image editing over particular objects while preventing undesired changes to other image regions. Our method DPL, based on the publicly available Stable Diffusion, is extensively evaluated on a wide range of images, and consistently obtains superior results both quantitatively (CLIP score, Structure-Dist) and qualitatively (on user-evaluation). We show improved prompt editing results for Word-Swap, Prompt Refinement, and Attention Re-weighting, especially for complex multi-object scenes.

  • 5 authors
·
Sep 27, 2023

Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback

Learning from preference feedback has emerged as an essential step for improving the generation quality and performance of modern language models (LMs). Despite its widespread use, the way preference-based learning is applied varies wildly, with differing data, learning algorithms, and evaluations used, making disentangling the impact of each aspect difficult. In this work, we identify four core aspects of preference-based learning: preference data, learning algorithm, reward model, and policy training prompts, systematically investigate the impact of these components on downstream model performance, and suggest a recipe for strong learning for preference feedback. Our findings indicate that all aspects are important for performance, with better preference data leading to the largest improvements, followed by the choice of learning algorithm, the use of improved reward models, and finally the use of additional unlabeled prompts for policy training. Notably, PPO outperforms DPO by up to 2.5% in math and 1.2% in general domains. High-quality preference data leads to improvements of up to 8% in instruction following and truthfulness. Despite significant gains of up to 5% in mathematical evaluation when scaling up reward models, we surprisingly observe marginal improvements in other categories. We publicly release the code used for training (https://github.com/hamishivi/EasyLM) and evaluating (https://github.com/allenai/open-instruct) our models, along with the models and datasets themselves (https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).

  • 9 authors
·
Jun 13, 2024