Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn Relation-Specific Neurons in Large Language Models
In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM's ability to handle (1) facts whose relation is r and (2) facts whose relation is a different relation r' neq r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. The neurons for r present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in r. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.
Neuron-Level Analysis of Cultural Understanding in Large Language Models
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG
LEAML: Label-Efficient Adaptation to Out-of-Distribution Visual Tasks for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved strong performance on general visual benchmarks but struggle with out-of-distribution (OOD) tasks in specialized domains such as medical imaging, where labeled data is limited and expensive. We introduce LEAML, a label-efficient adaptation framework that leverages both scarce labeled VQA samples and abundant unlabeled images. Our approach generates domain-relevant pseudo question-answer pairs for unlabeled data using a QA generator regularized by caption distillation. Importantly, we selectively update only those neurons most relevant to question-answering, enabling the QA Generator to efficiently acquire domain-specific knowledge during distillation. Experiments on gastrointestinal endoscopy and sports VQA demonstrate that LEAML consistently outperforms standard fine-tuning under minimal supervision, highlighting the effectiveness of our proposed LEAML framework.
Cross-Lingual Generalization and Compression: From Language-Specific to Shared Neurons
Multilingual language models (MLLMs) have demonstrated remarkable abilities to transfer knowledge across languages, despite being trained without explicit cross-lingual supervision. We analyze the parameter spaces of three MLLMs to study how their representations evolve during pre-training, observing patterns consistent with compression: models initially form language-specific representations, which gradually converge into cross-lingual abstractions as training progresses. Through probing experiments, we observe a clear transition from uniform language identification capabilities across layers to more specialized layer functions. For deeper analysis, we focus on neurons that encode distinct semantic concepts. By tracing their development during pre-training, we show how they gradually align across languages. Notably, we identify specific neurons that emerge as increasingly reliable predictors for the same concepts across languages.
Language-Specific Representation of Emotion-Concept Knowledge Causally Supports Emotion Inference
Understanding how language supports emotion inference remains a topic of debate in emotion science. The present study investigated whether language-derived emotion-concept knowledge would causally support emotion inference by manipulating the language-specific knowledge representations in large language models. Using the prompt technique, 14 attributes of emotion concepts were found to be represented by distinct artificial neuron populations. By manipulating these attribute-related neurons, the majority of the emotion inference tasks showed performance deterioration compared to random manipulations. The attribute-specific performance deterioration was related to the importance of different attributes in human mental space. Our findings provide causal evidence in support of a language-based mechanism for emotion inference and highlight the contributions of emotion-concept knowledge.
Large language models surpass human experts in predicting neuroscience results
Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. To evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs were confident in their predictions, they were more likely to be correct, which presages a future where humans and LLMs team together to make discoveries. Our approach is not neuroscience-specific and is transferable to other knowledge-intensive endeavors.
Matching domain experts by training from scratch on domain knowledge
Recently, large language models (LLMs) have outperformed human experts in predicting the results of neuroscience experiments (Luo et al., 2024). What is the basis for this performance? One possibility is that statistical patterns in that specific scientific literature, as opposed to emergent reasoning abilities arising from broader training, underlie LLMs' performance. To evaluate this possibility, we trained (next word prediction) a relatively small 124M-parameter GPT-2 model on 1.3 billion tokens of domain-specific knowledge. Despite being orders of magnitude smaller than larger LLMs trained on trillions of tokens, small models achieved expert-level performance in predicting neuroscience results. Small models trained on the neuroscience literature succeeded when they were trained from scratch using a tokenizer specifically trained on neuroscience text or when the neuroscience literature was used to finetune a pretrained GPT-2. Our results indicate that expert-level performance may be attained by even small LLMs through domain-specific, auto-regressive training approaches.
Exploring Coding Spot: Understanding Parametric Contributions to LLM Coding Performance
Large Language Models (LLMs) have demonstrated notable proficiency in both code generation and comprehension across multiple programming languages. However, the mechanisms underlying this proficiency remain underexplored, particularly with respect to whether distinct programming languages are processed independently or within a shared parametric region. Drawing an analogy to the specialized regions of the brain responsible for distinct cognitive functions, we introduce the concept of Coding Spot, a specialized parametric region within LLMs that facilitates coding capabilities. Our findings identify this Coding Spot and show that targeted modifications to this subset significantly affect performance on coding tasks, while largely preserving non-coding functionalities. This compartmentalization mirrors the functional specialization observed in cognitive neuroscience, where specific brain regions are dedicated to distinct tasks, suggesting that LLMs may similarly employ specialized parameter regions for different knowledge domains.
The Semantic Hub Hypothesis: Language Models Share Semantic Representations Across Languages and Modalities
Modern language models can process inputs across diverse languages and modalities. We hypothesize that models acquire this capability through learning a shared representation space across heterogeneous data types (e.g., different languages and modalities), which places semantically similar inputs near one another, even if they are from different modalities/languages. We term this the semantic hub hypothesis, following the hub-and-spoke model from neuroscience (Patterson et al., 2007) which posits that semantic knowledge in the human brain is organized through a transmodal semantic "hub" which integrates information from various modality-specific "spokes" regions. We first show that model representations for semantically equivalent inputs in different languages are similar in the intermediate layers, and that this space can be interpreted using the model's dominant pretraining language via the logit lens. This tendency extends to other data types, including arithmetic expressions, code, and visual/audio inputs. Interventions in the shared representation space in one data type also predictably affect model outputs in other data types, suggesting that this shared representations space is not simply a vestigial byproduct of large-scale training on broad data, but something that is actively utilized by the model during input processing.
IRCAN: Mitigating Knowledge Conflicts in LLM Generation via Identifying and Reweighting Context-Aware Neurons
It is widely acknowledged that large language models (LLMs) encode a vast reservoir of knowledge after being trained on mass data. Recent studies disclose knowledge conflicts in LLM generation, wherein outdated or incorrect parametric knowledge (i.e., encoded knowledge) contradicts new knowledge provided in the context. To mitigate such knowledge conflicts, we propose a novel framework, IRCAN (Identifying and Reweighting Context-Aware Neurons) to capitalize on neurons that are crucial in processing contextual cues. Specifically, IRCAN first identifies neurons that significantly contribute to context processing, utilizing a context-aware attribution score derived from integrated gradients. Subsequently, the identified context-aware neurons are strengthened via reweighting. In doing so, we steer LLMs to generate context-sensitive outputs with respect to the new knowledge provided in the context. Extensive experiments conducted across a variety of models and tasks demonstrate that IRCAN not only achieves remarkable improvements in handling knowledge conflicts but also offers a scalable, plug-andplay solution that can be integrated seamlessly with existing models.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Natural Language Descriptions of Deep Visual Features
Some neurons in deep networks specialize in recognizing highly specific perceptual, structural, or semantic features of inputs. In computer vision, techniques exist for identifying neurons that respond to individual concept categories like colors, textures, and object classes. But these techniques are limited in scope, labeling only a small subset of neurons and behaviors in any network. Is a richer characterization of neuron-level computation possible? We introduce a procedure (called MILAN, for mutual-information-guided linguistic annotation of neurons) that automatically labels neurons with open-ended, compositional, natural language descriptions. Given a neuron, MILAN generates a description by searching for a natural language string that maximizes pointwise mutual information with the image regions in which the neuron is active. MILAN produces fine-grained descriptions that capture categorical, relational, and logical structure in learned features. These descriptions obtain high agreement with human-generated feature descriptions across a diverse set of model architectures and tasks, and can aid in understanding and controlling learned models. We highlight three applications of natural language neuron descriptions. First, we use MILAN for analysis, characterizing the distribution and importance of neurons selective for attribute, category, and relational information in vision models. Second, we use MILAN for auditing, surfacing neurons sensitive to human faces in datasets designed to obscure them. Finally, we use MILAN for editing, improving robustness in an image classifier by deleting neurons sensitive to text features spuriously correlated with class labels.
Knowledge Circuits in Pretrained Transformers
The remarkable capabilities of modern large language models are rooted in their vast repositories of knowledge encoded within their parameters, enabling them to perceive the world and engage in reasoning. The inner workings of how these models store knowledge have long been a subject of intense interest and investigation among researchers. To date, most studies have concentrated on isolated components within these models, such as the Multilayer Perceptrons and attention head. In this paper, we delve into the computation graph of the language model to uncover the knowledge circuits that are instrumental in articulating specific knowledge. The experiments, conducted with GPT2 and TinyLLAMA, has allowed us to observe how certain information heads, relation heads, and Multilayer Perceptrons collaboratively encode knowledge within the model. Moreover, we evaluate the impact of current knowledge editing techniques on these knowledge circuits, providing deeper insights into the functioning and constraints of these editing methodologies. Finally, we utilize knowledge circuits to analyze and interpret language model behaviors such as hallucinations and in-context learning. We believe the knowledge circuit holds potential for advancing our understanding of Transformers and guiding the improved design of knowledge editing. Code and data are available in https://github.com/zjunlp/KnowledgeCircuits.
Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
Do large language models (LLMs) solve reasoning tasks by learning robust generalizable algorithms, or do they memorize training data? To investigate this question, we use arithmetic reasoning as a representative task. Using causal analysis, we identify a subset of the model (a circuit) that explains most of the model's behavior for basic arithmetic logic and examine its functionality. By zooming in on the level of individual circuit neurons, we discover a sparse set of important neurons that implement simple heuristics. Each heuristic identifies a numerical input pattern and outputs corresponding answers. We hypothesize that the combination of these heuristic neurons is the mechanism used to produce correct arithmetic answers. To test this, we categorize each neuron into several heuristic types-such as neurons that activate when an operand falls within a certain range-and find that the unordered combination of these heuristic types is the mechanism that explains most of the model's accuracy on arithmetic prompts. Finally, we demonstrate that this mechanism appears as the main source of arithmetic accuracy early in training. Overall, our experimental results across several LLMs show that LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics".
Cones: Concept Neurons in Diffusion Models for Customized Generation
Human brains respond to semantic features of presented stimuli with different neurons. It is then curious whether modern deep neural networks admit a similar behavior pattern. Specifically, this paper finds a small cluster of neurons in a diffusion model corresponding to a particular subject. We call those neurons the concept neurons. They can be identified by statistics of network gradients to a stimulation connected with the given subject. The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results. Shutting them can directly yield the related subject contextualized in different scenes. Concatenating multiple clusters of concept neurons can vividly generate all related concepts in a single image. A few steps of further fine-tuning can enhance the multi-concept capability, which may be the first to manage to generate up to four different subjects in a single image. For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 values of the parameters, which reduces storage consumption by 90\% compared with previous subject-driven generation methods. Extensive qualitative and quantitative studies on diverse scenarios show the superiority of our method in interpreting and manipulating diffusion models.
How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective
Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some researches on language-specific neurons reveal that there are language-specific neurons that are selectively activated in LLMs when processing different languages. This provides a new perspective to analyze and understand LLMs' mechanisms more specifically in multilingual scenarios. In this work, we propose a new finer-grained neuron identification algorithm, which detects language neurons~(including language-specific neurons and language-related neurons) and language-agnostic neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights for better understanding multilingual alignment and multilingual capabilities of LLMs.
Digits that are not: Generating new types through deep neural nets
For an artificial creative agent, an essential driver of the search for novelty is a value function which is often provided by the system designer or users. We argue that an important barrier for progress in creativity research is the inability of these systems to develop their own notion of value for novelty. We propose a notion of knowledge-driven creativity that circumvent the need for an externally imposed value function, allowing the system to explore based on what it has learned from a set of referential objects. The concept is illustrated by a specific knowledge model provided by a deep generative autoencoder. Using the described system, we train a knowledge model on a set of digit images and we use the same model to build coherent sets of new digits that do not belong to known digit types.
Neuron Specialization: Leveraging intrinsic task modularity for multilingual machine translation
Training a unified multilingual model promotes knowledge transfer but inevitably introduces negative interference. Language-specific modeling methods show promise in reducing interference. However, they often rely on heuristics to distribute capacity and struggle to foster cross-lingual transfer via isolated modules. In this paper, we explore intrinsic task modularity within multilingual networks and leverage these observations to circumvent interference under multilingual translation. We show that neurons in the feed-forward layers tend to be activated in a language-specific manner. Meanwhile, these specialized neurons exhibit structural overlaps that reflect language proximity, which progress across layers. Based on these findings, we propose Neuron Specialization, an approach that identifies specialized neurons to modularize feed-forward layers and then continuously updates them through sparse networks. Extensive experiments show that our approach achieves consistent performance gains over strong baselines with additional analyses demonstrating reduced interference and increased knowledge transfer.
Learning to acquire novel cognitive tasks with evolution, plasticity and meta-meta-learning
A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.
GenKnowSub: Improving Modularity and Reusability of LLMs through General Knowledge Subtraction
Large language models often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information, a method we call general knowledge subtraction (GenKnowSub). Leveraging the refined task-specific modules and the Arrow routing algorithm ostapenko2024towards, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 demonstrate how GenKnowSub generalizes to weaker LLMs. The complete code and data are available at https://github.com/saharsamr/Modular-LLM.
Language Arithmetics: Towards Systematic Language Neuron Identification and Manipulation
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.
Discovering Knowledge-Critical Subnetworks in Pretrained Language Models
Pretrained language models (LMs) encode implicit representations of knowledge in their parameters. However, localizing these representations and disentangling them from each other remains an open problem. In this work, we investigate whether pretrained language models contain various knowledge-critical subnetworks: particular sparse computational subgraphs responsible for encoding specific knowledge the model has memorized. We propose a multi-objective differentiable weight masking scheme to discover these subnetworks and show that we can use them to precisely remove specific knowledge from models while minimizing adverse effects on the behavior of the original language model. We demonstrate our method on multiple GPT2 variants, uncovering highly sparse subnetworks (98%+) that are solely responsible for specific collections of relational knowledge. When these subnetworks are removed, the remaining network maintains most of its initial capacity (modeling language and other memorized relational knowledge) but struggles to express the removed knowledge, and suffers performance drops on examples needing this removed knowledge on downstream tasks after finetuning.
How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
Beyond Attention: Toward Machines with Intrinsic Higher Mental States
Attending to what is relevant is fundamental to both the mammalian brain and modern machine learning models such as Transformers. Yet, determining relevance remains a core challenge, traditionally offloaded to learning algorithms like backpropagation. Inspired by recent cellular neurobiological evidence linking neocortical pyramidal cells to distinct mental states, this work shows how models (e.g., Transformers) can emulate high-level perceptual processing and awake thought (imagination) states to pre-select relevant information before applying attention. Triadic neuronal-level modulation loops among questions (Q), clues (keys, K), and hypotheses (values, V) enable diverse, deep, parallel reasoning chains at the representation level and allow a rapid shift from initial biases to refined understanding. This leads to orders-of-magnitude faster learning with significantly reduced computational demand (e.g., fewer heads, layers, and tokens), at an approximate cost of O(N), where N is the number of input tokens. Results span reinforcement learning (e.g., CarRacing in a high-dimensional visual setup), computer vision, and natural language question answering.
Neural-Symbolic Collaborative Distillation: Advancing Small Language Models for Complex Reasoning Tasks
In this paper, we propose Neural-Symbolic Collaborative Distillation (NesyCD), a novel knowledge distillation method for learning the complex reasoning abilities of Large Language Models (LLMs, e.g., \textgreater 13B). We argue that complex reasoning tasks are difficult for Small Language Models (SLMs, e.g., leq 7B), as these tasks demand not only general cognitive abilities but also specialized knowledge, which is often sparse and difficult for these neural-based SLMs to effectively capture. Therefore, NesyCD distills the general capabilities and specialized knowledge in LLMs using different manners. On the one hand, we distill only general abilities from teacher LLMs into the student SLMs of parameterized neural networks. On the other hand, for the specialized abilities and uncommon knowledge of a complex reasoning task, we employ a symbolic knowledge distillation approach to obtain and store the specialized knowledge within a symbolic knowledge base (KB). By decoupling general and specialized capabilities, the proposed NesyCD can achieve superior performance cost-effectively, utilizing smaller models and blending parameterized neural networks with symbolic KB. Moreover, the specialized KB generalizes well and is comprehended and manipulated by humans. Our experiments show that NesyCD significantly boosts SLMs' complex reasoning performance on in-domain (BBH, GSM8K) and out-of-domain (AGIEval, ARC) datasets. Notably, our approach enabled the LLaMA3-8B and Qwen2-7B to surpass GPT-3.5-turbo in performance and come close to matching LLaMA3-70B, despite the latter having nine times more parameters. Our code will be available at https://github.com/Xnhyacinth/NesyCD.
How Programming Concepts and Neurons Are Shared in Code Language Models
Several studies have explored the mechanisms of large language models (LLMs) in coding tasks, but most have focused on programming languages (PLs) in a monolingual setting. In this paper, we investigate the relationship between multiple PLs and English in the concept space of LLMs. We perform a few-shot translation task on 21 PL pairs using two Llama-based models. By decoding the embeddings of intermediate layers during this task, we observe that the concept space is closer to English (including PL keywords) and assigns high probabilities to English tokens in the second half of the intermediate layers. We analyze neuron activations for 11 PLs and English, finding that while language-specific neurons are primarily concentrated in the bottom layers, those exclusive to each PL tend to appear in the top layers. For PLs that are highly aligned with multiple other PLs, identifying language-specific neurons is not feasible. These PLs also tend to have a larger keyword set than other PLs and are closer to the model's concept space regardless of the input/output PL in the translation task. Our findings provide insights into how LLMs internally represent PLs, revealing structural patterns in the model's concept space. Code is available at https://github.com/cisnlp/code-specific-neurons.
The Tensor Brain: Semantic Decoding for Perception and Memory
We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.
Understanding Gated Neurons in Transformers from Their Input-Output Functionality
Interpretability researchers have attempted to understand MLP neurons of language models based on both the contexts in which they activate and their output weight vectors. They have paid little attention to a complementary aspect: the interactions between input and output. For example, when neurons detect a direction in the input, they might add much the same direction to the residual stream ("enrichment neurons") or reduce its presence ("depletion neurons"). We address this aspect by examining the cosine similarity between input and output weights of a neuron. We apply our method to 12 models and find that enrichment neurons dominate in early-middle layers whereas later layers tend more towards depletion. To explain this finding, we argue that enrichment neurons are largely responsible for enriching concept representations, one of the first steps of factual recall. Our input-output perspective is a complement to activation-dependent analyses and to approaches that treat input and output separately.
Revealing and Mitigating Over-Attention in Knowledge Editing
Large Language Models have demonstrated superior performance across a wide range of tasks, but they still exhibit undesirable errors due to incorrect knowledge learned from the training data. To avoid this, knowledge editing methods emerged to precisely edit the specific model knowledge via efficiently modifying a very small percentage of parameters. % However, those methods can lead to the problem of Specificity Failure: when the content related to the edited knowledge occurs in the context, it can inadvertently corrupt other pre-existing knowledge. However, those methods can lead to the problem of Specificity Failure, where the existing knowledge and capabilities are severely degraded due to editing. Our preliminary indicates that Specificity Failure primarily stems from the model's attention heads assigning excessive attention scores to entities related to the edited knowledge, thereby unduly focusing on specific snippets within the context, which we denote as the Attention Drift phenomenon. To mitigate such Attention Drift issue, we introduce a simple yet effective method Selective Attention Drift Restriction}(SADR), which introduces an additional regularization term during the knowledge editing process to restrict changes in the attention weight distribution, thereby preventing undue focus on the edited entity. Experiments on five frequently used strong LLMs demonstrate the effectiveness of our method, where SADR can significantly mitigate Specificity Failure in the predominant knowledge editing tasks.
Repurposing the scientific literature with vision-language models
Leading vision-language models (VLMs) are trained on general Internet content, overlooking scientific journals' rich, domain-specific knowledge. Training on specialty-specific literature could yield high-performance, task-specific tools, enabling generative AI to match generalist models in specialty publishing, educational, and clinical tasks. We created NeuroPubs, a multimodal dataset of 23,000 Neurosurgery Publications articles (134M words, 78K image-caption pairs). Using NeuroPubs, VLMs generated publication-ready graphical abstracts (70% of 100 abstracts) and board-style questions indistinguishable from human-written ones (54% of 89,587 questions). We used these questions to train CNS-Obsidian, a 34B-parameter VLM. In a blinded, randomized controlled trial, our model demonstrated non-inferiority to then state-of-the-art GPT-4o in neurosurgical differential diagnosis (clinical utility, 40.62% upvotes vs. 57.89%, p=0.1150; accuracy, 59.38% vs. 65.79%, p=0.3797). Our pilot study demonstrates how training generative AI models on specialty-specific journal content - without large-scale internet data - results in high-performance academic and clinical tools, enabling domain-tailored AI across diverse fields.
The LLM Language Network: A Neuroscientific Approach for Identifying Causally Task-Relevant Units
Large language models (LLMs) exhibit remarkable capabilities on not just language tasks, but also various tasks that are not linguistic in nature, such as logical reasoning and social inference. In the human brain, neuroscience has identified a core language system that selectively and causally supports language processing. We here ask whether similar specialization for language emerges in LLMs. We identify language-selective units within 18 popular LLMs, using the same localization approach that is used in neuroscience. We then establish the causal role of these units by demonstrating that ablating LLM language-selective units -- but not random units -- leads to drastic deficits in language tasks. Correspondingly, language-selective LLM units are more aligned to brain recordings from the human language system than random units. Finally, we investigate whether our localization method extends to other cognitive domains: while we find specialized networks in some LLMs for reasoning and social capabilities, there are substantial differences among models. These findings provide functional and causal evidence for specialization in large language models, and highlight parallels with the functional organization in the brain.
How do Large Language Models Handle Multilingualism?
Large language models (LLMs) demonstrate remarkable performance across a spectrum of languages. In this work, we delve into the question: How do LLMs handle multilingualism? We introduce a framework that depicts LLMs' processing of multilingual inputs: In the first several layers, LLMs understand the question, converting multilingual inputs into English to facilitate the task-solving phase. In the intermediate layers, LLMs engage in problem-solving by thinking in English and incorporating multilingual knowledge to obtain factual content, leveraging the self-attention and feed-forward structures, respectively. In the last several layers, LLMs generate responses that align with the original language of the query. In addition, we investigate the existence of language-specific neurons when processing a certain language. To detect neurons activated by the input language, even without labels, we innovatively design a Parallel Language specific Neuron Detection (PLND) method that effectively measures the significance of neurons when handling multilingual inputs. By comprehensive ablation analysis through deactivating neurons of different layers and structures, we verify the framework that we propose. Additionally, we demonstrate that we can utilize such a framework to effectively enhance the multilingual ability with much less training effort.
Does Knowledge Localization Hold True? Surprising Differences Between Entity and Relation Perspectives in Language Models
Large language models encapsulate knowledge and have demonstrated superior performance on various natural language processing tasks. Recent studies have localized this knowledge to specific model parameters, such as the MLP weights in intermediate layers. This study investigates the differences between entity and relational knowledge through knowledge editing. Our findings reveal that entity and relational knowledge cannot be directly transferred or mapped to each other. This result is unexpected, as logically, modifying the entity or the relation within the same knowledge triplet should yield equivalent outcomes. To further elucidate the differences between entity and relational knowledge, we employ causal analysis to investigate how relational knowledge is stored in pre-trained models. Contrary to prior research suggesting that knowledge is stored in MLP weights, our experiments demonstrate that relational knowledge is also significantly encoded in attention modules. This insight highlights the multifaceted nature of knowledge storage in language models, underscoring the complexity of manipulating specific types of knowledge within these models.
Does Pre-training Induce Systematic Inference? How Masked Language Models Acquire Commonsense Knowledge
Transformer models pre-trained with a masked-language-modeling objective (e.g., BERT) encode commonsense knowledge as evidenced by behavioral probes; however, the extent to which this knowledge is acquired by systematic inference over the semantics of the pre-training corpora is an open question. To answer this question, we selectively inject verbalized knowledge into the minibatches of a BERT model during pre-training and evaluate how well the model generalizes to supported inferences. We find generalization does not improve over the course of pre-training, suggesting that commonsense knowledge is acquired from surface-level, co-occurrence patterns rather than induced, systematic reasoning.
Does Time Have Its Place? Temporal Heads: Where Language Models Recall Time-specific Information
While the ability of language models to elicit facts has been widely investigated, how they handle temporally changing facts remains underexplored. We discover Temporal Heads, specific attention heads primarily responsible for processing temporal knowledge through circuit analysis. We confirm that these heads are present across multiple models, though their specific locations may vary, and their responses differ depending on the type of knowledge and its corresponding years. Disabling these heads degrades the model's ability to recall time-specific knowledge while maintaining its general capabilities without compromising time-invariant and question-answering performances. Moreover, the heads are activated not only numeric conditions ("In 2004") but also textual aliases ("In the year ..."), indicating that they encode a temporal dimension beyond simple numerical representation. Furthermore, we expand the potential of our findings by demonstrating how temporal knowledge can be edited by adjusting the values of these heads.
Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs
Large language models (LLMs), such as ChatGPT and GPT-4, are versatile and can solve different tasks due to their emergent ability and generalizability. However, LLMs sometimes lack domain-specific knowledge to perform tasks, which would also cause hallucination during inference. In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases, aiming to mitigate the problem of lacking domain-specific knowledge. However, incorporating additional modules: 1) would need retraining additional modules when encountering novel domains; 2) would become a bottleneck since LLMs' strong abilities are not fully utilized for retrieval. In this paper, we propose a paradigm, termed Knowledge Solver (KSL), to teach LLMs to search for essential knowledge from external knowledge bases by harnessing their own strong generalizability. Specifically, we design a simple yet effective prompt to transform retrieval into a multi-hop decision sequence, which empowers LLMs with searching knowledge ability in zero-shot manner. Additionally, KSL is able to provide complete retrieval paths and therefore increase explainability of LLMs' reasoning processes. We conduct experiments on three datasets: CommonsenseQA, OpenbookQA, and MedQA-USMLE, and found that our approach improves LLM baseline performance by a relatively large margin.
Knowledge Homophily in Large Language Models
Large Language Models (LLMs) have been increasingly studied as neural knowledge bases for supporting knowledge-intensive applications such as question answering and fact checking. However, the structural organization of their knowledge remains unexplored. Inspired by cognitive neuroscience findings, such as semantic clustering and priming, where knowing one fact increases the likelihood of recalling related facts, we investigate an analogous knowledge homophily pattern in LLMs. To this end, we map LLM knowledge into a graph representation through knowledge checking at both the triplet and entity levels. After that, we analyze the knowledgeability relationship between an entity and its neighbors, discovering that LLMs tend to possess a similar level of knowledge about entities positioned closer in the graph. Motivated by this homophily principle, we propose a Graph Neural Network (GNN) regression model to estimate entity-level knowledgeability scores for triplets by leveraging their neighborhood scores. The predicted knowledgeability enables us to prioritize checking less well-known triplets, thereby maximizing knowledge coverage under the same labeling budget. This not only improves the efficiency of active labeling for fine-tuning to inject knowledge into LLMs but also enhances multi-hop path retrieval in reasoning-intensive question answering.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks. Although an essential element of modern AI, LMs are also inherently limited in a number of ways. We discuss these limitations and how they can be avoided by adopting a systems approach. Conceptualizing the challenge as one that involves knowledge and reasoning in addition to linguistic processing, we define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules. We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL, pronounced "miracle") system, some of the technical challenges in implementing it, and Jurassic-X, AI21 Labs' MRKL system implementation.
Disentangling Recall and Reasoning in Transformer Models through Layer-wise Attention and Activation Analysis
Transformer-based language models excel at both recall (retrieving memorized facts) and reasoning (performing multi-step inference), but whether these abilities rely on distinct internal mechanisms remains unclear. Distinguishing recall from reasoning is crucial for predicting model generalization, designing targeted evaluations, and building safer interventions that affect one ability without disrupting the other.We approach this question through mechanistic interpretability, using controlled datasets of synthetic linguistic puzzles to probe transformer models at the layer, head, and neuron level. Our pipeline combines activation patching and structured ablations to causally measure component contributions to each task type. Across two model families (Qwen and LLaMA), we find that interventions on distinct layers and attention heads lead to selective impairments: disabling identified "recall circuits" reduces fact-retrieval accuracy by up to 15\% while leaving reasoning intact, whereas disabling "reasoning circuits" reduces multi-step inference by a comparable margin. At the neuron level, we observe task-specific firing patterns, though these effects are less robust, consistent with neuronal polysemanticity.Our results provide the first causal evidence that recall and reasoning rely on separable but interacting circuits in transformer models. These findings advance mechanistic interpretability by linking circuit-level structure to functional specialization and demonstrate how controlled datasets and causal interventions can yield mechanistic insights into model cognition, informing safer deployment of large language models.
Augmenting LLMs with Knowledge: A survey on hallucination prevention
Large pre-trained language models have demonstrated their proficiency in storing factual knowledge within their parameters and achieving remarkable results when fine-tuned for downstream natural language processing tasks. Nonetheless, their capacity to access and manipulate knowledge with precision remains constrained, resulting in performance disparities on knowledge-intensive tasks when compared to task-specific architectures. Additionally, the challenges of providing provenance for model decisions and maintaining up-to-date world knowledge persist as open research frontiers. To address these limitations, the integration of pre-trained models with differentiable access mechanisms to explicit non-parametric memory emerges as a promising solution. This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources, including external knowledge bases and search engines. While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules to augment their contextual processing capabilities, departing from the conventional language modeling paradigm. Through an exploration of current advancements in augmenting large language models with knowledge, this work concludes that this emerging research direction holds the potential to address prevalent issues in traditional LMs, such as hallucinations, un-grounded responses, and scalability challenges.
ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall
Large Language Models (LLMs) require efficient knowledge editing (KE) to update factual information, yet existing methods exhibit significant performance decay in multi-hop factual recall. This failure is particularly acute when edits involve intermediate implicit subjects within reasoning chains. Through causal analysis, we reveal that this limitation stems from an oversight of how chained knowledge is dynamically represented and utilized at the neuron level. We discover that during multi hop reasoning, implicit subjects function as query neurons, which sequentially activate corresponding value neurons across transformer layers to accumulate information toward the final answer, a dynamic prior KE work has overlooked. Guided by this insight, we propose ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall, a framework that leverages neuron-level attribution to identify and edit these critical query-value (Q-V) pathways. ACE provides a mechanistically grounded solution for multi-hop KE, empirically outperforming state-of-the-art methods by 9.44% on GPT-J and 37.46% on Qwen3-8B. Our analysis further reveals more fine-grained activation patterns in Qwen3 and demonstrates that the semantic interpretability of value neurons is orchestrated by query-driven accumulation. These findings establish a new pathway for advancing KE capabilities based on the principled understanding of internal reasoning mechanisms.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
Speech Representation Analysis based on Inter- and Intra-Model Similarities
Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model similarity, independent of any external annotation and task-specific constraint. We examine different SSL models varying their training paradigm -- Contrastive (Wav2Vec2.0) and Predictive models (HuBERT); and model sizes (base and large). We explore these models on different levels of localization/distributivity of information including (i) individual neurons; (ii) layer representation; (iii) attention weights and (iv) compare the representations with their finetuned counterparts.Our results highlight that these models converge to similar representation subspaces but not to similar neuron-localized concepts\footnote{A concept represents a coherent fragment of knowledge, such as ``a class containing certain objects as elements, where the objects have certain properties. We made the code publicly available for facilitating further research, we publicly released our code.
H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons in LLMs
Large language models (LLMs) frequently generate hallucinations -- plausible but factually incorrect outputs -- undermining their reliability. While prior work has examined hallucinations from macroscopic perspectives such as training data and objectives, the underlying neuron-level mechanisms remain largely unexplored. In this paper, we conduct a systematic investigation into hallucination-associated neurons (H-Neurons) in LLMs from three perspectives: identification, behavioral impact, and origins. Regarding their identification, we demonstrate that a remarkably sparse subset of neurons (less than 0.1% of total neurons) can reliably predict hallucination occurrences, with strong generalization across diverse scenarios. In terms of behavioral impact, controlled interventions reveal that these neurons are causally linked to over-compliance behaviors. Concerning their origins, we trace these neurons back to the pre-trained base models and find that these neurons remain predictive for hallucination detection, indicating they emerge during pre-training. Our findings bridge macroscopic behavioral patterns with microscopic neural mechanisms, offering insights for developing more reliable LLMs.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks
Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
A Mathematical Approach to Constraining Neural Abstraction and the Mechanisms Needed to Scale to Higher-Order Cognition
Artificial intelligence has made great strides in the last decade but still falls short of the human brain, the best-known example of intelligence. Not much is known of the neural processes that allow the brain to make the leap to achieve so much from so little beyond its ability to create knowledge structures that can be flexibly and dynamically combined, recombined, and applied in new and novel ways. This paper proposes a mathematical approach using graph theory and spectral graph theory, to hypothesize how to constrain these neural clusters of information based on eigen-relationships. This same hypothesis is hierarchically applied to scale up from the smallest to the largest clusters of knowledge that eventually lead to model building and reasoning.
Language Specific Knowledge: Do Models Know Better in X than in English?
Code-switching is a common phenomenon of alternating between different languages in the same utterance, thought, or conversation. We posit that humans code-switch because they feel more comfortable talking about certain topics and domains in one language than another. With the rise of knowledge-intensive language models, we ask ourselves the next, natural question: Could models hold more knowledge on some topics in some language X? More importantly, could we improve reasoning by changing the language that reasoning is performed in? We coin the term Language Specific Knowledge (LSK) to represent this phenomenon. As ethnic cultures tend to develop alongside different languages, we employ culture-specific datasets (that contain knowledge about cultural and social behavioral norms). We find that language models can perform better when using chain-of-thought reasoning in some languages other than English, sometimes even better in low-resource languages. Paired with previous works showing that semantic similarity does not equate to representational similarity, we hypothesize that culturally specific texts occur more abundantly in corresponding languages, enabling specific knowledge to occur only in specific "expert" languages. Motivated by our initial results, we design a simple methodology called LSKExtractor to benchmark the language-specific knowledge present in a language model and, then, exploit it during inference. We show our results on various models and datasets, showing an average relative improvement of 10% in accuracy. Our research contributes to the open-source development of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed.
Entity-Based Knowledge Conflicts in Question Answering
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora. It remains a challenging problem to explain the underlying mechanisms by which LLMs process multilingual texts. In this paper, we delve into the composition of Transformer architectures in LLMs to pinpoint language-specific regions. Specially, we propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs. Based on LAPE, we conduct comprehensive experiments on two representative LLMs, namely LLaMA-2 and BLOOM. Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons, primarily situated in the models' top and bottom layers. Furthermore, we showcase the feasibility to "steer" the output language of LLMs by selectively activating or deactivating language-specific neurons. Our research provides important evidence to the understanding and exploration of the multilingual capabilities of LLMs.
Neuralizer: General Neuroimage Analysis without Re-Training
Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. Yet, when presented with a new task or a dataset with different visual characteristics, practitioners most often need to train a new model, or fine-tune an existing one. This is a time-consuming process that poses a substantial barrier for the thousands of neuroscientists and clinical researchers who often lack the resources or machine-learning expertise to train deep learning models. In practice, this leads to a lack of adoption of deep learning, and neuroscience tools being dominated by classical frameworks. We introduce Neuralizer, a single model that generalizes to previously unseen neuroimaging tasks and modalities without the need for re-training or fine-tuning. Tasks do not have to be known a priori, and generalization happens in a single forward pass during inference. The model can solve processing tasks across multiple image modalities, acquisition methods, and datasets, and generalize to tasks and modalities it has not been trained on. Our experiments on coronal slices show that when few annotated subjects are available, our multi-task network outperforms task-specific baselines without training on the task.
TRIBE: TRImodal Brain Encoder for whole-brain fMRI response prediction
Historically, neuroscience has progressed by fragmenting into specialized domains, each focusing on isolated modalities, tasks, or brain regions. While fruitful, this approach hinders the development of a unified model of cognition. Here, we introduce TRIBE, the first deep neural network trained to predict brain responses to stimuli across multiple modalities, cortical areas and individuals. By combining the pretrained representations of text, audio and video foundational models and handling their time-evolving nature with a transformer, our model can precisely model the spatial and temporal fMRI responses to videos, achieving the first place in the Algonauts 2025 brain encoding competition with a significant margin over competitors. Ablations show that while unimodal models can reliably predict their corresponding cortical networks (e.g. visual or auditory networks), they are systematically outperformed by our multimodal model in high-level associative cortices. Currently applied to perception and comprehension, our approach paves the way towards building an integrative model of representations in the human brain. Our code is available at https://github.com/facebookresearch/algonauts-2025.
The Road to Generalizable Neuro-Symbolic Learning Should be Paved with Foundation Models
Neuro-symbolic learning was proposed to address challenges with training neural networks for complex reasoning tasks with the added benefits of interpretability, reliability, and efficiency. Neuro-symbolic learning methods traditionally train neural models in conjunction with symbolic programs, but they face significant challenges that limit them to simplistic problems. On the other hand, purely-neural foundation models now reach state-of-the-art performance through prompting rather than training, but they are often unreliable and lack interpretability. Supplementing foundation models with symbolic programs, which we call neuro-symbolic prompting, provides a way to use these models for complex reasoning tasks. Doing so raises the question: What role does specialized model training as part of neuro-symbolic learning have in the age of foundation models? To explore this question, we highlight three pitfalls of traditional neuro-symbolic learning with respect to the compute, data, and programs leading to generalization problems. This position paper argues that foundation models enable generalizable neuro-symbolic solutions, offering a path towards achieving the original goals of neuro-symbolic learning without the downsides of training from scratch.
Rote Learning Considered Useful: Generalizing over Memorized Data in LLMs
Rote learning is a memorization technique based on repetition. It is commonly believed to hinder generalization by encouraging verbatim memorization rather than deeper understanding. This insight holds for even learning factual knowledge that inevitably requires a certain degree of memorization. In this work, we demonstrate that LLMs can be trained to generalize from rote memorized data. We introduce a two-phase memorize-then-generalize framework, where the model first rote memorizes factual subject-object associations using a semantically meaningless token and then learns to generalize by fine-tuning on a small set of semantically meaningful prompts. Extensive experiments over 8 LLMs show that the models can reinterpret rote memorized data through the semantically meaningful prompts, as evidenced by the emergence of structured, semantically aligned latent representations between the two. This surprising finding opens the door to both effective and efficient knowledge injection and possible risks of repurposing the memorized data for malicious usage.
Filtering with Self-Attention and Storing with MLP: One-Layer Transformers Can Provably Acquire and Extract Knowledge
Modern large language models excel in knowledge-intensive tasks, yet how transformers acquire (store) knowledge during pre-training and extract (retrieve) it during post-fine-tuning inference remains theoretically opaque. While prior theoretical work has begun to investigate these questions through the analysis of training dynamics, such studies are limited to single-layer, attention-only architectures. However, most existing studies suggest that MLPs are the most contributing components for storing knowledge in transformer-based language models. Meanwhile, our empirical investigations reveal that such simplified models, when trained using standard next-token prediction objectives, may be incapable of acquiring or extracting factual knowledge. To overcome this limitation, we introduce a tractable one-layer transformer framework that crucially incorporates both self-attention and MLP modules. By tracking its gradient dynamics, we establish convergence and generalization guarantees that illuminate the ability of knowledge acquisition and extraction. We prove that 1) Transformers can achieve near-optimal training loss during pre-training, signifying effective knowledge acquisition; 2) With a large fine-tuning dataset and specific data multiplicity conditions met, transformers can achieve low generalization error when tested on factual knowledge learned during pre-training but not reinforced during the fine-tuning, indicating successful knowledge extraction; 3) When the conditions are not satisfied, transformers exhibit high generalization loss, resulting in hallucinations. Our analysis includes both full fine-tuning and low-rank fine-tuning. Furthermore, our analysis offers theoretical insights into several pertinent empirical phenomena, such as the role of learning rate schedules. Experiments on synthetic and real-world PopQA datasets with GPT-2 and Llama-3.2-1B validate our results.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge remain open research problems. Pre-trained models with a differentiable access mechanism to explicit non-parametric memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) -- models which combine pre-trained parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks, outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
NeuroComparatives: Neuro-Symbolic Distillation of Comparative Knowledge
Comparative knowledge (e.g., steel is stronger and heavier than styrofoam) is an essential component of our world knowledge, yet understudied in prior literature. In this paper, we harvest the dramatic improvements in knowledge capabilities of language models into a large-scale comparative knowledge base. While the ease of acquisition of such comparative knowledge is much higher from extreme-scale models like GPT-4, compared to their considerably smaller and weaker counterparts such as GPT-2, not even the most powerful models are exempt from making errors. We thus ask: to what extent are models at different scales able to generate valid and diverse comparative knowledge? We introduce NeuroComparatives, a novel framework for comparative knowledge distillation overgenerated from language models such as GPT-variants and LLaMA, followed by stringent filtering of the generated knowledge. Our framework acquires comparative knowledge between everyday objects, producing a corpus of up to 8.8M comparisons over 1.74M entity pairs - 10X larger and 30% more diverse than existing resources. Moreover, human evaluations show that NeuroComparatives outperform existing resources in terms of validity (up to 32% absolute improvement). Our acquired NeuroComparatives leads to performance improvements on five downstream tasks. We find that neuro-symbolic manipulation of smaller models offers complementary benefits to the currently dominant practice of prompting extreme-scale language models for knowledge distillation.
RARE: Retrieval-Augmented Reasoning Modeling
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving, posing significant challenges for large language models (LLMs) that struggle with knowledge hallucination and inadequate reasoning capabilities under constrained parameter budgets. Inspired by Bloom's Taxonomy in educational theory, we propose Retrieval-Augmented Reasoning Modeling (RARE), a novel paradigm that decouples knowledge storage from reasoning optimization. RARE externalizes domain knowledge to retrievable sources and internalizes domain-specific reasoning patterns during training. Specifically, by injecting retrieved knowledge into training prompts with masked losses, RARE transforms learning objectives from rote memorization to contextualized reasoning. It enables models to bypass parameter-intensive memorization and prioritize the development of higher-order cognitive processes. Extensive experiments demonstrate that lightweight RARE-trained models (e.g., Llama-3.1-8B) could achieve state-of-the-art performance, surpassing retrieval-augmented GPT-4 and DeepSeek-R1 up to approximately 20\% accuracy. RARE establishes a paradigm shift where maintainable external knowledge bases synergize with compact, reasoning-optimized models, collectively driving more scalable domain-specific intelligence.
Cognition is All You Need -- The Next Layer of AI Above Large Language Models
Recent studies of the applications of conversational AI tools, such as chatbots powered by large language models, to complex real-world knowledge work have shown limitations related to reasoning and multi-step problem solving. Specifically, while existing chatbots simulate shallow reasoning and understanding they are prone to errors as problem complexity increases. The failure of these systems to address complex knowledge work is due to the fact that they do not perform any actual cognition. In this position paper, we present Cognitive AI, a higher-level framework for implementing programmatically defined neuro-symbolic cognition above and outside of large language models. Specifically, we propose a dual-layer functional architecture for Cognitive AI that serves as a roadmap for AI systems that can perform complex multi-step knowledge work. We propose that Cognitive AI is a necessary precursor for the evolution of higher forms of AI, such as AGI, and specifically claim that AGI cannot be achieved by probabilistic approaches on their own. We conclude with a discussion of the implications for large language models, adoption cycles in AI, and commercial Cognitive AI development.
Memory^3: Language Modeling with Explicit Memory
The training and inference of large language models (LLMs) are together a costly process that transports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human brain, we reduce this cost by equipping LLMs with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG). Conceptually, with most of its knowledge externalized to explicit memories, the LLM can enjoy a smaller parameter size, training cost, and inference cost, all proportional to the amount of remaining "abstract knowledge". As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs as well as RAG models, and maintains higher decoding speed than RAG. The model is named Memory^3, since explicit memory is the third form of memory in LLMs after implicit memory (model parameters) and working memory (context key-values). We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable and a two-stage pretraining scheme that facilitates memory formation.
Deep neural networks as nested dynamical systems
There is an analogy that is often made between deep neural networks and actual brains, suggested by the nomenclature itself: the "neurons" in deep neural networks should correspond to neurons (or nerve cells, to avoid confusion) in the brain. We claim, however, that this analogy doesn't even type check: it is structurally flawed. In agreement with the slightly glib summary of Hebbian learning as "cells that fire together wire together", this article makes the case that the analogy should be different. Since the "neurons" in deep neural networks are managing the changing weights, they are more akin to the synapses in the brain; instead, it is the wires in deep neural networks that are more like nerve cells, in that they are what cause the information to flow. An intuition that nerve cells seem like more than mere wires is exactly right, and is justified by a precise category-theoretic analogy which we will explore in this article. Throughout, we will continue to highlight the error in equating artificial neurons with nerve cells by leaving "neuron" in quotes or by calling them artificial neurons. We will first explain how to view deep neural networks as nested dynamical systems with a very restricted sort of interaction pattern, and then explain a more general sort of interaction for dynamical systems that is useful throughout engineering, but which fails to adapt to changing circumstances. As mentioned, an analogy is then forced upon us by the mathematical formalism in which they are both embedded. We call the resulting encompassing generalization deeply interacting learning systems: they have complex interaction as in control theory, but adaptation to circumstances as in deep neural networks.
Maze Learning using a Hyperdimensional Predictive Processing Cognitive Architecture
We present the COGnitive Neural GENerative system (CogNGen), a cognitive architecture that combines two neurobiologically-plausible, computational models: predictive processing and hyperdimensional/vector-symbolic models. We draw inspiration from architectures such as ACT-R and Spaun/Nengo. CogNGen is in broad agreement with these, providing a level of detail between ACT-R's high-level symbolic description of human cognition and Spaun's low-level neurobiological description, furthermore creating the groundwork for designing agents that learn continually from diverse tasks and model human performance at larger scales than what is possible with current systems. We test CogNGen on four maze-learning tasks, including those that test memory and planning, and find that CogNGen matches performance of deep reinforcement learning models and exceeds on a task designed to test memory.
Circuit Component Reuse Across Tasks in Transformer Language Models
Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.
Artificial Kuramoto Oscillatory Neurons
It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations.
Context Copying Modulation: The Role of Entropy Neurons in Managing Parametric and Contextual Knowledge Conflicts
The behavior of Large Language Models (LLMs) when facing contextual information that conflicts with their internal parametric knowledge is inconsistent, with no generally accepted explanation for the expected outcome distribution. Recent work has identified in autoregressive transformer models a class of neurons -- called entropy neurons -- that produce a significant effect on the model output entropy while having an overall moderate impact on the ranking of the predicted tokens. In this paper, we investigate the preliminary claim that these neurons are involved in inhibiting context copying behavior in transformers by looking at their role in resolving conflicts between contextual and parametric information. We show that entropy neurons are responsible for suppressing context copying across a range of LLMs, and that ablating them leads to a significant change in the generation process. These results enhance our understanding of the internal dynamics of LLMs when handling conflicting information.
Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact
Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.
Towards Understanding Grokking: An Effective Theory of Representation Learning
We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. We find on transformers the grokking phase stays closer to the memorization phase (compared to the comprehension phase), leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.
Core Knowledge Deficits in Multi-Modal Language Models
While Multimodal Large Language Models (MLLMs) demonstrate impressive abilities over high level perception and reasoning, their robustness in the wild still lags behind humans and exhibits diminished efficacy on simple tasks that are intuitive for humans. We examine the hypothesis that these deficiencies stem from the absence of core knowledge, rudimentary cognitive abilities innate to humans from early childhood. To probe core knowledge representation in MLLMs, we draw from developmental cognitive sciences and develop a large-scale benchmark, CoreCognition dataset, encompassing 12 core cognitive concepts. We evaluate 219 models with 10 different prompts, leading to a total of 2409 data points for analysis. Our findings reveal core knowledge deficits in early developed core abilities while models demonstrate human comparable performance in high level cognition. Moreover, we find that low level abilities show little to no scaling, in stark contrast to high level abilities. Finally, we introduce an evaluation technique, Concept Hacking, through which we demonstrate that MLLMs do not genuinely advance toward core knowledge but instead rely on illusory understanding and shortcut learning as they scale. Website with this https://growing-ai-like-a-child.github.io/{link}.
Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals
Invasive brain-computer interfaces have garnered significant attention due to their high performance. The current intracranial stereoElectroEncephaloGraphy (sEEG) foundation models typically build univariate representations based on a single channel. Some of them further use Transformer to model the relationship among channels. However, due to the locality and specificity of brain computation, their performance on more difficult tasks, e.g., speech decoding, which demands intricate processing in specific brain regions, is yet to be fully investigated. We hypothesize that building multi-variate representations within certain brain regions can better capture the specific neural processing. To explore this hypothesis, we collect a well-annotated Chinese word-reading sEEG dataset, targeting language-related brain networks, over 12 subjects. Leveraging this benchmark dataset, we developed the Du-IN model that can extract contextual embeddings from specific brain regions through discrete codebook-guided mask modeling. Our model achieves SOTA performance on the downstream 61-word classification task, surpassing all baseline models. Model comparison and ablation analysis reveal that our design choices, including (i) multi-variate representation by fusing channels in vSMC and STG regions and (ii) self-supervision by discrete codebook-guided mask modeling, significantly contribute to these performances. Collectively, our approach, inspired by neuroscience findings, capitalizing on multi-variate neural representation from specific brain regions, is suitable for invasive brain modeling. It marks a promising neuro-inspired AI approach in BCI.
Predictive representations: building blocks of intelligence
Adaptive behavior often requires predicting future events. The theory of reinforcement learning prescribes what kinds of predictive representations are useful and how to compute them. This paper integrates these theoretical ideas with work on cognition and neuroscience. We pay special attention to the successor representation (SR) and its generalizations, which have been widely applied both as engineering tools and models of brain function. This convergence suggests that particular kinds of predictive representations may function as versatile building blocks of intelligence.
Neural-Symbolic Recursive Machine for Systematic Generalization
Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.
Neurons in Large Language Models: Dead, N-gram, Positional
We analyze a family of large language models in such a lightweight manner that can be done on a single GPU. Specifically, we focus on the OPT family of models ranging from 125m to 66b parameters and rely only on whether an FFN neuron is activated or not. First, we find that the early part of the network is sparse and represents many discrete features. Here, many neurons (more than 70% in some layers of the 66b model) are "dead", i.e. they never activate on a large collection of diverse data. At the same time, many of the alive neurons are reserved for discrete features and act as token and n-gram detectors. Interestingly, their corresponding FFN updates not only promote next token candidates as could be expected, but also explicitly focus on removing the information about triggering them tokens, i.e., current input. To the best of our knowledge, this is the first example of mechanisms specialized at removing (rather than adding) information from the residual stream. With scale, models become more sparse in a sense that they have more dead neurons and token detectors. Finally, some neurons are positional: them being activated or not depends largely (or solely) on position and less so (or not at all) on textual data. We find that smaller models have sets of neurons acting as position range indicators while larger models operate in a less explicit manner.
Few-shot Continual Learning: a Brain-inspired Approach
It is an important yet challenging setting to continually learn new tasks from a few examples. Although numerous efforts have been devoted to either continual learning or few-shot learning, little work has considered this new setting of few-shot continual learning (FSCL), which needs to minimize the catastrophic forgetting to the old tasks and gradually improve the ability of few-shot generalization. In this paper, we provide a first systematic study on FSCL and present an effective solution with deep neural networks. Our solution is based on the observation that continual learning of a task sequence inevitably interferes few-shot generalization, which makes it highly nontrivial to extend few-shot learning strategies to continual learning scenarios. We draw inspirations from the robust brain system and develop a method that (1) interdependently updates a pair of fast / slow weights for continual learning and few-shot learning to disentangle their divergent objectives, inspired by the biological model of meta-plasticity and fast / slow synapse; and (2) applies a brain-inspired two-step consolidation strategy to learn a task sequence without forgetting in the fast weights while improve generalization without overfitting in the slow weights. Extensive results on various benchmarks show that our method achieves a better performance than joint training of all the tasks ever seen. The ability of few-shot generalization is also substantially improved from incoming tasks and examples.
Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Technical Solutions
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
Sparse Subnetwork Enhancement for Underrepresented Languages in Large Language Models
Large language models exhibit uneven performance across languages, with substantial gaps between high- and low-resource languages. We present a framework for enhancing monolingual capabilities of LLMs in underrepresented languages while preserving their general-purpose performance through targeted fine-tuning of language-specific subnetworks. Our approach identifies language-specific neurons using Language Activation Probability Entropy and fine-tunes only the weights associated with these neurons, a dedicated subnetwork, on target-language data. Experiments on Llama-3.1-8B and Mistral-Nemo-12B across 12 mid- and low-resource languages demonstrate that our method consistently outperforms full fine-tuning, FFN-only fine-tuning, LoRA adaptation, and random subset fine-tuning baselines while efficiently updating only up to 1% of model parameters. Beyond performance improvements, we observe enhanced favorable training dynamics, cross-lingual representational alignment, and systematic weight update changes. To facilitate future research, we release language-specific neuron identifications for over 100 languages as well as our adaptation pipeline, offering a cost-effective pathway for adapting state-of-the-art models to underrepresented languages.
When can transformers reason with abstract symbols?
We investigate the capabilities of transformer large language models (LLMs) on relational reasoning tasks involving abstract symbols. Such tasks have long been studied in the neuroscience literature as fundamental building blocks for more complex abilities in programming, mathematics, and verbal reasoning. For (i) regression tasks, we prove that transformers generalize when trained, but require astonishingly large quantities of training data. For (ii) next-token-prediction tasks with symbolic labels, we show an "inverse scaling law": transformers fail to generalize as their embedding dimension increases. For both settings (i) and (ii), we propose subtle transformer modifications which can reduce the amount of data needed by adding two trainable parameters per head.
MMNeuron: Discovering Neuron-Level Domain-Specific Interpretation in Multimodal Large Language Model
Projecting visual features into word embedding space has become a significant fusion strategy adopted by Multimodal Large Language Models (MLLMs). However, its internal mechanisms have yet to be explored. Inspired by multilingual research, we identify domain-specific neurons in multimodal large language models. Specifically, we investigate the distribution of domain-specific neurons and the mechanism of how MLLMs process features from diverse domains. Furthermore, we propose a three-stage framework for language model modules in MLLMs when handling projected image features, and verify this hypothesis using logit lens. Extensive experiments indicate that while current MLLMs exhibit Visual Question Answering (VQA) capability, they may not fully utilize domain-specific information. Manipulating domain-specific neurons properly will result in a 10\% change of accuracy at most, shedding light on the development of cross-domain, all-encompassing MLLMs in the future. Our code will be released upon paper notification.
Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2
Structured width pruning of GLU-MLP layers, guided by the Maximum Absolute Weight (MAW) criterion, reveals a systematic dichotomy in how reducing the expansion ratio affects different model capabilities. While performance on tasks relying on parametric knowledge (e.g., MMLU, GSM8K) and perplexity metrics degrades predictably, instruction-following capabilities improve substantially (+46% to +75% in IFEval for Llama-3.2-1B and 3B models), and multi-step reasoning remains robust (MUSR). This pattern challenges the prevailing assumption that pruning induces uniform degradation. We evaluated seven expansion ratio configurations using comprehensive benchmarks assessing factual knowledge, mathematical reasoning, language comprehension, instruction-following, and truthfulness. Our analysis identifies the expansion ratio as a critical architectural parameter that selectively modulates cognitive capabilities, rather than merely serving as a compression metric. We provide the first systematic characterization of this selective preservation phenomenon. Notably, we document a robust inverse correlation (r = -0.864, p = 0.012 in Llama-3B) between factual knowledge capacity (MMLU) and truthfulness metrics (TruthfulQA-MC2): as knowledge degrades, the model's ability to discriminate misconceptions improves consistently. This connects two previously distinct research areas, demonstrating that MAW-guided width pruning acts as a selective filter, reducing parametric knowledge while preserving or enhancing behavioral alignment. Additionally, we quantify context-dependent efficiency trade-offs: pruned configurations achieve up to 23% reduction in energy consumption (J/token) but incur penalties in single-request latency, whereas batch processing workloads benefit uniformly.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
CoreInfer: Accelerating Large Language Model Inference with Semantics-Inspired Adaptive Sparse Activation
Large language models (LLMs) with billions of parameters have sparked a new wave of exciting AI applications. However, their high computational costs and memory demands during inference pose significant challenges. Adaptive sparse activation inference, which activates only a small number of neurons for each token, offers a novel way to accelerate model inference without degrading performance, showing great potential for resource-constrained hardware devices. Nevertheless, existing methods predict activated neurons based on individual tokens with additional MLP, which involve frequent changes in activation maps and resource calls, limiting the acceleration benefits of sparse activation. In this paper, we introduce CoreInfer, an MLP-free adaptive sparse activation inference method based on sentence-level prediction. Specifically, we propose the concept of sentence-wise core neurons, which refers to the subset of neurons most critical for a given sentence, and empirically demonstrate its effectiveness. To determine the core neurons, we explore the correlation between core neurons and the sentence's semantics. Remarkably, we discovered that core neurons exhibit both stability and similarity in relation to the sentence's semantics -- an insight overlooked by previous studies. Building on this finding, we further design two semantic-based methods for predicting core neurons to fit different input scenarios. In CoreInfer, the core neurons are determined during the pre-filling stage and fixed during the encoding stage, enabling zero-cost sparse inference. We evaluated the model generalization and task generalization of CoreInfer across various models and tasks. Notably, on an NVIDIA TITAN XP GPU, CoreInfer achieved a 10.33 times and 2.72 times speedup compared to the Huggingface implementation and PowerInfer, respectively.
Network-Specific Models for Multimodal Brain Response Prediction
In this work, we present a network-specific approach for predicting brain responses to complex multimodal movies, leveraging the Yeo 7-network parcellation of the Schaefer atlas. Rather than treating the brain as a homogeneous system, we grouped the seven functional networks into four clusters and trained separate multi-subject, multi-layer perceptron (MLP) models for each. This architecture supports cluster-specific optimization and adaptive memory modeling, allowing each model to adjust temporal dynamics and modality weighting based on the functional role of its target network. Our results demonstrate that this clustered strategy significantly enhances prediction accuracy across the 1,000 cortical regions of the Schaefer atlas. The final model achieved an eighth-place ranking in the Algonauts Project 2025 Challenge, with out-of-distribution (OOD) correlation scores nearly double those of the baseline model used in the selection phase. Code is available at https://github.com/Corsi01/algo2025.
You Only Learn One Representation: Unified Network for Multiple Tasks
People ``understand'' the world via vision, hearing, tactile, and also the past experience. Human experience can be learned through normal learning (we call it explicit knowledge), or subconsciously (we call it implicit knowledge). These experiences learned through normal learning or subconsciously will be encoded and stored in the brain. Using these abundant experience as a huge database, human beings can effectively process data, even they were unseen beforehand. In this paper, we propose a unified network to encode implicit knowledge and explicit knowledge together, just like the human brain can learn knowledge from normal learning as well as subconsciousness learning. The unified network can generate a unified representation to simultaneously serve various tasks. We can perform kernel space alignment, prediction refinement, and multi-task learning in a convolutional neural network. The results demonstrate that when implicit knowledge is introduced into the neural network, it benefits the performance of all tasks. We further analyze the implicit representation learnt from the proposed unified network, and it shows great capability on catching the physical meaning of different tasks. The source code of this work is at : https://github.com/WongKinYiu/yolor.
Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time
We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.
Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs
To build an artificial neural network like the biological intelligence system, recent works have unified numerous tasks into a generalist model, which can process various tasks with shared parameters and do not have any task-specific modules. While generalist models achieve promising results on various benchmarks, they have performance degradation on some tasks compared with task-specialized models. In this work, we find that interference among different tasks and modalities is the main factor to this phenomenon. To mitigate such interference, we introduce the Conditional Mixture-of-Experts (Conditional MoEs) to generalist models. Routing strategies under different levels of conditions are proposed to take both the training/inference cost and generalization ability into account. By incorporating the proposed Conditional MoEs, the recently proposed generalist model Uni-Perceiver can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks, e.g., video-text retrieval and video caption. Code and pre-trained generalist models shall be released.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Relational inductive biases, deep learning, and graph networks
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.
Mechanistic Behavior Editing of Language Models
Large Language Models trained on web-scale text acquire language generation abilities that can solve a wide range of tasks, particularly when task knowledge is refined into the generative prior using in-context examples. However, spurious features learned from noisy data hinder their generalizability. Supervised finetuning can introduce task specificity, but introduce data inefficiency. Prior studies indicate that (i) noisy neural circuitries coexist with generalizable ones within LLMs, and (ii) finetuning typically enhances (or suppresses) existing abilities without introducing newer ones. Building upon these, we propose TaRot, a novel method for task adaptation. TaRot intervenes in the neural circuitries using learnable rotation matrices that are optimized using Bayesian Optimization, on labelled samples in the order of standard few-shot prompting examples. Experiments on multiple classification and generation tasks using LLMs of varying sizes reveal the efficacy of TaRot, improving upon both zero- as well as few-shot performance, with average improvements (across models and tasks) of 23.81% and 11.15%, respectively. The source code is available at https://github.com/joykirat18/TaRot
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Confidence Regulation Neurons in Language Models
Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.
How new data permeates LLM knowledge and how to dilute it
Large language models learn and continually learn through the accumulation of gradient-based updates, but how individual pieces of new information affect existing knowledge, leading to both beneficial generalization and problematic hallucination, remains poorly understood. We demonstrate that when learning new information, LLMs exhibit a "priming" effect: learning a new fact can cause the model to inappropriately apply that knowledge in unrelated contexts. To systematically study this phenomenon, we introduce "Outlandish," a carefully curated dataset of 1320 diverse text samples designed to probe how new knowledge permeates through an LLM's existing knowledge base. Using this dataset, we show that the degree of priming after learning new information can be predicted by measuring the token probability of key words before learning. This relationship holds robustly across different model architectures (PALM-2, Gemma, Llama), sizes, and training stages. Finally, we develop two novel techniques to modulate how new knowledge affects existing model behavior: (1) a ``stepping-stone'' text augmentation strategy and (2) an ``ignore-k'' update pruning method. These approaches reduce undesirable priming effects by 50-95\% while preserving the model's ability to learn new information. Our findings provide both empirical insights into how LLMs learn and practical tools for improving the specificity of knowledge insertion in language models. Further materials: https://sunchipsster1.github.io/projects/outlandish/
How do language models learn facts? Dynamics, curricula and hallucinations
Large language models accumulate vast knowledge during pre-training, yet the dynamics governing this acquisition remain poorly understood. This work investigates the learning dynamics of language models on a synthetic factual recall task, uncovering three key findings: First, language models learn in three phases, exhibiting a performance plateau before acquiring precise factual knowledge. Mechanistically, this plateau coincides with the formation of attention-based circuits that support recall. Second, the training data distribution significantly impacts learning dynamics, as imbalanced distributions lead to shorter plateaus. Finally, hallucinations emerge simultaneously with knowledge, and integrating new knowledge into the model through fine-tuning is challenging, as it quickly corrupts its existing parametric memories. Our results emphasize the importance of data distribution in knowledge acquisition and suggest novel data scheduling strategies to accelerate neural network training.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
Unlocking the Potential of Generative AI through Neuro-Symbolic Architectures: Benefits and Limitations
Neuro-symbolic artificial intelligence (NSAI) represents a transformative approach in artificial intelligence (AI) by combining deep learning's ability to handle large-scale and unstructured data with the structured reasoning of symbolic methods. By leveraging their complementary strengths, NSAI enhances generalization, reasoning, and scalability while addressing key challenges such as transparency and data efficiency. This paper systematically studies diverse NSAI architectures, highlighting their unique approaches to integrating neural and symbolic components. It examines the alignment of contemporary AI techniques such as retrieval-augmented generation, graph neural networks, reinforcement learning, and multi-agent systems with NSAI paradigms. This study then evaluates these architectures against comprehensive set of criteria, including generalization, reasoning capabilities, transferability, and interpretability, therefore providing a comparative analysis of their respective strengths and limitations. Notably, the Neuro > Symbolic < Neuro model consistently outperforms its counterparts across all evaluation metrics. This result aligns with state-of-the-art research that highlight the efficacy of such architectures in harnessing advanced technologies like multi-agent systems.
CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they struggle to generalize these updates to multi-hop reasoning tasks that depend on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we observe that current layer-localized KE approaches, such as MEMIT and WISE, which edit only single or a few model layers, struggle to effectively incorporate updated information into these reasoning pathways. To address this limitation, we propose CaKE (Circuit-aware Knowledge Editing), a novel method that enables more effective integration of updated knowledge in LLMs. CaKE leverages strategically curated data, guided by our circuits-based analysis, that enforces the model to utilize the modified knowledge, stimulating the model to develop appropriate reasoning circuits for newly integrated knowledge. Experimental results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks, leading to an average of 20% improvement in multi-hop reasoning accuracy on MQuAKE dataset compared to existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
MemEIC: A Step Toward Continual and Compositional Knowledge Editing
The dynamic nature of information necessitates continuously updating large vision-language models (LVLMs). While recent knowledge editing techniques hint at promising directions, they often focus on editing a single modality (vision or language) in isolation. This prevalent practice neglects the inherent multimodality of LVLMs and the continuous nature of knowledge updates, potentially leading to suboptimal editing outcomes when considering the interplay between modalities and the need for ongoing knowledge refinement. To address these limitations, we propose MemEIC, a novel method for Continual and Compositional Knowledge Editing (CCKE) in LVLMs. MemEIC enables compositional editing of both visual and textual knowledge sequentially. Our approach employs a hybrid external-internal editor featuring a dual external memory for cross-modal evidence retrieval and dual LoRA adapters that facilitate disentangled parameter updates for each modality. A key component is a brain-inspired knowledge connector, activated selectively for compositional reasoning, that integrates information across different modalities. Experiments demonstrate that MemEIC significantly improves performance on complex multimodal questions and effectively preserves prior edits, setting a new benchmark for CCKE in LVLMs.
Need is All You Need: Homeostatic Neural Networks Adapt to Concept Shift
In living organisms, homeostasis is the natural regulation of internal states aimed at maintaining conditions compatible with life. Typical artificial systems are not equipped with comparable regulatory features. Here, we introduce an artificial neural network that incorporates homeostatic features. Its own computing substrate is placed in a needful and vulnerable relation to the very objects over which it computes. For example, artificial neurons performing classification of MNIST digits or Fashion-MNIST articles of clothing may receive excitatory or inhibitory effects, which alter their own learning rate as a direct result of perceiving and classifying the digits. In this scenario, accurate recognition is desirable to the agent itself because it guides decisions to regulate its vulnerable internal states and functionality. Counterintuitively, the addition of vulnerability to a learner does not necessarily impair its performance. On the contrary, self-regulation in response to vulnerability confers benefits under certain conditions. We show that homeostatic design confers increased adaptability under concept shift, in which the relationships between labels and data change over time, and that the greatest advantages are obtained under the highest rates of shift. This necessitates the rapid un-learning of past associations and the re-learning of new ones. We also demonstrate the superior abilities of homeostatic learners in environments with dynamically changing rates of concept shift. Our homeostatic design exposes the artificial neural network's thinking machinery to the consequences of its own "thoughts", illustrating the advantage of putting one's own "skin in the game" to improve fluid intelligence.
Decoding specialised feature neurons in LLMs with the final projection layer
Large Language Models (LLMs) typically have billions of parameters and are thus often difficult to interpret in their operation. Such black-box models can pose a significant risk to safety when trusted to make important decisions. The lack of interpretability of LLMs is more related to their sheer size, rather than the complexity of their individual components. The TARS method for knowledge removal (Davies et al 2024) provides strong evidence for the hypothesis that that linear layer weights which act directly on the residual stream may have high correlation with different concepts encoded in the residual stream. Building upon this, we attempt to decode neuron weights directly into token probabilities through the final projection layer of the model (the LM-head). Firstly, we show that with Llama 3.1 8B we can utilise the LM-head to decode specialised feature neurons that respond strongly to certain concepts, with examples such as "dog" and "California". This is then confirmed by demonstrating that these neurons can be clamped to affect the probability of the concept in the output. This extends to the fine-tuned assistant Llama 3.1 8B instruct model, where we find that over 75% of neurons in the up-projection layers have the same top associated token compared to the pretrained model. Finally, we demonstrate that clamping the "dog" neuron leads the instruct model to always discuss dogs when asked about its favourite animal. Through our method, it is possible to map the entirety of Llama 3.1 8B's up-projection neurons in less than 15 minutes with no parallelization.
Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models
Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.
Does the Generator Mind its Contexts? An Analysis of Generative Model Faithfulness under Context Transfer
The present study introduces the knowledge-augmented generator, which is specifically designed to produce information that remains grounded in contextual knowledge, regardless of alterations in the context. Previous research has predominantly focused on examining hallucinations stemming from static input, such as in the domains of summarization or machine translation. However, our investigation delves into the faithfulness of generative question answering in the presence of dynamic knowledge. Our objective is to explore the existence of hallucinations arising from parametric memory when contextual knowledge undergoes changes, while also analyzing the underlying causes for their occurrence. In order to efficiently address this issue, we propose a straightforward yet effective measure for detecting such hallucinations. Intriguingly, our investigation uncovers that all models exhibit a tendency to generate previous answers as hallucinations. To gain deeper insights into the underlying causes of this phenomenon, we conduct a series of experiments that verify the critical role played by context in hallucination, both during training and testing, from various perspectives.
Joint encoding of "what" and "when" predictions through error-modulated plasticity in reservoir spiking networks
The brain understands the external world through an internal model that generates predictions and refines them based on prediction errors. A complete prediction specifies what will happen, when it will happen, and with what probability, which we refer to as a "prediction object". Existing models typically capture only what and when, omit probabilities, and rely on biologically-implausible algorithms. Here we show that a single population of spiking neurons can jointly encode the prediction object through a biologically grounded learning mechanism. We implement a heterogeneous Izhikevich spiking reservoir with readouts trained by an error-modulated, attention-gated three-factor Hebbian rule and test it on a novel paradigm that controls both the timing and probability of upcoming stimuli. By integrating real-time learning of "when" with offline consolidation of "what", the model encodes the complete prediction object, firing at the correct times with magnitudes proportional to the probabilities. Critically, it rapidly adapts to changes in both stimulus timing and probability, an ability that global least-squares methods such as FORCE lack without explicit resets. During learning, the model self-organizes its readout weights into near-orthogonal subspaces for "what" and "when," showing that multiplexed encoding arises naturally from generic recurrent dynamics under local, error-gated modulation. These results challenge the view that "what" and "when" predictions require separate modules, suggesting instead that mixed selectivity within shared populations supports flexible predictive cognition. The model also predicts phase-specific neuromodulation and overlapping neural subspaces, offering a parsimonious alternative to hierarchical predictive-coding accounts.
Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization.
Measuring abstract reasoning in neural networks
Whether neural networks can learn abstract reasoning or whether they merely rely on superficial statistics is a topic of recent debate. Here, we propose a dataset and challenge designed to probe abstract reasoning, inspired by a well-known human IQ test. To succeed at this challenge, models must cope with various generalisation `regimes' in which the training and test data differ in clearly-defined ways. We show that popular models such as ResNets perform poorly, even when the training and test sets differ only minimally, and we present a novel architecture, with a structure designed to encourage reasoning, that does significantly better. When we vary the way in which the test questions and training data differ, we find that our model is notably proficient at certain forms of generalisation, but notably weak at others. We further show that the model's ability to generalise improves markedly if it is trained to predict symbolic explanations for its answers. Altogether, we introduce and explore ways to both measure and induce stronger abstract reasoning in neural networks. Our freely-available dataset should motivate further progress in this direction.
Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory
The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.
Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis
We find arithmetic ability resides within a limited number of attention heads, with each head specializing in distinct operations. To delve into the reason, we introduce the Comparative Neuron Analysis (CNA) method, which identifies an internal logic chain consisting of four distinct stages from input to prediction: feature enhancing with shallow FFN neurons, feature transferring by shallow attention layers, feature predicting by arithmetic heads, and prediction enhancing among deep FFN neurons. Moreover, we identify the human-interpretable FFN neurons within both feature-enhancing and feature-predicting stages. These findings lead us to investigate the mechanism of LoRA, revealing that it enhances prediction probabilities by amplifying the coefficient scores of FFN neurons related to predictions. Finally, we apply our method in model pruning for arithmetic tasks and model editing for reducing gender bias. Code is on https://github.com/zepingyu0512/arithmetic-mechanism.
From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
Untrained neural networks can demonstrate memorization-independent abstract reasoning
The nature of abstract reasoning is a matter of debate. Modern artificial neural network (ANN) models, like large language models, demonstrate impressive success when tested on abstract reasoning problems. However, it has been argued that their success reflects some form of memorization of similar problems (data contamination) rather than a general-purpose abstract reasoning capability. This concern is supported by evidence of brittleness, and the requirement of extensive training. In our study, we explored whether abstract reasoning can be achieved using the toolbox of ANNs, without prior training. Specifically, we studied an ANN model in which the weights of a naive network are optimized during the solution of the problem, using the problem data itself, rather than any prior knowledge. We tested this modeling approach on visual reasoning problems and found that it performs relatively well. Crucially, this success does not rely on memorization of similar problems. We further suggest an explanation of how it works. Finally, as problem solving is performed by changing the ANN weights, we explored the connection between problem solving and the accumulation of knowledge in the ANNs.
How transferable are features in deep neural networks?
Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
When Thinking Backfires: Mechanistic Insights Into Reasoning-Induced Misalignment
With the growing accessibility and wide adoption of large language models, concerns about their safety and alignment with human values have become paramount. In this paper, we identify a concerning phenomenon: Reasoning-Induced Misalignment (RIM), in which misalignment emerges when reasoning capabilities strengthened-particularly when specific types of reasoning patterns are introduced during inference or training. Beyond reporting this vulnerability, we provide the first mechanistic account of its origins. Through representation analysis, we discover that specific attention heads facilitate refusal by reducing their attention to CoT tokens, a mechanism that modulates the model's rationalization process during inference. During training, we find significantly higher activation entanglement between reasoning and safety in safety-critical neurons than in control neurons, particularly after fine-tuning with those identified reasoning patterns. This entanglement strongly correlates with catastrophic forgetting, providing a neuron-level explanation for RIM.
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Despite rapid adoption and deployment of large language models (LLMs), the internal computations of these models remain opaque and poorly understood. In this work, we seek to understand how high-level human-interpretable features are represented within the internal neuron activations of LLMs. We train k-sparse linear classifiers (probes) on these internal activations to predict the presence of features in the input; by varying the value of k we study the sparsity of learned representations and how this varies with model scale. With k=1, we localize individual neurons which are highly relevant for a particular feature, and perform a number of case studies to illustrate general properties of LLMs. In particular, we show that early layers make use of sparse combinations of neurons to represent many features in superposition, that middle layers have seemingly dedicated neurons to represent higher-level contextual features, and that increasing scale causes representational sparsity to increase on average, but there are multiple types of scaling dynamics. In all, we probe for over 100 unique features comprising 10 different categories in 7 different models spanning 70 million to 6.9 billion parameters.
The Condition Number as a Scale-Invariant Proxy for Information Encoding in Neural Units
This paper explores the relationship between the condition number of a neural network's weight tensor and the extent of information encoded by the associated processing unit, viewed through the lens of information theory. It argues that a high condition number, though not sufficient for effective knowledge encoding, may indicate that the unit has learned to selectively amplify and compress information. This intuition is formalized for linear units with Gaussian inputs, linking the condition number and the transformation's log-volume scaling factor to the characteristics of the output entropy and the geometric properties of the learned transformation. The analysis demonstrates that for a fixed weight norm, a concentrated distribution of singular values (high condition number) corresponds to reduced overall information transfer, indicating a specialized and efficient encoding strategy. Furthermore, the linear stage entropy bound provides an upper limit on post-activation information for contractive, element-wise nonlinearities, supporting the condition number as a scale-invariant proxy for encoding capacity in practical neural networks. An empirical case study applies these principles to guide selective fine-tuning of Large Language Models for both a new task and a new input modality. The experiments show that the proposed method, named KappaTune, effectively mitigates catastrophic forgetting. Unlike many existing catastrophic forgetting mitigation methods that rely on access to pre-training statistics, which are often unavailable, this selective fine-tuning approach offers a way to bypass this common requirement.
Reinforcement Learning Improves Traversal of Hierarchical Knowledge in LLMs
Reinforcement learning (RL) is often credited with improving language model reasoning and generalization at the expense of degrading memorized knowledge. We challenge this narrative by observing that RL-enhanced models consistently outperform their base and supervised fine-tuned (SFT) counterparts on pure knowledge recall tasks, particularly those requiring traversal of hierarchical, structured knowledge (e.g., medical codes). We hypothesize these gains stem not from newly acquired data, but from improved procedural skills in navigating and searching existing knowledge hierarchies within the model parameters. To support this hypothesis, we show that structured prompting, which explicitly guides SFTed models through hierarchical traversal, recovers most of the performance gap (reducing 24pp to 7pp on MedConceptsQA for DeepSeek-V3/R1). We further find that while prompting improves final-answer accuracy, RL-enhanced models retain superior ability to recall correct procedural paths on deep-retrieval tasks. Finally our layer-wise internal activation analysis reveals that while factual representations (e.g., activations for the statement "code 57.95 refers to urinary infection") maintain high cosine similarity between SFT and RL models, query representations (e.g., "what is code 57.95") diverge noticeably, indicating that RL primarily transforms how models traverse knowledge rather than the knowledge representation itself.
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
Self-Interpretability: LLMs Can Describe Complex Internal Processes that Drive Their Decisions, and Improve with Training
We have only limited understanding of how and why large language models (LLMs) respond in the ways that they do. Their neural networks have proven challenging to interpret, and we are only beginning to tease out the function of individual neurons and circuits within them. However, another path to understanding these systems is to investigate and develop their capacity to introspect and explain their own functioning. Here, we show that i) contemporary LLMs are capable of providing accurate, quantitative descriptions of their own internal processes during certain kinds of decision-making, ii) that it is possible to improve these capabilities through training, and iii) that this training generalizes to at least some degree. To do so, we fine-tuned GPT-4o and GPT-4o-mini to make decisions in a wide variety of complex contexts (e.g., choosing between condos, loans, vacations, etc.) according to randomly-generated, quantitative preferences about how to weigh different attributes during decision-making (e.g., the relative importance of natural light versus quiet surroundings for condos). We demonstrate that the LLMs can accurately report these preferences (i.e., the weights that they learned to give to different attributes during decision-making). Next, we demonstrate that these LLMs can be fine-tuned to explain their decision-making even more accurately. Finally, we demonstrate that this training generalizes: It improves the ability of the models to accurately explain what they are doing as they make other complex decisions, not just decisions they have learned to make via fine-tuning. This work is a step towards training LLMs to accurately and broadly report on their own internal processes -- a possibility that would yield substantial benefits for interpretability, control, and safety.
Subliminal Learning: Language models transmit behavioral traits via hidden signals in data
We study subliminal learning, a surprising phenomenon where language models transmit behavioral traits via semantically unrelated data. In our main experiments, a "teacher" model with some trait T (such as liking owls or being misaligned) generates a dataset consisting solely of number sequences. Remarkably, a "student" model trained on this dataset learns T. This occurs even when the data is filtered to remove references to T. We observe the same effect when training on code or reasoning traces generated by the same teacher model. However, we do not observe the effect when the teacher and student have different base models. To help explain our findings, we prove a theoretical result showing that subliminal learning occurs in all neural networks under certain conditions, and demonstrate subliminal learning in a simple MLP classifier. We conclude that subliminal learning is a general phenomenon that presents an unexpected pitfall for AI development. Distillation could propagate unintended traits, even when developers try to prevent this via data filtering.
