new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

RT-H: Action Hierarchies Using Language

Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.

  • 9 authors
·
Mar 4, 2024 1

MotionSight: Boosting Fine-Grained Motion Understanding in Multimodal LLMs

Despite advancements in Multimodal Large Language Models (MLLMs), their proficiency in fine-grained video motion understanding remains critically limited. They often lack inter-frame differencing and tend to average or ignore subtle visual cues. Furthermore, while visual prompting has shown potential in static images, its application to video's temporal complexities, particularly for fine-grained motion understanding, remains largely unexplored. We investigate whether inherent capability can be unlocked and boost MLLMs' motion perception and enable distinct visual signatures tailored to decouple object and camera motion cues. In this study, we introduce MotionSight, a novel zero-shot method pioneering object-centric visual spotlight and motion blur as visual prompts to effectively improve fine-grained motion understanding without training. To convert this into valuable data assets, we curated MotionVid-QA, the first large-scale dataset for fine-grained video motion understanding, with hierarchical annotations including SFT and preference data, {\Theta}(40K) video clips and {\Theta}(87K) QAs. Experiments show MotionSight achieves state-of-the-art open-source performance and competitiveness with commercial models. In particular, for fine-grained motion understanding we present a novel zero-shot technique and a large-scale, high-quality dataset. All the code and annotations will be publicly available.

  • 9 authors
·
Jun 2 2

MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding

Generating lifelike human motions from descriptive texts has experienced remarkable research focus in the recent years, propelled by the emerging requirements of digital humans.Despite impressive advances, existing approaches are often constrained by limited control modalities, task specificity, and focus solely on body motion representations.In this paper, we present MotionGPT-2, a unified Large Motion-Language Model (LMLM) that addresses these limitations. MotionGPT-2 accommodates multiple motion-relevant tasks and supporting multimodal control conditions through pre-trained Large Language Models (LLMs). It quantizes multimodal inputs-such as text and single-frame poses-into discrete, LLM-interpretable tokens, seamlessly integrating them into the LLM's vocabulary. These tokens are then organized into unified prompts, guiding the LLM to generate motion outputs through a pretraining-then-finetuning paradigm. We also show that the proposed MotionGPT-2 is highly adaptable to the challenging 3D holistic motion generation task, enabled by the innovative motion discretization framework, Part-Aware VQVAE, which ensures fine-grained representations of body and hand movements. Extensive experiments and visualizations validate the effectiveness of our method, demonstrating the adaptability of MotionGPT-2 across motion generation, motion captioning, and generalized motion completion tasks.

  • 10 authors
·
Oct 29, 2024

LiveScene: Language Embedding Interactive Radiance Fields for Physical Scene Rendering and Control

This paper aims to advance the progress of physical world interactive scene reconstruction by extending the interactive object reconstruction from single object level to complex scene level. To this end, we first construct one simulated and one real scene-level physical interaction dataset containing 28 scenes with multiple interactive objects per scene. Furthermore, to accurately model the interactive motions of multiple objects in complex scenes, we propose LiveScene, the first scene-level language-embedded interactive neural radiance field that efficiently reconstructs and controls multiple interactive objects in complex scenes. LiveScene introduces an efficient factorization that decomposes the interactive scene into multiple local deformable fields to separately reconstruct individual interactive objects, achieving the first accurate and independent control on multiple interactive objects in a complex scene. Moreover, we introduce an interaction-aware language embedding method that generates varying language embeddings to localize individual interactive objects under different interactive states, enabling arbitrary control of interactive objects using natural language. Finally, we evaluate LiveScene on the constructed datasets OminiSim and InterReal with various simulated and real-world complex scenes. Extensive experiment results demonstrate that the proposed approach achieves SOTA novel view synthesis and language grounding performance, surpassing existing methods by +9.89, +1.30, and +1.99 in PSNR on CoNeRF Synthetic, OminiSim #chanllenging, and InterReal #chanllenging datasets, and +65.12 of mIOU on OminiSim, respectively. Project page: https://livescenes.github.io{https://livescenes.github.io}.

  • 7 authors
·
Jun 23, 2024

LaMP: Language-Motion Pretraining for Motion Generation, Retrieval, and Captioning

Language plays a vital role in the realm of human motion. Existing methods have largely depended on CLIP text embeddings for motion generation, yet they fall short in effectively aligning language and motion due to CLIP's pretraining on static image-text pairs. This work introduces LaMP, a novel Language-Motion Pretraining model, which transitions from a language-vision to a more suitable language-motion latent space. It addresses key limitations by generating motion-informative text embeddings, significantly enhancing the relevance and semantics of generated motion sequences. With LaMP, we advance three key tasks: text-to-motion generation, motion-text retrieval, and motion captioning through aligned language-motion representation learning. For generation, we utilize LaMP to provide the text condition instead of CLIP, and an autoregressive masked prediction is designed to achieve mask modeling without rank collapse in transformers. For retrieval, motion features from LaMP's motion transformer interact with query tokens to retrieve text features from the text transformer, and vice versa. For captioning, we finetune a large language model with the language-informative motion features to develop a strong motion captioning model. In addition, we introduce the LaMP-BertScore metric to assess the alignment of generated motions with textual descriptions. Extensive experimental results on multiple datasets demonstrate substantial improvements over previous methods across all three tasks. The code of our method will be made public.

  • 10 authors
·
Oct 9, 2024

Towards Understanding Camera Motions in Any Video

We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.

  • 15 authors
·
Apr 21 3

VLM4D: Towards Spatiotemporal Awareness in Vision Language Models

Vision language models (VLMs) have shown remarkable capabilities in integrating linguistic and visual reasoning but remain fundamentally limited in understanding dynamic spatiotemporal interactions. Humans effortlessly track and reason about object movements, rotations, and perspective shifts-abilities essential for robust dynamic real-world understanding yet notably lacking in current VLMs. In this paper, we introduce VLM4D, the first benchmark specifically designed to evaluate the spatiotemporal reasoning capabilities of VLMs. Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs emphasizing translational and rotational motions, perspective awareness, and motion continuity. Through comprehensive evaluations of state-of-the-art open and closed-source VLMs, we identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models. Extensive analysis reveals that VLMs struggle particularly with integrating multiple visual cues and maintaining temporal coherence. We further explore promising directions, such as leveraging 4D feature field reconstruction and targeted spatiotemporal supervised fine-tuning, demonstrating their effectiveness in enhancing spatiotemporal comprehension. Our work aims to encourage deeper exploration into improving VLMs' spatial and temporal grounding, paving the way towards more capable and reliable visual intelligence for dynamic environments.

SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation

Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.

  • 4 authors
·
Apr 20, 2023

Moto: Latent Motion Token as the Bridging Language for Robot Manipulation

Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.

  • 7 authors
·
Dec 5, 2024 2

SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models

Reasoning about motion and space is a fundamental cognitive capability that is required by multiple real-world applications. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only focus on static spatial relationships, and not dynamic awareness of motion and space, i.e., reasoning about the effect of egocentric and object motions on spatial relationships. Manually annotating such object and camera movements is expensive. Hence, we introduce SAT, a simulated spatial aptitude training dataset comprising both static and dynamic spatial reasoning across 175K question-answer (QA) pairs and 20K scenes. Complementing this, we also construct a small (150 image-QAs) yet challenging dynamic spatial test set using real-world images. Leveraging our SAT datasets and 6 existing static spatial benchmarks, we systematically investigate what improves both static and dynamic spatial awareness. Our results reveal that simulations are surprisingly effective at imparting spatial aptitude to MLMs that translate to real images. We show that perfect annotations in simulation are more effective than existing approaches of pseudo-annotating real images. For instance, SAT training improves a LLaVA-13B model by an average 11% and a LLaVA-Video-7B model by an average 8% on multiple spatial benchmarks, including our real-image dynamic test set and spatial reasoning on long videos -- even outperforming some large proprietary models. While reasoning over static relationships improves with synthetic training data, there is still considerable room for improvement for dynamic reasoning questions.

  • 12 authors
·
Dec 10, 2024

Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics

Human-Object Interaction (HOI) is vital for advancing simulation, animation, and robotics, enabling the generation of long-term, physically plausible motions in 3D environments. However, existing methods often fall short of achieving physics realism and supporting diverse types of interactions. To address these challenges, this paper introduces a unified Human-Object Interaction framework that provides unified control over interactions with static scenes and dynamic objects using language commands. The interactions between human and object parts can always be described as the continuous stable Relative Movement Dynamics (RMD) between human and object parts. By leveraging the world knowledge and scene perception capabilities of Vision-Language Models (VLMs), we translate language commands into RMD diagrams, which are used to guide goal-conditioned reinforcement learning for sequential interaction with objects. Our framework supports long-horizon interactions among dynamic, articulated, and static objects. To support the training and evaluation of our framework, we present a new dataset named Interplay, which includes multi-round task plans generated by VLMs, covering both static and dynamic HOI tasks. Extensive experiments demonstrate that our proposed framework can effectively handle a wide range of HOI tasks, showcasing its ability to maintain long-term, multi-round transitions. For more details, please refer to our project webpage: https://rmd-hoi.github.io/.

  • 6 authors
·
Mar 24

Empowering Dynamics-aware Text-to-Video Diffusion with Large Language Models

Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches. While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g., action occurrence disorders, crude video motions) with respect to the intricate temporal dynamics modeling, one of the crux of video synthesis. In this work, we investigate strengthening the awareness of video dynamics for DMs, for high-quality T2V generation. Inspired by human intuition, we design an innovative dynamic scene manager (dubbed as Dysen) module, which includes (step-1) extracting from input text the key actions with proper time-order arrangement, (step-2) transforming the action schedules into the dynamic scene graph (DSG) representations, and (step-3) enriching the scenes in the DSG with sufficient and reasonable details. Taking advantage of the existing powerful LLMs (e.g., ChatGPT) via in-context learning, Dysen realizes (nearly) human-level temporal dynamics understanding. Finally, the resulting video DSG with rich action scene details is encoded as fine-grained spatio-temporal features, integrated into the backbone T2V DM for video generating. Experiments on popular T2V datasets suggest that our framework consistently outperforms prior arts with significant margins, especially in the scenario with complex actions. Project page at https://haofei.vip/Dysen-VDM

  • 5 authors
·
Aug 26, 2023

AffordBot: 3D Fine-grained Embodied Reasoning via Multimodal Large Language Models

Effective human-agent collaboration in physical environments requires understanding not only what to act upon, but also where the actionable elements are and how to interact with them. Existing approaches often operate at the object level or disjointedly handle fine-grained affordance reasoning, lacking coherent, instruction-driven grounding and reasoning. In this work, we introduce a new task: Fine-grained 3D Embodied Reasoning, which requires an agent to predict, for each referenced affordance element in a 3D scene, a structured triplet comprising its spatial location, motion type, and motion axis, based on a task instruction. To solve this task, we propose AffordBot, a novel framework that integrates Multimodal Large Language Models (MLLMs) with a tailored chain-of-thought (CoT) reasoning paradigm. To bridge the gap between 3D input and 2D-compatible MLLMs, we render surround-view images of the scene and project 3D element candidates into these views, forming a rich visual representation aligned with the scene geometry. Our CoT pipeline begins with an active perception stage, prompting the MLLM to select the most informative viewpoint based on the instruction, before proceeding with step-by-step reasoning to localize affordance elements and infer plausible interaction motions. Evaluated on the SceneFun3D dataset, AffordBot achieves state-of-the-art performance, demonstrating strong generalization and physically grounded reasoning with only 3D point cloud input and MLLMs.

  • 6 authors
·
Nov 13 2

Agentic End-to-End De Novo Protein Design for Tailored Dynamics Using a Language Diffusion Model

Proteins are dynamic molecular machines whose biological functions, spanning enzymatic catalysis, signal transduction, and structural adaptation, are intrinsically linked to their motions. Designing proteins with targeted dynamic properties, however, remains a challenge due to the complex, degenerate relationships between sequence, structure, and molecular motion. Here, we introduce VibeGen, a generative AI framework that enables end-to-end de novo protein design conditioned on normal mode vibrations. VibeGen employs an agentic dual-model architecture, comprising a protein designer that generates sequence candidates based on specified vibrational modes and a protein predictor that evaluates their dynamic accuracy. This approach synergizes diversity, accuracy, and novelty during the design process. Via full-atom molecular simulations as direct validation, we demonstrate that the designed proteins accurately reproduce the prescribed normal mode amplitudes across the backbone while adopting various stable, functionally relevant structures. Notably, generated sequences are de novo, exhibiting no significant similarity to natural proteins, thereby expanding the accessible protein space beyond evolutionary constraints. Our work integrates protein dynamics into generative protein design, and establishes a direct, bidirectional link between sequence and vibrational behavior, unlocking new pathways for engineering biomolecules with tailored dynamical and functional properties. This framework holds broad implications for the rational design of flexible enzymes, dynamic scaffolds, and biomaterials, paving the way toward dynamics-informed AI-driven protein engineering.

  • 2 authors
·
Feb 14 2

Story-to-Motion: Synthesizing Infinite and Controllable Character Animation from Long Text

Generating natural human motion from a story has the potential to transform the landscape of animation, gaming, and film industries. A new and challenging task, Story-to-Motion, arises when characters are required to move to various locations and perform specific motions based on a long text description. This task demands a fusion of low-level control (trajectories) and high-level control (motion semantics). Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive: character control methods do not handle text description, whereas text-to-motion methods lack position constraints and often produce unstable motions. In light of these limitations, we propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text. (1) We leverage contemporary Large Language Models to act as a text-driven motion scheduler to extract a series of (text, position, duration) pairs from long text. (2) We develop a text-driven motion retrieval scheme that incorporates motion matching with motion semantic and trajectory constraints. (3) We design a progressive mask transformer that addresses common artifacts in the transition motion such as unnatural pose and foot sliding. Beyond its pioneering role as the first comprehensive solution for Story-to-Motion, our system undergoes evaluation across three distinct sub-tasks: trajectory following, temporal action composition, and motion blending, where it outperforms previous state-of-the-art motion synthesis methods across the board. Homepage: https://story2motion.github.io/.

  • 4 authors
·
Nov 13, 2023

Proactive Interaction Framework for Intelligent Social Receptionist Robots

Proactive human-robot interaction (HRI) allows the receptionist robots to actively greet people and offer services based on vision, which has been found to improve acceptability and customer satisfaction. Existing approaches are either based on multi-stage decision processes or based on end-to-end decision models. However, the rule-based approaches require sedulous expert efforts and only handle minimal pre-defined scenarios. On the other hand, existing works with end-to-end models are limited to very general greetings or few behavior patterns (typically less than 10). To address those challenges, we propose a new end-to-end framework, the TransFormer with Visual Tokens for Human-Robot Interaction (TFVT-HRI). The proposed framework extracts visual tokens of relative objects from an RGB camera first. To ensure the correct interpretation of the scenario, a transformer decision model is then employed to process the visual tokens, which is augmented with the temporal and spatial information. It predicts the appropriate action to take in each scenario and identifies the right target. Our data is collected from an in-service receptionist robot in an office building, which is then annotated by experts for appropriate proactive behavior. The action set includes 1000+ diverse patterns by combining language, emoji expression, and body motions. We compare our model with other SOTA end-to-end models on both offline test sets and online user experiments in realistic office building environments to validate this framework. It is demonstrated that the decision model achieves SOTA performance in action triggering and selection, resulting in more humanness and intelligence when compared with the previous reactive reception policies.

  • 7 authors
·
Dec 8, 2020

Autonomous Character-Scene Interaction Synthesis from Text Instruction

Synthesizing human motions in 3D environments, particularly those with complex activities such as locomotion, hand-reaching, and human-object interaction, presents substantial demands for user-defined waypoints and stage transitions. These requirements pose challenges for current models, leading to a notable gap in automating the animation of characters from simple human inputs. This paper addresses this challenge by introducing a comprehensive framework for synthesizing multi-stage scene-aware interaction motions directly from a single text instruction and goal location. Our approach employs an auto-regressive diffusion model to synthesize the next motion segment, along with an autonomous scheduler predicting the transition for each action stage. To ensure that the synthesized motions are seamlessly integrated within the environment, we propose a scene representation that considers the local perception both at the start and the goal location. We further enhance the coherence of the generated motion by integrating frame embeddings with language input. Additionally, to support model training, we present a comprehensive motion-captured dataset comprising 16 hours of motion sequences in 120 indoor scenes covering 40 types of motions, each annotated with precise language descriptions. Experimental results demonstrate the efficacy of our method in generating high-quality, multi-stage motions closely aligned with environmental and textual conditions.

  • 7 authors
·
Oct 4, 2024 2

CrowdMoGen: Zero-Shot Text-Driven Collective Motion Generation

Crowd Motion Generation is essential in entertainment industries such as animation and games as well as in strategic fields like urban simulation and planning. This new task requires an intricate integration of control and generation to realistically synthesize crowd dynamics under specific spatial and semantic constraints, whose challenges are yet to be fully explored. On the one hand, existing human motion generation models typically focus on individual behaviors, neglecting the complexities of collective behaviors. On the other hand, recent methods for multi-person motion generation depend heavily on pre-defined scenarios and are limited to a fixed, small number of inter-person interactions, thus hampering their practicality. To overcome these challenges, we introduce CrowdMoGen, a zero-shot text-driven framework that harnesses the power of Large Language Model (LLM) to incorporate the collective intelligence into the motion generation framework as guidance, thereby enabling generalizable planning and generation of crowd motions without paired training data. Our framework consists of two key components: 1) Crowd Scene Planner that learns to coordinate motions and dynamics according to specific scene contexts or introduced perturbations, and 2) Collective Motion Generator that efficiently synthesizes the required collective motions based on the holistic plans. Extensive quantitative and qualitative experiments have validated the effectiveness of our framework, which not only fills a critical gap by providing scalable and generalizable solutions for Crowd Motion Generation task but also achieves high levels of realism and flexibility.

  • 5 authors
·
Jul 8, 2024 1

PromptHMR: Promptable Human Mesh Recovery

Human pose and shape (HPS) estimation presents challenges in diverse scenarios such as crowded scenes, person-person interactions, and single-view reconstruction. Existing approaches lack mechanisms to incorporate auxiliary "side information" that could enhance reconstruction accuracy in such challenging scenarios. Furthermore, the most accurate methods rely on cropped person detections and cannot exploit scene context while methods that process the whole image often fail to detect people and are less accurate than methods that use crops. While recent language-based methods explore HPS reasoning through large language or vision-language models, their metric accuracy is well below the state of the art. In contrast, we present PromptHMR, a transformer-based promptable method that reformulates HPS estimation through spatial and semantic prompts. Our method processes full images to maintain scene context and accepts multiple input modalities: spatial prompts like bounding boxes and masks, and semantic prompts like language descriptions or interaction labels. PromptHMR demonstrates robust performance across challenging scenarios: estimating people from bounding boxes as small as faces in crowded scenes, improving body shape estimation through language descriptions, modeling person-person interactions, and producing temporally coherent motions in videos. Experiments on benchmarks show that PromptHMR achieves state-of-the-art performance while offering flexible prompt-based control over the HPS estimation process.

  • 6 authors
·
Apr 8