- VayuBuddy: an LLM-Powered Chatbot to Democratize Air Quality Insights Nearly 6.7 million lives are lost due to air pollution every year. While policymakers are working on the mitigation strategies, public awareness can help reduce the exposure to air pollution. Air pollution data from government-installed sensors is often publicly available in raw format, but there is a non-trivial barrier for various stakeholders in deriving meaningful insights from that data. In this work, we present VayuBuddy, a Large Language Model (LLM)-powered chatbot system to reduce the barrier between the stakeholders and air quality sensor data. VayuBuddy receives the questions in natural language, analyses the structured sensory data with a LLM-generated Python code and provides answers in natural language. We use the data from Indian government air quality sensors. We benchmark the capabilities of 7 LLMs on 45 diverse question-answer pairs prepared by us. Additionally, VayuBuddy can also generate visual analysis such as line-plots, map plot, bar charts and many others from the sensory data as we demonstrate in this work. 5 authors · Nov 16, 2024
- FigureQA: An Annotated Figure Dataset for Visual Reasoning We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data. 6 authors · Oct 19, 2017
- The Jazz Transformer on the Front Line: Exploring the Shortcomings of AI-composed Music through Quantitative Measures This paper presents the Jazz Transformer, a generative model that utilizes a neural sequence model called the Transformer-XL for modeling lead sheets of Jazz music. Moreover, the model endeavors to incorporate structural events present in the Weimar Jazz Database (WJazzD) for inducing structures in the generated music. While we are able to reduce the training loss to a low value, our listening test suggests however a clear gap between the average ratings of the generated and real compositions. We therefore go one step further and conduct a series of computational analysis of the generated compositions from different perspectives. This includes analyzing the statistics of the pitch class, grooving, and chord progression, assessing the structureness of the music with the help of the fitness scape plot, and evaluating the model's understanding of Jazz music through a MIREX-like continuation prediction task. Our work presents in an analytical manner why machine-generated music to date still falls short of the artwork of humanity, and sets some goals for future work on automatic composition to further pursue. 2 authors · Aug 3, 2020
1 From Pixels to Predictions: Spectrogram and Vision Transformer for Better Time Series Forecasting Time series forecasting plays a crucial role in decision-making across various domains, but it presents significant challenges. Recent studies have explored image-driven approaches using computer vision models to address these challenges, often employing lineplots as the visual representation of time series data. In this paper, we propose a novel approach that uses time-frequency spectrograms as the visual representation of time series data. We introduce the use of a vision transformer for multimodal learning, showcasing the advantages of our approach across diverse datasets from different domains. To evaluate its effectiveness, we compare our method against statistical baselines (EMA and ARIMA), a state-of-the-art deep learning-based approach (DeepAR), other visual representations of time series data (lineplot images), and an ablation study on using only the time series as input. Our experiments demonstrate the benefits of utilizing spectrograms as a visual representation for time series data, along with the advantages of employing a vision transformer for simultaneous learning in both the time and frequency domains. 5 authors · Mar 16, 2024