new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 27

Sequential Recommendation for Optimizing Both Immediate Feedback and Long-term Retention

In the landscape of Recommender System (RS) applications, reinforcement learning (RL) has recently emerged as a powerful tool, primarily due to its proficiency in optimizing long-term rewards. Nevertheless, it suffers from instability in the learning process, stemming from the intricate interactions among bootstrapping, off-policy training, and function approximation. Moreover, in multi-reward recommendation scenarios, designing a proper reward setting that reconciles the inner dynamics of various tasks is quite intricate. In response to these challenges, we introduce DT4IER, an advanced decision transformer-based recommendation model that is engineered to not only elevate the effectiveness of recommendations but also to achieve a harmonious balance between immediate user engagement and long-term retention. The DT4IER applies an innovative multi-reward design that adeptly balances short and long-term rewards with user-specific attributes, which serve to enhance the contextual richness of the reward sequence ensuring a more informed and personalized recommendation process. To enhance its predictive capabilities, DT4IER incorporates a high-dimensional encoder, skillfully designed to identify and leverage the intricate interrelations across diverse tasks. Furthermore, we integrate a contrastive learning approach within the action embedding predictions, a strategy that significantly boosts the model's overall performance. Experiments on three real-world datasets demonstrate the effectiveness of DT4IER against state-of-the-art Sequential Recommender Systems (SRSs) and Multi-Task Learning (MTL) models in terms of both prediction accuracy and effectiveness in specific tasks. The source code is accessible online to facilitate replication

  • 9 authors
·
Apr 4, 2024

Sotopia-RL: Reward Design for Social Intelligence

Social intelligence has become a critical capability for large language models (LLMs), enabling them to engage effectively in real-world social tasks such as accommodation, persuasion, collaboration, and negotiation. Reinforcement learning (RL) is a natural fit for training socially intelligent agents because it allows models to learn sophisticated strategies directly through social interactions. However, social interactions have two key characteristics that set barriers for RL training: (1) partial observability, where utterances have indirect and delayed effects that complicate credit assignment, and (2) multi-dimensionality, where behaviors such as rapport-building or knowledge-seeking contribute indirectly to goal achievement. These characteristics make Markov decision process (MDP)-based RL with single-dimensional episode-level rewards inefficient and unstable. To address these challenges, we propose Sotopia-RL, a novel framework that refines coarse episode-level feedback into utterance-level, multi-dimensional rewards. Utterance-level credit assignment mitigates partial observability by attributing outcomes to individual utterances, while multi-dimensional rewards capture the full richness of social interactions and reduce reward hacking. Experiments in Sotopia, an open-ended social learning environment, demonstrate that Sotopia-RL achieves state-of-the-art social goal completion scores (7.17 on Sotopia-hard and 8.31 on Sotopia-full), significantly outperforming existing approaches. Ablation studies confirm the necessity of both utterance-level credit assignment and multi-dimensional reward design for RL training. Our implementation is publicly available at: https://github.com/sotopia-lab/sotopia-rl.

Embodied-R1: Reinforced Embodied Reasoning for General Robotic Manipulation

Generalization in embodied AI is hindered by the "seeing-to-doing gap," which stems from data scarcity and embodiment heterogeneity. To address this, we pioneer "pointing" as a unified, embodiment-agnostic intermediate representation, defining four core embodied pointing abilities that bridge high-level vision-language comprehension with low-level action primitives. We introduce Embodied-R1, a 3B Vision-Language Model (VLM) specifically designed for embodied reasoning and pointing. We use a wide range of embodied and general visual reasoning datasets as sources to construct a large-scale dataset, Embodied-Points-200K, which supports key embodied pointing capabilities. We then train Embodied-R1 using a two-stage Reinforced Fine-tuning (RFT) curriculum with a specialized multi-task reward design. Embodied-R1 achieves state-of-the-art performance on 11 embodied spatial and pointing benchmarks. Critically, it demonstrates robust zero-shot generalization by achieving a 56.2% success rate in the SIMPLEREnv and 87.5% across 8 real-world XArm tasks without any task-specific fine-tuning, representing a 62% improvement over strong baselines. Furthermore, the model exhibits high robustness against diverse visual disturbances. Our work shows that a pointing-centric representation, combined with an RFT training paradigm, offers an effective and generalizable pathway to closing the perception-action gap in robotics.

  • 9 authors
·
Aug 19 2

Multi-Reward as Condition for Instruction-based Image Editing

High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in 0sim 5 and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.

  • 7 authors
·
Nov 6, 2024

Reward Design for Justifiable Sequential Decision-Making

Equipping agents with the capacity to justify made decisions using supporting evidence represents a cornerstone of accountable decision-making. Furthermore, ensuring that justifications are in line with human expectations and societal norms is vital, especially in high-stakes situations such as healthcare. In this work, we propose the use of a debate-based reward model for reinforcement learning agents, where the outcome of a zero-sum debate game quantifies the justifiability of a decision in a particular state. This reward model is then used to train a justifiable policy, whose decisions can be more easily corroborated with supporting evidence. In the debate game, two argumentative agents take turns providing supporting evidence for two competing decisions. Given the proposed evidence, a proxy of a human judge evaluates which decision is better justified. We demonstrate the potential of our approach in learning policies for prescribing and justifying treatment decisions of septic patients. We show that augmenting the reward with the feedback signal generated by the debate-based reward model yields policies highly favored by the judge when compared to the policy obtained solely from the environment rewards, while hardly sacrificing any performance. Moreover, in terms of the overall performance and justifiability of trained policies, the debate-based feedback is comparable to the feedback obtained from an ideal judge proxy that evaluates decisions using the full information encoded in the state. This suggests that the debate game outputs key information contained in states that is most relevant for evaluating decisions, which in turn substantiates the practicality of combining our approach with human-in-the-loop evaluations. Lastly, we showcase that agents trained via multi-agent debate learn to propose evidence that is resilient to refutations and closely aligns with human preferences.

  • 2 authors
·
Feb 24, 2024

RewardBench 2: Advancing Reward Model Evaluation

Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.

  • 7 authors
·
Jun 2

RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning

Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.

Can One Domain Help Others? A Data-Centric Study on Multi-Domain Reasoning via Reinforcement Learning

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of LLMs. Existing research has predominantly concentrated on isolated reasoning domains such as mathematical problem-solving, coding tasks, or logical reasoning. However, real world reasoning scenarios inherently demand an integrated application of multiple cognitive skills. Despite this, the interplay among these reasoning skills under reinforcement learning remains poorly understood. To bridge this gap, we present a systematic investigation of multi-domain reasoning within the RLVR framework, explicitly focusing on three primary domains: mathematical reasoning, code generation, and logical puzzle solving. We conduct a comprehensive study comprising four key components: (1) Leveraging the GRPO algorithm and the Qwen-2.5-7B model family, our study thoroughly evaluates the models' in-domain improvements and cross-domain generalization capabilities when trained on single-domain datasets. (2) Additionally, we examine the intricate interactions including mutual enhancements and conflicts that emerge during combined cross-domain training. (3) To further understand the influence of SFT on RL, we also analyze and compare performance differences between base and instruct models under identical RL configurations. (4) Furthermore, we delve into critical RL training details, systematically exploring the impacts of curriculum learning strategies, variations in reward design, and language-specific factors. Through extensive experiments, our results offer significant insights into the dynamics governing domain interactions, revealing key factors influencing both specialized and generalizable reasoning performance. These findings provide valuable guidance for optimizing RL methodologies to foster comprehensive, multi-domain reasoning capabilities in LLMs.

  • 6 authors
·
Jul 23 1

Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning

Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.

  • 10 authors
·
May 22 2

FrameThinker: Learning to Think with Long Videos via Multi-Turn Frame Spotlighting

While Large Vision-Language Models (LVLMs) have achieved substantial progress in video understanding, their application to long video reasoning is hindered by uniform frame sampling and static textual reasoning, which are inefficient and struggle to handle visually intensive video tasks. To overcome these challenges, in this paper, we introduce the concept of thinking with long videos and propose a novel framework FrameThinker. Within this framework, LVLMs are able to iteratively interrogate video content. Developing such video reasoning capabilities in LVLMs presents notable challenges, particularly in adapting the model to new video actions (e.g. select frame), and designing reward functions to guide LVLMs to adopt the newly introduced action. To solve these challenges, we propose a two-phase training strategy, first employing Supervised Fine-Tuning (SFT) to instill fundamental action capabilities, followed by Reinforcement Learning (RL) to optimize a strategic decision-making policy. Notably, in this RL phase, we conduct an in-depth and comprehensive exploration of the reward design for each action and format reward. Extensive experiments on reasoning benchmarks like Video-Holmes, LongVideo-Reason, and long-video understanding benchmarks such as LongVideoBench, MLVU, VideoMME, and LVBench, demonstrate that FrameThinker achieves a significant average improvement of +10.4% over baselines while drastically reducing the number of processed frames. Most notably, our 7B model, FrameThinker establishes a new state-of-the-art on LongVideo-Reason, achieving 76.1% accuracy using an average of only 20.6 frames. This not only outperforms the competitive LongVILA-R1 (72.0%) but does so with over 20x fewer frames (vs. 512), demonstrating unparalleled efficiency and effectiveness.

  • 6 authors
·
Sep 29 3

A Survey on Post-training of Large Language Models

The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.

LaV-CoT: Language-Aware Visual CoT with Multi-Aspect Reward Optimization for Real-World Multilingual VQA

As large vision language models (VLMs) advance, their capabilities in multilingual visual question answering (mVQA) have significantly improved. Chain-of-thought (CoT) reasoning has been proven to enhance interpretability and complex reasoning. However, most existing approaches rely primarily on textual CoT and provide limited support for multilingual multimodal reasoning, constraining their deployment in real-world applications. To address this gap, we introduce LaV-CoT, the first Language-aware Visual CoT framework with Multi-Aspect Reward Optimization. LaV-CoT incorporates an interpretable multi-stage reasoning pipeline consisting of Text Summary with Bounding Box (BBox), Language Identification, Spatial Object-level Captioning, and Step-by-step Logical Reasoning. Following this reasoning pipeline, we design an automated data curation method that generates multilingual CoT annotations through iterative generation, correction, and refinement, enabling scalable and high-quality training data. To improve reasoning and generalization, LaV-CoT adopts a two-stage training paradigm combining Supervised Fine-Tuning (SFT) with Language-aware Group Relative Policy Optimization (GRPO), guided by verifiable multi-aspect rewards including language consistency, structural accuracy, and semantic alignment. Extensive evaluations on public datasets including MMMB, Multilingual MMBench, and MTVQA show that LaV-CoT achieves up to ~9.5% accuracy improvements over open-source baselines of similar size and even surpasses models with 2times larger scales by ~2.6%. Moreover, LaV-CoT outperforms advanced proprietary models such as GPT-4o-0513 and Gemini-2.5-flash. We further conducted an online A/B test to validate our method on real-world data, highlighting its effectiveness for industrial deployment. Our code is available at this link: https://github.com/HJNVR/LaV-CoT

  • 6 authors
·
Sep 12

A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning

Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback

  • 8 authors
·
Jul 18 2

MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation

Text-to-image (T2I) generation has achieved remarkable progress in instruction following and aesthetics. However, a persistent challenge is the prevalence of physical artifacts, such as anatomical and structural flaws, which severely degrade perceptual quality and limit application. Given the diversity and complexity of these artifacts, a systematic and fine-grained evaluation framework is required, which is lacking in current benchmarks. To fill this gap, we introduce MagicMirror, a comprehensive framework for artifacts assessment. We first establish a detailed taxonomy of generated image artifacts. Guided by this taxonomy, we manually annotate MagicData340K, the first human-annotated large-scale dataset of 340K generated images with fine-grained artifact labels. Building on this dataset, we train MagicAssessor, a Vision-Language Model (VLM) that provides detailed assessments and corresponding labels. To overcome challenges like class imbalance and reward hacking, we design a novel data sampling strategy and a multi-level reward system for Group Relative Policy Optimization (GRPO). Finally, we leverage MagicAssessor to construct MagicBench, an automated benchmark for evaluating the image artifacts of current T2I models. Our evaluation with MagicBench reveals that despite their widespread adoption, even top-tier models like GPT-image-1 are consistently plagued by significant artifacts, highlighting artifact reduction as a critical frontier for future T2I development. Project page: https://wj-inf.github.io/MagicMirror-page/.

  • 6 authors
·
Sep 12

Prompt-Free Conditional Diffusion for Multi-object Image Augmentation

Diffusion models has underpinned much recent advances of dataset augmentation in various computer vision tasks. However, when involving generating multi-object images as real scenarios, most existing methods either rely entirely on text condition, resulting in a deviation between the generated objects and the original data, or rely too much on the original images, resulting in a lack of diversity in the generated images, which is of limited help to downstream tasks. To mitigate both problems with one stone, we propose a prompt-free conditional diffusion framework for multi-object image augmentation. Specifically, we introduce a local-global semantic fusion strategy to extract semantics from images to replace text, and inject knowledge into the diffusion model through LoRA to alleviate the category deviation between the original model and the target dataset. In addition, we design a reward model based counting loss to assist the traditional reconstruction loss for model training. By constraining the object counts of each category instead of pixel-by-pixel constraints, bridging the quantity deviation between the generated data and the original data while improving the diversity of the generated data. Experimental results demonstrate the superiority of the proposed method over several representative state-of-the-art baselines and showcase strong downstream task gain and out-of-domain generalization capabilities. Code is available at https://github.com/00why00/PFCD{here}.

  • 5 authors
·
Jul 8

Improving Video Generation with Human Feedback

Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.

  • 18 authors
·
Jan 23 5

ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability

Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker ReasonRank outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/.} Our codes are available at https://github.com/8421BCD/ReasonRank.

  • 7 authors
·
Aug 9 4

Reinforcement Learning Foundations for Deep Research Systems: A Survey

Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.

Multi-Agent Inverse Q-Learning from Demonstrations

When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .

  • 5 authors
·
Mar 6

PaccMann$^{RL}$ on SARS-CoV-2: Designing antiviral candidates with conditional generative models

With the fast development of COVID-19 into a global pandemic, scientists around the globe are desperately searching for effective antiviral therapeutic agents. Bridging systems biology and drug discovery, we propose a deep learning framework for conditional de novo design of antiviral candidate drugs tailored against given protein targets. First, we train a multimodal ligand--protein binding affinity model on predicting affinities of antiviral compounds to target proteins and couple this model with pharmacological toxicity predictors. Exploiting this multi-objective as a reward function of a conditional molecular generator (consisting of two VAEs), we showcase a framework that navigates the chemical space toward regions with more antiviral molecules. Specifically, we explore a challenging setting of generating ligands against unseen protein targets by performing a leave-one-out-cross-validation on 41 SARS-CoV-2-related target proteins. Using deep RL, it is demonstrated that in 35 out of 41 cases, the generation is biased towards sampling more binding ligands, with an average increase of 83% comparing to an unbiased VAE. We present a case-study on a potential Envelope-protein inhibitor and perform a synthetic accessibility assessment of the best generated molecules is performed that resembles a viable roadmap towards a rapid in-vitro evaluation of potential SARS-CoV-2 inhibitors.

  • 7 authors
·
May 27, 2020

RAG-RewardBench: Benchmarking Reward Models in Retrieval Augmented Generation for Preference Alignment

Despite the significant progress made by existing retrieval augmented language models (RALMs) in providing trustworthy responses and grounding in reliable sources, they often overlook effective alignment with human preferences. In the alignment process, reward models (RMs) act as a crucial proxy for human values to guide optimization. However, it remains unclear how to evaluate and select a reliable RM for preference alignment in RALMs. To this end, we propose RAG-RewardBench, the first benchmark for evaluating RMs in RAG settings. First, we design four crucial and challenging RAG-specific scenarios to assess RMs, including multi-hop reasoning, fine-grained citation, appropriate abstain, and conflict robustness. Then, we incorporate 18 RAG subsets, six retrievers, and 24 RALMs to increase the diversity of data sources. Finally, we adopt an LLM-as-a-judge approach to improve preference annotation efficiency and effectiveness, exhibiting a strong correlation with human annotations. Based on the RAG-RewardBench, we conduct a comprehensive evaluation of 45 RMs and uncover their limitations in RAG scenarios. Additionally, we also reveal that existing trained RALMs show almost no improvement in preference alignment, highlighting the need for a shift towards preference-aligned training.We release our benchmark and code publicly at https://huggingface.co/datasets/jinzhuoran/RAG-RewardBench/ for future work.

  • 7 authors
·
Dec 18, 2024 2

A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning

We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

PEARLS-Lab PEARLS Lab
·
Oct 1 2

The Perfect Blend: Redefining RLHF with Mixture of Judges

Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.

  • 20 authors
·
Sep 30, 2024

Behavior Alignment via Reward Function Optimization

Designing reward functions for efficiently guiding reinforcement learning (RL) agents toward specific behaviors is a complex task. This is challenging since it requires the identification of reward structures that are not sparse and that avoid inadvertently inducing undesirable behaviors. Naively modifying the reward structure to offer denser and more frequent feedback can lead to unintended outcomes and promote behaviors that are not aligned with the designer's intended goal. Although potential-based reward shaping is often suggested as a remedy, we systematically investigate settings where deploying it often significantly impairs performance. To address these issues, we introduce a new framework that uses a bi-level objective to learn behavior alignment reward functions. These functions integrate auxiliary rewards reflecting a designer's heuristics and domain knowledge with the environment's primary rewards. Our approach automatically determines the most effective way to blend these types of feedback, thereby enhancing robustness against heuristic reward misspecification. Remarkably, it can also adapt an agent's policy optimization process to mitigate suboptimalities resulting from limitations and biases inherent in the underlying RL algorithms. We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges. We investigate heuristic auxiliary rewards of varying quality -- some of which are beneficial and others detrimental to the learning process. Our results show that our framework offers a robust and principled way to integrate designer-specified heuristics. It not only addresses key shortcomings of existing approaches but also consistently leads to high-performing solutions, even when given misaligned or poorly-specified auxiliary reward functions.

  • 5 authors
·
Oct 29, 2023 1

ToolRL: Reward is All Tool Learning Needs

Current Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities. However, SFT struggles to generalize to unfamiliar or complex tool use scenarios. Recent advancements in reinforcement learning (RL), particularly with R1-like models, have demonstrated promising reasoning and generalization abilities. Yet, reward design for tool use presents unique challenges: multiple tools may be invoked with diverse parameters, and coarse-grained reward signals, such as answer matching, fail to offer the finegrained feedback required for effective learning. In this work, we present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm. We systematically explore a wide range of reward strategies, analyzing their types, scales, granularity, and temporal dynamics. Building on these insights, we propose a principled reward design tailored for tool use tasks and apply it to train LLMs using Group Relative Policy Optimization (GRPO). Empirical evaluations across diverse benchmarks demonstrate that our approach yields robust, scalable, and stable training, achieving a 17% improvement over base models and a 15% gain over SFT models. These results highlight the critical role of thoughtful reward design in enhancing the tool use capabilities and generalization performance of LLMs. All the codes are released to facilitate future research.

  • 8 authors
·
Apr 16 3

Evaluating Robustness of Reward Models for Mathematical Reasoning

Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.

  • 7 authors
·
Oct 2, 2024

Reward Design for Reinforcement Learning Agents

Reward functions are central in reinforcement learning (RL), guiding agents towards optimal decision-making. The complexity of RL tasks requires meticulously designed reward functions that effectively drive learning while avoiding unintended consequences. Effective reward design aims to provide signals that accelerate the agent's convergence to optimal behavior. Crafting rewards that align with task objectives, foster desired behaviors, and prevent undesirable actions is inherently challenging. This thesis delves into the critical role of reward signals in RL, highlighting their impact on the agent's behavior and learning dynamics and addressing challenges such as delayed, ambiguous, or intricate rewards. In this thesis work, we tackle different aspects of reward shaping. First, we address the problem of designing informative and interpretable reward signals from a teacher's/expert's perspective (teacher-driven). Here, the expert, equipped with the optimal policy and the corresponding value function, designs reward signals that expedite the agent's convergence to optimal behavior. Second, we build on this teacher-driven approach by introducing a novel method for adaptive interpretable reward design. In this scenario, the expert tailors the rewards based on the learner's current policy, ensuring alignment and optimal progression. Third, we propose a meta-learning approach, enabling the agent to self-design its reward signals online without expert input (agent-driven). This self-driven method considers the agent's learning and exploration to establish a self-improving feedback loop.

  • 1 authors
·
Mar 27

Deep Reinforcement Learning from Hierarchical Weak Preference Feedback

Reward design is a fundamental, yet challenging aspect of practical reinforcement learning (RL). For simple tasks, researchers typically handcraft the reward function, e.g., using a linear combination of several reward factors. However, such reward engineering is subject to approximation bias, incurs large tuning cost, and often cannot provide the granularity required for complex tasks. To avoid these difficulties, researchers have turned to reinforcement learning from human feedback (RLHF), which learns a reward function from human preferences between pairs of trajectory sequences. By leveraging preference-based reward modeling, RLHF learns complex rewards that are well aligned with human preferences, allowing RL to tackle increasingly difficult problems. Unfortunately, the applicability of RLHF is limited due to the high cost and difficulty of obtaining human preference data. In light of this cost, we investigate learning reward functions for complex tasks with less human effort; simply by ranking the importance of the reward factors. More specifically, we propose a new RL framework -- HERON, which compares trajectories using a hierarchical decision tree induced by the given ranking. These comparisons are used to train a preference-based reward model, which is then used for policy learning. We find that our framework can not only train high performing agents on a variety of difficult tasks, but also provide additional benefits such as improved sample efficiency and robustness. Our code is available at https://github.com/abukharin3/HERON.

  • 5 authors
·
Sep 5, 2023

Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models

Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.

ByteDance ByteDance
·
May 29

Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft

Many reinforcement learning environments (e.g., Minecraft) provide only sparse rewards that indicate task completion or failure with binary values. The challenge in exploration efficiency in such environments makes it difficult for reinforcement-learning-based agents to learn complex tasks. To address this, this paper introduces an advanced learning system, named Auto MC-Reward, that leverages Large Language Models (LLMs) to automatically design dense reward functions, thereby enhancing the learning efficiency. Auto MC-Reward consists of three important components: Reward Designer, Reward Critic, and Trajectory Analyzer. Given the environment information and task descriptions, the Reward Designer first design the reward function by coding an executable Python function with predefined observation inputs. Then, our Reward Critic will be responsible for verifying the code, checking whether the code is self-consistent and free of syntax and semantic errors. Further, the Trajectory Analyzer summarizes possible failure causes and provides refinement suggestions according to collected trajectories. In the next round, Reward Designer will further refine and iterate the dense reward function based on feedback. Experiments demonstrate a significant improvement in the success rate and learning efficiency of our agents in complex tasks in Minecraft, such as obtaining diamond with the efficient ability to avoid lava, and efficiently explore trees and animals that are sparse in the plains biome.

  • 10 authors
·
Dec 14, 2023

BaseReward: A Strong Baseline for Multimodal Reward Model

The rapid advancement of Multimodal Large Language Models (MLLMs) has made aligning them with human preferences a critical challenge. Reward Models (RMs) are a core technology for achieving this goal, but a systematic guide for building state-of-the-art Multimodal Reward Models (MRMs) is currently lacking in both academia and industry. Through exhaustive experimental analysis, this paper aims to provide a clear ``recipe'' for constructing high-performance MRMs. We systematically investigate every crucial component in the MRM development pipeline, including reward modeling paradigms (e.g., Naive-RM, Critic-based RM, and Generative RM), reward head architecture, training strategies, data curation (covering over ten multimodal and text-only preference datasets), backbone model and model scale, and ensemble methods. Based on these experimental insights, we introduce BaseReward, a powerful and efficient baseline for multimodal reward modeling. BaseReward adopts a simple yet effective architecture, built upon a {Qwen2.5-VL} backbone, featuring an optimized two-layer reward head, and is trained on a carefully curated mixture of high-quality multimodal and text-only preference data. Our results show that BaseReward establishes a new SOTA on major benchmarks such as MM-RLHF-Reward Bench, VL-Reward Bench, and Multimodal Reward Bench, outperforming previous models. Furthermore, to validate its practical utility beyond static benchmarks, we integrate BaseReward into a real-world reinforcement learning pipeline, successfully enhancing an MLLM's performance across various perception, reasoning, and conversational tasks. This work not only delivers a top-tier MRM but, more importantly, provides the community with a clear, empirically-backed guide for developing robust reward models for the next generation of MLLMs.

  • 15 authors
·
Sep 19 2

Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback

Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples, due to requiring LLM annotations for each observation, or they require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose \oni, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets. We make our code available at https://github.com/facebookresearch/oni.

  • 5 authors
·
Oct 30, 2024

SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models

Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a global reward ensures the correctness of the overall visual semantics and layout, while a local reward refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to 88.37 and on T2I-ReasonBench from 43.82 to 46.75. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.

CaRL: Learning Scalable Planning Policies with Simple Rewards

We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.

  • 6 authors
·
Apr 24 2

Unsupervised Perceptual Rewards for Imitation Learning

Reward function design and exploration time are arguably the biggest obstacles to the deployment of reinforcement learning (RL) agents in the real world. In many real-world tasks, designing a reward function takes considerable hand engineering and often requires additional sensors to be installed just to measure whether the task has been executed successfully. Furthermore, many interesting tasks consist of multiple implicit intermediate steps that must be executed in sequence. Even when the final outcome can be measured, it does not necessarily provide feedback on these intermediate steps. To address these issues, we propose leveraging the abstraction power of intermediate visual representations learned by deep models to quickly infer perceptual reward functions from small numbers of demonstrations. We present a method that is able to identify key intermediate steps of a task from only a handful of demonstration sequences, and automatically identify the most discriminative features for identifying these steps. This method makes use of the features in a pre-trained deep model, but does not require any explicit specification of sub-goals. The resulting reward functions can then be used by an RL agent to learn to perform the task in real-world settings. To evaluate the learned reward, we present qualitative results on two real-world tasks and a quantitative evaluation against a human-designed reward function. We also show that our method can be used to learn a real-world door opening skill using a real robot, even when the demonstration used for reward learning is provided by a human using their own hand. To our knowledge, these are the first results showing that complex robotic manipulation skills can be learned directly and without supervised labels from a video of a human performing the task. Supplementary material and data are available at https://sermanet.github.io/rewards

  • 3 authors
·
Dec 20, 2016

Lucy-SKG: Learning to Play Rocket League Efficiently Using Deep Reinforcement Learning

A successful tactic that is followed by the scientific community for advancing AI is to treat games as problems, which has been proven to lead to various breakthroughs. We adapt this strategy in order to study Rocket League, a widely popular but rather under-explored 3D multiplayer video game with a distinct physics engine and complex dynamics that pose a significant challenge in developing efficient and high-performance game-playing agents. In this paper, we present Lucy-SKG, a Reinforcement Learning-based model that learned how to play Rocket League in a sample-efficient manner, outperforming by a notable margin the two highest-ranking bots in this game, namely Necto (2022 bot champion) and its successor Nexto, thus becoming a state-of-the-art agent. Our contributions include: a) the development of a reward analysis and visualization library, b) novel parameterizable reward shape functions that capture the utility of complex reward types via our proposed Kinesthetic Reward Combination (KRC) technique, and c) design of auxiliary neural architectures for training on reward prediction and state representation tasks in an on-policy fashion for enhanced efficiency in learning speed and performance. By performing thorough ablation studies for each component of Lucy-SKG, we showed their independent effectiveness in overall performance. In doing so, we demonstrate the prospects and challenges of using sample-efficient Reinforcement Learning techniques for controlling complex dynamical systems under competitive team-based multiplayer conditions.

  • 4 authors
·
May 25, 2023

Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards

Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our Multi-Action-Head DPO (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

  • 4 authors
·
Oct 1

Eureka: Human-Level Reward Design via Coding Large Language Models

Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.

  • 9 authors
·
Oct 19, 2023 3

Text2Reward: Automated Dense Reward Function Generation for Reinforcement Learning

Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at https://text-to-reward.github.io

  • 8 authors
·
Sep 20, 2023

Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective

OpenAI o1 represents a significant milestone in Artificial Inteiligence, which achieves expert-level performances on many challanging tasks that require strong reasoning ability.OpenAI has claimed that the main techinique behinds o1 is the reinforcement learining. Recent works use alternative approaches like knowledge distillation to imitate o1's reasoning style, but their effectiveness is limited by the capability ceiling of the teacher model. Therefore, this paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning, focusing on four key components: policy initialization, reward design, search, and learning. Policy initialization enables models to develop human-like reasoning behaviors, equipping them with the ability to effectively explore solution spaces for complex problems. Reward design provides dense and effective signals via reward shaping or reward modeling, which is the guidance for both search and learning. Search plays a crucial role in generating high-quality solutions during both training and testing phases, which can produce better solutions with more computation. Learning utilizes the data generated by search for improving policy, which can achieve the better performance with more parameters and more searched data. Existing open-source projects that attempt to reproduce o1 can be seem as a part or a variant of our roadmap. Collectively, these components underscore how learning and search drive o1's advancement, making meaningful contributions to the development of LLM.

  • 9 authors
·
Dec 18, 2024

Reward Shaping to Mitigate Reward Hacking in RLHF

Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to reward hacking, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. While reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests three key design principles: (1) RL reward is ideally bounded, (2) RL benefits from rapid initial growth followed by gradual convergence, and (3) RL reward is best formulated as a function of centered reward. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model itself as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. Code is available at https://github.com/PorUna-byte/PAR.

  • 6 authors
·
Feb 25

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

  • 9 authors
·
Oct 19, 2024

Effective Reward Specification in Deep Reinforcement Learning

In the last decade, Deep Reinforcement Learning has evolved into a powerful tool for complex sequential decision-making problems. It combines deep learning's proficiency in processing rich input signals with reinforcement learning's adaptability across diverse control tasks. At its core, an RL agent seeks to maximize its cumulative reward, enabling AI algorithms to uncover novel solutions previously unknown to experts. However, this focus on reward maximization also introduces a significant difficulty: improper reward specification can result in unexpected, misaligned agent behavior and inefficient learning. The complexity of accurately specifying the reward function is further amplified by the sequential nature of the task, the sparsity of learning signals, and the multifaceted aspects of the desired behavior. In this thesis, we survey the literature on effective reward specification strategies, identify core challenges relating to each of these approaches, and propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning. Reward specification represents one of the most challenging aspects of applying reinforcement learning in real-world domains. Our work underscores the absence of a universal solution to this complex and nuanced challenge; solving it requires selecting the most appropriate tools for the specific requirements of each unique application.

  • 1 authors
·
Dec 9, 2024

Parrot: Pareto-optimal Multi-Reward Reinforcement Learning Framework for Text-to-Image Generation

Recent works demonstrate that using reinforcement learning (RL) with quality rewards can enhance the quality of generated images in text-to-image (T2I) generation. However, a simple aggregation of multiple rewards may cause over-optimization in certain metrics and degradation in others, and it is challenging to manually find the optimal weights. An effective strategy to jointly optimize multiple rewards in RL for T2I generation is highly desirable. This paper introduces Parrot, a novel multi-reward RL framework for T2I generation. Through the use of the batch-wise Pareto optimal selection, Parrot automatically identifies the optimal trade-off among different rewards during the RL optimization of the T2I generation. Additionally, Parrot employs a joint optimization approach for the T2I model and the prompt expansion network, facilitating the generation of quality-aware text prompts, thus further enhancing the final image quality. To counteract the potential catastrophic forgetting of the original user prompt due to prompt expansion, we introduce original prompt centered guidance at inference time, ensuring that the generated image remains faithful to the user input. Extensive experiments and a user study demonstrate that Parrot outperforms several baseline methods across various quality criteria, including aesthetics, human preference, image sentiment, and text-image alignment.

  • 14 authors
·
Jan 11, 2024 1

OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning

In this paper, we introduce OneReward, a unified reinforcement learning framework that enhances the model's generative capabilities across multiple tasks under different evaluation criteria using only One Reward model. By employing a single vision-language model (VLM) as the generative reward model, which can distinguish the winner and loser for a given task and a given evaluation criterion, it can be effectively applied to multi-task generation models, particularly in contexts with varied data and diverse task objectives. We utilize OneReward for mask-guided image generation, which can be further divided into several sub-tasks such as image fill, image extend, object removal, and text rendering, involving a binary mask as the edit area. Although these domain-specific tasks share same conditioning paradigm, they differ significantly in underlying data distributions and evaluation metrics. Existing methods often rely on task-specific supervised fine-tuning (SFT), which limits generalization and training efficiency. Building on OneReward, we develop Seedream 3.0 Fill, a mask-guided generation model trained via multi-task reinforcement learning directly on a pre-trained base model, eliminating the need for task-specific SFT. Experimental results demonstrate that our unified edit model consistently outperforms both commercial and open-source competitors, such as Ideogram, Adobe Photoshop, and FLUX Fill [Pro], across multiple evaluation dimensions. Code and model are available at: https://one-reward.github.io

  • 6 authors
·
Aug 28 4

Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models

Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.

  • 8 authors
·
Aug 7 2

Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy

Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.

Beyond Monolithic Rewards: A Hybrid and Multi-Aspect Reward Optimization for MLLM Alignment

Aligning multimodal large language models (MLLMs) with human preferences often relies on single-signal, model-based reward methods. Such monolithic rewards often lack confidence calibration across domain-specific tasks, fail to capture diverse aspects of human preferences, and require extensive data annotation and reward model training. In this work, we propose a hybrid reward modeling framework that integrates complementary reward paradigms: (i) model-based rewards, where a learned reward model predicts scalar or vector scores from synthetic and human feedback, and (ii) rule-based rewards, where domain-specific heuristics provide explicit correctness signals with confidence. Beyond accuracy, we further incorporate multi-aspect rewards to enforce instruction adherence and introduce a generalized length-penalty reward to stabilize training and improve performance. The proposed framework provides a flexible and effective approach to aligning MLLMs through reinforcement learning policy optimization. Our experiments show consistent improvements across different multimodal benchmarks when applying hybrid and multi-aspect reward modeling. Our best performing model in the 3B family achieves an overall average improvement of ~9.5% across general and math reasoning tasks. Focusing specifically on mathematical benchmarks, the model achieves a significant average improvement of ~16%, highlighting its effectiveness in mathematical reasoning and problem solving.

  • 2 authors
·
Oct 6

DRAGON: Distributional Rewards Optimize Diffusion Generative Models

We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modality encoders such as CLAP are used, the reference examples may be of a different modality (e.g., text versus audio). Then, DRAGON gathers online and on-policy generations, scores them to construct a positive demonstration set and a negative set, and leverages the contrast between the two sets to maximize the reward. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 different reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets indeed enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. As such, DRAGON exhibits a new approach to designing and optimizing reward functions for improving human-perceived quality. Sound examples at https://ml-dragon.github.io/web.

  • 4 authors
·
Apr 21 2

InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model

Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer

  • 13 authors
·
Jan 21 3

MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval

Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline.

  • 8 authors
·
Jun 14

CreatiDesign: A Unified Multi-Conditional Diffusion Transformer for Creative Graphic Design

Graphic design plays a vital role in visual communication across advertising, marketing, and multimedia entertainment. Prior work has explored automated graphic design generation using diffusion models, aiming to streamline creative workflows and democratize design capabilities. However, complex graphic design scenarios require accurately adhering to design intent specified by multiple heterogeneous user-provided elements (\eg images, layouts, and texts), which pose multi-condition control challenges for existing methods. Specifically, previous single-condition control models demonstrate effectiveness only within their specialized domains but fail to generalize to other conditions, while existing multi-condition methods often lack fine-grained control over each sub-condition and compromise overall compositional harmony. To address these limitations, we introduce CreatiDesign, a systematic solution for automated graphic design covering both model architecture and dataset construction. First, we design a unified multi-condition driven architecture that enables flexible and precise integration of heterogeneous design elements with minimal architectural modifications to the base diffusion model. Furthermore, to ensure that each condition precisely controls its designated image region and to avoid interference between conditions, we propose a multimodal attention mask mechanism. Additionally, we develop a fully automated pipeline for constructing graphic design datasets, and introduce a new dataset with 400K samples featuring multi-condition annotations, along with a comprehensive benchmark. Experimental results show that CreatiDesign outperforms existing models by a clear margin in faithfully adhering to user intent.

  • 9 authors
·
May 25

STARC: A General Framework For Quantifying Differences Between Reward Functions

In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.

  • 6 authors
·
Sep 26, 2023

Few-shot In-Context Preference Learning Using Large Language Models

Designing reward functions is a core component of reinforcement learning but can be challenging for truly complex behavior. Reinforcement Learning from Human Feedback (RLHF) has been used to alleviate this challenge by replacing a hand-coded reward function with a reward function learned from preferences. However, it can be exceedingly inefficient to learn these rewards as they are often learned tabula rasa. We investigate whether Large Language Models (LLMs) can reduce this query inefficiency by converting an iterative series of human preferences into code representing the rewards. We propose In-Context Preference Learning (ICPL), a method that uses the grounding of an LLM to accelerate learning reward functions from preferences. ICPL takes the environment context and task description, synthesizes a set of reward functions, and then repeatedly updates the reward functions using human rankings of videos of the resultant policies. Using synthetic preferences, we demonstrate that ICPL is orders of magnitude more efficient than RLHF and is even competitive with methods that use ground-truth reward functions instead of preferences. Finally, we perform a series of human preference-learning trials and observe that ICPL extends beyond synthetic settings and can work effectively with humans-in-the-loop. Additional information and videos are provided at https://sites.google.com/view/few-shot-icpl/home.

  • 8 authors
·
Oct 22, 2024

Confronting Reward Model Overoptimization with Constrained RLHF

Large language models are typically aligned with human preferences by optimizing reward models (RMs) fitted to human feedback. However, human preferences are multi-faceted, and it is increasingly common to derive reward from a composition of simpler reward models which each capture a different aspect of language quality. This itself presents a challenge, as it is difficult to appropriately weight these component RMs when combining them. Compounding this difficulty, because any RM is only a proxy for human evaluation, this process is vulnerable to overoptimization, wherein past a certain point, accumulating higher reward is associated with worse human ratings. In this paper, we perform, to our knowledge, the first study on overoptimization in composite RMs, showing that correlation between component RMs has a significant effect on the locations of these points. We then introduce an approach to solve this issue using constrained reinforcement learning as a means of preventing the agent from exceeding each RM's threshold of usefulness. Our method addresses the problem of weighting component RMs by learning dynamic weights, naturally expressed by Lagrange multipliers. As a result, each RM stays within the range at which it is an effective proxy, improving evaluation performance. Finally, we introduce an adaptive method using gradient-free optimization to identify and optimize towards these points during a single run.

  • 7 authors
·
Oct 6, 2023

Learning in Sparse Rewards settings through Quality-Diversity algorithms

In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.

  • 1 authors
·
Mar 2, 2022

The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from Human Feedback

Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings. RLHF proceeds as collecting human preference data, training a reward model on said data, and optimizing a base ML model with respect to said reward for extrinsic evaluation metrics (e.g. MMLU, GSM8k). RLHF relies on many assumptions about how the various pieces fit together, such as a reward model capturing human preferences and an RL optimizer extracting the right signal from a reward model. As the RLHF process involves many distinct design decisions, it is easy to assume that multiple processes are correlated and therefore numerically linked. This apparent correlation is often not true, where reward models are easily overoptimized or RL optimizers can reduce performance on tasks not modeled in the data. Notable manifestations of models trained with imperfect RLHF systems are those that are prone to refusing basic requests for safety reasons or appearing lazy in generations. As chat model evaluation becomes increasingly nuanced, the reliance on a perceived link between reward model training, RL scores, and downstream performance drives these issues, which we describe as an objective mismatch. In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions. By solving objective mismatch in RLHF, the ML models of the future will be more precisely aligned to user instructions for both safety and helpfulness.

  • 2 authors
·
Oct 31, 2023

Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization

A single language model (LM), despite aligning well with an average labeler through reinforcement learning from human feedback (RLHF), may not universally suit diverse human preferences. Recent approaches therefore opt for customization by collecting multi-dimensional feedback and creating distinct reward models (RMs) for each dimension (e.g., helpfulness, harmlessness, or honesty). Different LMs can then be optimized for different preferences using multi-objective RLHF (MORLHF) with different reward weightings. Yet, RL fine-tuning is unstable and resource-heavy, especially for MORLHF with diverse and usually conflicting objectives. In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free algorithm that extends Direct Preference Optimization (DPO) for multiple alignment objectives with minimal overheads. Essentially, MODPO folds language modeling directly into reward modeling, training LMs as implicit collective reward models (cRMs) that combine all objectives with specific weightings. While theoretically guaranteed to produce the same optimal solutions as MORLHF, MODPO is practically more stable and computationally efficient. Empirical results from safety alignment and long-form question answering confirm that MODPO matches or outperforms existing methods, consistently producing a Pareto front of LMs that cater to diverse preferences with 3 times less computational resources compared to MORLHF.

  • 8 authors
·
Oct 5, 2023

Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations

We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.

  • 3 authors
·
May 18, 2023

Tool-Augmented Reward Modeling

Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.

  • 7 authors
·
Oct 2, 2023

From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation

Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.

  • 7 authors
·
Aug 13

Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning

Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.

  • 5 authors
·
Aug 19, 2024

The MineRL BASALT Competition on Learning from Human Feedback

The last decade has seen a significant increase of interest in deep learning research, with many public successes that have demonstrated its potential. As such, these systems are now being incorporated into commercial products. With this comes an additional challenge: how can we build AI systems that solve tasks where there is not a crisp, well-defined specification? While multiple solutions have been proposed, in this competition we focus on one in particular: learning from human feedback. Rather than training AI systems using a predefined reward function or using a labeled dataset with a predefined set of categories, we instead train the AI system using a learning signal derived from some form of human feedback, which can evolve over time as the understanding of the task changes, or as the capabilities of the AI system improve. The MineRL BASALT competition aims to spur forward research on this important class of techniques. We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions. These tasks are defined by a paragraph of natural language: for example, "create a waterfall and take a scenic picture of it", with additional clarifying details. Participants must train a separate agent for each task, using any method they want. Agents are then evaluated by humans who have read the task description. To help participants get started, we provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline that leverages these demonstrations. Our hope is that this competition will improve our ability to build AI systems that do what their designers intend them to do, even when the intent cannot be easily formalized. Besides allowing AI to solve more tasks, this can also enable more effective regulation of AI systems, as well as making progress on the value alignment problem.

  • 13 authors
·
Jul 5, 2021

R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning

Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a 8.4% improvement on the VL Reward-Bench and a 14.3% improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.

Secrets of RLHF in Large Language Models Part II: Reward Modeling

Reinforcement Learning from Human Feedback (RLHF) has become a crucial technology for aligning language models with human values and intentions, enabling models to produce more helpful and harmless responses. Reward models are trained as proxies for human preferences to drive reinforcement learning optimization. While reward models are often considered central to achieving high performance, they face the following challenges in practical applications: (1) Incorrect and ambiguous preference pairs in the dataset may hinder the reward model from accurately capturing human intent. (2) Reward models trained on data from a specific distribution often struggle to generalize to examples outside that distribution and are not suitable for iterative RLHF training. In this report, we attempt to address these two issues. (1) From a data perspective, we propose a method to measure the strength of preferences within the data, based on a voting mechanism of multiple reward models. Experimental results confirm that data with varying preference strengths have different impacts on reward model performance. We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset and fully leverage high-quality preference data. (2) From an algorithmic standpoint, we introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses, thereby improving model generalization. Furthermore, we employ meta-learning to enable the reward model to maintain the ability to differentiate subtle differences in out-of-distribution samples, and this approach can be utilized for iterative RLHF optimization.

  • 27 authors
·
Jan 11, 2024 4

Introduction to Multi-Armed Bandits

Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a brief review of the further developments; many of the chapters conclude with exercises. The book is structured as follows. The first four chapters are on IID rewards, from the basic model to impossibility results to Bayesian priors to Lipschitz rewards. The next three chapters cover adversarial rewards, from the full-feedback version to adversarial bandits to extensions with linear rewards and combinatorially structured actions. Chapter 8 is on contextual bandits, a middle ground between IID and adversarial bandits in which the change in reward distributions is completely explained by observable contexts. The last three chapters cover connections to economics, from learning in repeated games to bandits with supply/budget constraints to exploration in the presence of incentives. The appendix provides sufficient background on concentration and KL-divergence. The chapters on "bandits with similarity information", "bandits with knapsacks" and "bandits and agents" can also be consumed as standalone surveys on the respective topics.

  • 1 authors
·
Apr 15, 2019

Stabilizing Long-term Multi-turn Reinforcement Learning with Gated Rewards

Reward sparsity in long-horizon reinforcement learning (RL) tasks remains a significant challenge, while existing outcome-based reward shaping struggles to define meaningful immediate rewards without introducing bias or requiring explicit task decomposition. Alternatively, verification-based reward shaping uses stepwise critics, but misalignment between immediate rewards and long-term objectives can lead to reward hacking and suboptimal policies. In this work, we address this problem in the context of software engineering (SWE) tasks, where multi-turn reasoning and rule-based verification are critical. We introduce the SWE-oriented RL Framework, a unified system supporting multi-turn interaction, docker-based execution, and customizable reward functions. Additionally, we propose Gated Reward Accumulation (G-RA), a novel method that accumulates immediate rewards only when high-level (long-term) rewards meet a predefined threshold, ensuring stable RL optimization. Experiments on SWE-bench Verified and kBench demonstrate that G-RA leads to an increase in completion rates (47.6\% \rightarrow 93.8\% and 22.0\% \rightarrow 86.0\%) and modification rates (19.6\% \rightarrow 23.8\% and 12.0\% \rightarrow 42.0\%), while avoiding policy degradation caused by reward misalignment. Our findings highlight the importance of balanced reward accumulation in long-horizon RL and provide a practical solution.

  • 5 authors
·
Aug 14

Social Reward: Evaluating and Enhancing Generative AI through Million-User Feedback from an Online Creative Community

Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at https://github.com/Picsart-AI-Research/Social-Reward

  • 5 authors
·
Feb 15, 2024

Online Information Acquisition: Hiring Multiple Agents

We investigate the mechanism design problem faced by a principal who hires multiple agents to gather and report costly information. Then, the principal exploits the information to make an informed decision. We model this problem as a game, where the principal announces a mechanism consisting in action recommendations and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort level and receives partial information about an underlying state of nature based on the effort. Finally, the agents report the information (possibly non-truthfully), the principal takes a decision based on this information, and the agents are paid according to the scoring rule. While previous work focuses on single-agent problems, we consider multi-agents settings. This poses the challenge of coordinating the agents' efforts and aggregating correlated information. Indeed, we show that optimal mechanisms must correlate agents' efforts, which introduces externalities among the agents, and hence complex incentive compatibility constraints and equilibrium selection problems. First, we design a polynomial-time algorithm to find an optimal incentive compatible mechanism. Then, we study an online problem, where the principal repeatedly interacts with a group of unknown agents. We design a no-regret algorithm that provides mathcal{O}(T^{2/3}) regret with respect to an optimal mechanism, matching the state-of-the-art bound for single-agent settings.

  • 3 authors
·
Jul 12, 2023

M-RewardBench: Evaluating Reward Models in Multilingual Settings

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.

  • 10 authors
·
Oct 20, 2024 3

Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning

Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.

  • 7 authors
·
May 6 3

Unified Reward Model for Multimodal Understanding and Generation

Recent advances in human preference alignment have significantly enhanced multimodal generation and understanding. A key approach is training reward models to guide preference optimization. However, existing models are often task-specific, limiting their adaptability across diverse visual applications. We also argue that jointly learning to assess multiple tasks may foster a synergistic effect, where improved image understanding enhances image generation assessment, and refined image evaluation benefits video assessment through better frame analysis. To this end, this paper proposes UnifiedReward, the first unified reward model for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment. Specifically, (1) we first develop UnifiedReward on our constructed large-scale human preference dataset, including both image and video generation/understanding tasks. (2) Then, it is utilized to automatically construct high-quality preference pair data based on the vision models, fine-gradually filtering their outputs through pair ranking and point sifting. (3) Finally, these data are used for their preference alignment through Direct Preference Optimization (DPO). Experimental results demonstrate that joint learning to assess diverse visual tasks can lead to substantial mutual benefits and we apply our pipeline to both image and video understanding/generation tasks, significantly improving the performance in each domain.

  • 5 authors
·
Mar 7 3

Open-Ended Learning Leads to Generally Capable Agents

In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.

  • 18 authors
·
Jul 27, 2021

Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization

Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in steering Language Models (LMs) towards human values/goals. The key to the strategy is employing a reward model ({varphi}) which can reflect a latent reward model with humans. While this strategy has proven to be effective, the training methodology requires a lot of human preference annotation (usually of the order of tens of thousands) to train {varphi}. Such large-scale preference annotations can be achievable if the reward model can be ubiquitously used. However, human values/goals are subjective and depend on the nature of the task. This poses a challenge in collecting diverse preferences for downstream applications. To address this, we propose a novel methodology to infuse domain knowledge into {varphi}, which reduces the size of preference annotation required. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (just 940 samples) while advancing the state-of-the-art. Our contributions include a novel Reward Modelling technique, a new dataset (PromptOpinSumm) for Opinion Summarization, and a human preference dataset (OpinPref). The proposed methodology opens avenues for efficient RLHF, making it more adaptable to diverse applications with varying human values. We release the artifacts for usage under MIT License.

  • 11 authors
·
Feb 23, 2024

RewardDance: Reward Scaling in Visual Generation

Reward Models (RMs) are critical for improving generation models via Reinforcement Learning (RL), yet the RM scaling paradigm in visual generation remains largely unexplored. It primarily due to fundamental limitations in existing approaches: CLIP-based RMs suffer from architectural and input modality constraints, while prevalent Bradley-Terry losses are fundamentally misaligned with the next-token prediction mechanism of Vision-Language Models (VLMs), hindering effective scaling. More critically, the RLHF optimization process is plagued by Reward Hacking issue, where models exploit flaws in the reward signal without improving true quality. To address these challenges, we introduce RewardDance, a scalable reward modeling framework that overcomes these barriers through a novel generative reward paradigm. By reformulating the reward score as the model's probability of predicting a "yes" token, indicating that the generated image outperforms a reference image according to specific criteria, RewardDance intrinsically aligns reward objectives with VLM architectures. This alignment unlocks scaling across two dimensions: (1) Model Scaling: Systematic scaling of RMs up to 26 billion parameters; (2) Context Scaling: Integration of task-specific instructions, reference examples, and chain-of-thought (CoT) reasoning. Extensive experiments demonstrate that RewardDance significantly surpasses state-of-the-art methods in text-to-image, text-to-video, and image-to-video generation. Crucially, we resolve the persistent challenge of "reward hacking": Our large-scale RMs exhibit and maintain high reward variance during RL fine-tuning, proving their resistance to hacking and ability to produce diverse, high-quality outputs. It greatly relieves the mode collapse problem that plagues smaller models.

On The Expressivity of Objective-Specification Formalisms in Reinforcement Learning

Most algorithms in reinforcement learning (RL) require that the objective is formalised with a Markovian reward function. However, it is well-known that certain tasks cannot be expressed by means of an objective in the Markov rewards formalism, motivating the study of alternative objective-specification formalisms in RL such as Linear Temporal Logic and Multi-Objective Reinforcement Learning. To date, there has not yet been any thorough analysis of how these formalisms relate to each other in terms of their expressivity. We fill this gap in the existing literature by providing a comprehensive comparison of 17 salient objective-specification formalisms. We place these formalisms in a preorder based on their expressive power, and present this preorder as a Hasse diagram. We find a variety of limitations for the different formalisms, and argue that no formalism is both dominantly expressive and straightforward to optimise with current techniques. For example, we prove that each of Regularised RL, (Outer) Nonlinear Markov Rewards, Reward Machines, Linear Temporal Logic, and Limit Average Rewards can express a task that the others cannot. The significance of our results is twofold. First, we identify important expressivity limitations to consider when specifying objectives for policy optimization. Second, our results highlight the need for future research which adapts reward learning to work with a greater variety of formalisms, since many existing reward learning methods assume that the desired objective takes a Markovian form. Our work contributes towards a more cohesive understanding of the costs and benefits of different RL objective-specification formalisms.

  • 6 authors
·
Oct 18, 2023

MiCRo: Mixture Modeling and Context-aware Routing for Personalized Preference Learning

Reward modeling is a key step in building safe foundation models when applying reinforcement learning from human feedback (RLHF) to align Large Language Models (LLMs). However, reward modeling based on the Bradley-Terry (BT) model assumes a global reward function, failing to capture the inherently diverse and heterogeneous human preferences. Hence, such oversimplification limits LLMs from supporting personalization and pluralistic alignment. Theoretically, we show that when human preferences follow a mixture distribution of diverse subgroups, a single BT model has an irreducible error. While existing solutions, such as multi-objective learning with fine-grained annotations, help address this issue, they are costly and constrained by predefined attributes, failing to fully capture the richness of human values. In this work, we introduce MiCRo, a two-stage framework that enhances personalized preference learning by leveraging large-scale binary preference datasets without requiring explicit fine-grained annotations. In the first stage, MiCRo introduces context-aware mixture modeling approach to capture diverse human preferences. In the second stage, MiCRo integrates an online routing strategy that dynamically adapts mixture weights based on specific context to resolve ambiguity, allowing for efficient and scalable preference adaptation with minimal additional supervision. Experiments on multiple preference datasets demonstrate that MiCRo effectively captures diverse human preferences and significantly improves downstream personalization.

  • 8 authors
·
May 30 2

ExTrans: Multilingual Deep Reasoning Translation via Exemplar-Enhanced Reinforcement Learning

In recent years, the emergence of large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, has shown impressive capabilities in complex problems, e.g., mathematics and coding. Some pioneering studies attempt to bring the success of LRMs in neural machine translation (MT). They try to build LRMs with deep reasoning MT ability via reinforcement learning (RL). Despite some progress that has been made, these attempts generally focus on several high-resource languages, e.g., English and Chinese, leaving the performance on other languages unclear. Besides, the reward modeling methods in previous work do not fully unleash the potential of reinforcement learning in MT. In this work, we first design a new reward modeling method that compares the translation results of the policy MT model with a strong LRM (i.e., DeepSeek-R1-671B), and quantifies the comparisons to provide rewards. Experimental results demonstrate the superiority of the reward modeling method. Using Qwen2.5-7B-Instruct as the backbone, the trained model achieves the new state-of-the-art performance in literary translation, and outperforms strong LRMs including OpenAI-o1 and DeepSeeK-R1. Furthermore, we extend our method to the multilingual settings with 11 languages. With a carefully designed lightweight reward modeling in RL, we can simply transfer the strong MT ability from a single direction into multiple (i.e., 90) translation directions and achieve impressive multilingual MT performance.

  • 3 authors
·
May 19 2

Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner

Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.

  • 6 authors
·
Jul 31

Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning

The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (i.e., assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present Router-R1, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To guide learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for performance and cost trade-off optimization, opening a pathway toward optimizing performance-cost tradeoffs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms over several strong baselines, achieving superior performance while maintaining robust generalization and cost management.Code is available at https://github.com/ulab-uiuc/Router-R1.

  • 3 authors
·
Jun 10 2

Position Auctions in AI-Generated Content

We consider an extension to the classic position auctions in which sponsored creatives can be added within AI generated content rather than shown in predefined slots. New challenges arise from the natural requirement that sponsored creatives should smoothly fit into the context. With the help of advanced LLM technologies, it becomes viable to accurately estimate the benefits of adding each individual sponsored creatives into each potential positions within the AI generated content by properly taking the context into account. Therefore, we assume one click-through rate estimation for each position-creative pair, rather than one uniform estimation for each sponsored creative across all positions in classic settings. As a result, the underlying optimization becomes a general matching problem, thus the substitution effects should be treated more carefully compared to standard position auction settings, where the slots are independent with each other. In this work, we formalize a concrete mathematical model of the extended position auction problem and study the welfare-maximization and revenue-maximization mechanism design problem. Formally, we consider two different user behavior models and solve the mechanism design problems therein respectively. For the Multinomial Logit (MNL) model, which is order-insensitive, we can efficiently implement the optimal mechanisms. For the cascade model, which is order-sensitive, we provide approximately optimal solutions.

  • 10 authors
·
Jun 3

OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment

Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured natural language criteria that capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further improve reliability by enforcing preference-label consistency via rejection sampling to remove noisy rubrics. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 6.8%. These gains transfer to policy models on instruction-following and biomedical benchmarks. Our results show that rubrics provide scalable alignment signals that narrow the gap between costly human evaluation and automated reward modeling, enabling a new principle-driven paradigm for LLM alignment.

OpenRubrics
·
Oct 8 2

RewardAnything: Generalizable Principle-Following Reward Models

Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.

  • 10 authors
·
Jun 4

Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards

Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).

  • 8 authors
·
Feb 28, 2024

EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling

Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.

Transforming and Combining Rewards for Aligning Large Language Models

A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is ``better'' than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. This derived transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is ``good'' in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.

  • 7 authors
·
Feb 1, 2024 1

COPO: Consistency-Aware Policy Optimization

Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.

  • 10 authors
·
Aug 6

Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach

Aligning large language models (LLMs) with human values and safety constraints is challenging, especially when objectives like helpfulness, truthfulness, and avoidance of harm conflict. Reinforcement Learning from Human Feedback (RLHF) has achieved notable success in steering models, but is complex and can be unstable. Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives~dpo. In this work, we propose a Group Relative Policy Optimization (GRPO) framework with a multi-label reward regression model to achieve safe and aligned language generation. The GRPO algorithm optimizes a policy by comparing groups of sampled responses, eliminating the need for a separate value critic and improving training efficiency~grpo. We train a reward model to predict multiple alignment scores (e.g., safety, helpfulness, etc.), which are combined into a single reward signal. We provide a theoretical derivation for using this learned multi-aspect reward within GRPO and discuss its advantages and limitations. Empirically, our approach improves all the safety and quality metrics evaluated in language generation tasks on model scales (0.5B, 7B, and 14B parameters), demonstrating a robust balance of objectives. We compare GRPO to PPO-based RLHF and DPO, highlighting that GRPO achieves alignment with significantly lower computational cost and explicit multi-objective handling. \textbf{We will open-source all trained models at https://huggingface.co/hydroxai.

  • 4 authors
·
Mar 26

The Policy Cliff: A Theoretical Analysis of Reward-Policy Maps in Large Language Models

Reinforcement learning (RL) plays a crucial role in shaping the behavior of large language and reasoning models (LLMs/LRMs). However, it often produces brittle and unstable policies, leading to critical failures such as spurious reasoning, deceptive alignment, and instruction disobedience that undermine the trustworthiness and safety of LLMs/LRMs. Currently, these issues lack a unified theoretical explanation and are typically addressed using ad-hoc heuristics. This paper presents a rigorous mathematical framework for analyzing the stability of the mapping from a reward function to the optimal policy. We show that policy brittleness often stems from non-unique optimal actions, a common occurrence when multiple valid traces exist in a reasoning task. This theoretical lens provides a unified explanation for a range of seemingly disparate failures, reframing them as rational outcomes of optimizing rewards that may be incomplete or noisy, especially in the presence of action degeneracy. We extend this analysis from the fundamental single-reward setting to the more realistic multi-reward RL across diverse domains, showing how stability is governed by an "effective reward" aggregation mechanism. We also prove that entropy regularization restores policy stability at the cost of increased stochasticity. Our framework provides a unified explanation for recent empirical findings on deceptive reasoning, instruction-following trade-offs, and RLHF-induced sophistry, and is further validated through perturbation experiments in multi-reward RL. This work advances policy-stability analysis from empirical heuristics towards a principled theory, offering essential insights for designing safer and more trustworthy AI systems.

  • 1 authors
·
Jul 27

A General Framework for Inference-time Scaling and Steering of Diffusion Models

Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .

  • 7 authors
·
Jan 12

Learning to Generate Research Idea with Dynamic Control

The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.

  • 5 authors
·
Dec 19, 2024

Reward Generalization in RLHF: A Topological Perspective

Existing alignment methods share a common topology of information flow, where reward information is collected from humans, modeled with preference learning, and used to tune language models. However, this shared topology has not been systematically characterized, nor have its alternatives been thoroughly explored, leaving the problems of low data efficiency and unreliable generalization unaddressed. As a solution, we introduce a theoretical framework for investigating reward generalization in reinforcement learning from human feedback (RLHF), focusing on the topology of information flow at both macro and micro levels. At the macro level, we portray the RLHF information flow as an autoencoding process over behavior distributions, formalizing the RLHF objective of distributional consistency between human preference and model behavior. At the micro level, we present induced Bayesian networks as a theory of reward generalization in RLHF, introducing fine-grained dataset topologies into generalization bounds. Combining analysis on both levels, we propose reward modeling from tree-structured preference information. It is shown to reduce reward uncertainty by up to Theta(log n/loglog n) times compared to baselines, where n is the dataset size. Validation on three NLP tasks shows that our tree-based reward model achieves an average win rate of 65% against baseline methods, thus improving reward generalization for free via topology design.

  • 10 authors
·
Feb 15, 2024

Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design

Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.

  • 10 authors
·
Oct 17, 2024

OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment

Recently, generative retrieval-based recommendation systems have emerged as a promising paradigm. However, most modern recommender systems adopt a retrieve-and-rank strategy, where the generative model functions only as a selector during the retrieval stage. In this paper, we propose OneRec, which replaces the cascaded learning framework with a unified generative model. To the best of our knowledge, this is the first end-to-end generative model that significantly surpasses current complex and well-designed recommender systems in real-world scenarios. Specifically, OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in. We adopt sparse Mixture-of-Experts (MoE) to scale model capacity without proportionally increasing computational FLOPs. 2) a session-wise generation approach. In contrast to traditional next-item prediction, we propose a session-wise generation, which is more elegant and contextually coherent than point-by-point generation that relies on hand-crafted rules to properly combine the generated results. 3) an Iterative Preference Alignment module combined with Direct Preference Optimization (DPO) to enhance the quality of the generated results. Unlike DPO in NLP, a recommendation system typically has only one opportunity to display results for each user's browsing request, making it impossible to obtain positive and negative samples simultaneously. To address this limitation, We design a reward model to simulate user generation and customize the sampling strategy. Extensive experiments have demonstrated that a limited number of DPO samples can align user interest preferences and significantly improve the quality of generated results. We deployed OneRec in the main scene of Kuaishou, achieving a 1.6\% increase in watch-time, which is a substantial improvement.

  • 8 authors
·
Feb 26 2

Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks

RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences, demonstrating exceptional and measurable efficacy in instruction following tasks; however, it exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks. Conventional approaches rely heavily on human annotation or more sophisticated large language models, thereby introducing substantial resource expenditure or potential bias concerns. Meanwhile, alternative synthetic methods that augment standard preference datasets often compromise the model's semantic quality. Our research identifies a critical oversight in existing techniques, which predominantly focus on comparing responses while neglecting valuable latent signals embedded within prompt inputs, and which only focus on preference disparities at the intra-sample level, while neglecting to account for the inter-sample level preference differentials that exist among preference data. To leverage these previously neglected indicators, we propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities. Specifically, for any given response in original preference data pairs, we construct varied prompts with a preference relation under different conditions, in order to learn intra-sample level preference disparities. Furthermore, for any given original preference pair, we synthesize multi-instruction preference pairs to capture preference discrepancies at the inter-sample level. Building on the two datasets constructed above, we consequently devise two sophisticated training objective functions. Subsequently, our framework integrates seamlessly into both Reward Modeling and Direct Preference Optimization paradigms. Through rigorous evaluation across multiple benchmarks, we empirically validate the efficacy of our framework.

  • 8 authors
·
May 19 1

Self-Exploring Language Models: Active Preference Elicitation for Online Alignment

Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when finetuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at https://github.com/shenao-zhang/SELM.

  • 7 authors
·
May 29, 2024 1

BLEUBERI: BLEU is a surprisingly effective reward for instruction following

Reward models are central to aligning LLMs with human preferences, but they are costly to train, requiring large-scale human-labeled preference data and powerful pretrained LLM backbones. Meanwhile, the increasing availability of high-quality synthetic instruction-following datasets raises the question: can simpler, reference-based metrics serve as viable alternatives to reward models during RL-based alignment? In this paper, we show first that BLEU, a basic string-matching metric, surprisingly matches strong reward models in agreement with human preferences on general instruction-following datasets. Based on this insight, we develop BLEUBERI, a method that first identifies challenging instructions and then applies Group Relative Policy Optimization (GRPO) using BLEU directly as the reward function. We demonstrate that BLEUBERI-trained models are competitive with models trained via reward model-guided RL across four challenging instruction-following benchmarks and three different base language models. A human evaluation further supports that the quality of BLEUBERI model outputs is on par with those from reward model-aligned models. Moreover, BLEUBERI models generate outputs that are more factually grounded than competing methods. Overall, we show that given access to high-quality reference outputs (easily obtained via existing instruction-following datasets or synthetic data generation), string matching-based metrics are cheap yet effective proxies for reward models during alignment. We release our code and data at https://github.com/lilakk/BLEUBERI.

  • 7 authors
·
May 16 2