new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 28

Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment

While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce Hummingbird, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks.

  • 8 authors
·
Feb 7

V2PE: Improving Multimodal Long-Context Capability of Vision-Language Models with Variable Visual Position Encoding

Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios, particularly in tasks involving videos, high-resolution images, or lengthy image-text documents. In our work, we first conduct an empirical analysis of the long-context capabilities of VLMs using our augmented long-context multimodal datasets. Our findings reveal that directly applying the positional encoding mechanism used for textual tokens to visual tokens is suboptimal, and VLM performance degrades sharply when the position encoding exceeds the model's context window. To address this, we propose Variable Visual Position Encoding (V2PE), a novel positional encoding approach that employs variable and smaller increments for visual tokens, enabling more efficient management of long multimodal sequences. Our experiments demonstrate the effectiveness of V2PE to enhances VLMs' ability to effectively understand and reason over long multimodal contexts. We further integrate V2PE with our augmented long-context multimodal datasets to fine-tune the open-source VLM, InternVL2. The fine-tuned model achieves strong performance on both standard and long-context multimodal tasks. Notably, when the sequence length of the training dataset is increased to 256K tokens, the model is capable of processing multimodal sequences up to 1M tokens, highlighting its potential for real-world long-context applications.

  • 7 authors
·
Dec 12, 2024

HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs

While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: brightpinkhttps://digital-avatar.github.io/ai/HumanSense/

  • 7 authors
·
Aug 14 2

Bringing Back the Context: Camera Trap Species Identification as Link Prediction on Multimodal Knowledge Graphs

Camera traps are valuable tools in animal ecology for biodiversity monitoring and conservation. However, challenges like poor generalization to deployment at new unseen locations limit their practical application. Images are naturally associated with heterogeneous forms of context possibly in different modalities. In this work, we leverage the structured context associated with the camera trap images to improve out-of-distribution generalization for the task of species identification in camera traps. For example, a photo of a wild animal may be associated with information about where and when it was taken, as well as structured biology knowledge about the animal species. While typically overlooked by existing work, bringing back such context offers several potential benefits for better image understanding, such as addressing data scarcity and enhancing generalization. However, effectively integrating such heterogeneous context into the visual domain is a challenging problem. To address this, we propose a novel framework that reformulates species classification as link prediction in a multimodal knowledge graph (KG). This framework seamlessly integrates various forms of multimodal context for visual recognition. We apply this framework for out-of-distribution species classification on the iWildCam2020-WILDS and Snapshot Mountain Zebra datasets and achieve competitive performance with state-of-the-art approaches. Furthermore, our framework successfully incorporates biological taxonomy for improved generalization and enhances sample efficiency for recognizing under-represented species.

  • 10 authors
·
Dec 31, 2023

MoVA: Adapting Mixture of Vision Experts to Multimodal Context

As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts. This benefits from the powerful model function understanding ability of the large language model (LLM) equipped with expert-routing low-rank adaptation (LoRA). In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge from various experts. This coarse-to-fine paradigm effectively leverages representations from experts based on multimodal context and model expertise, further enhancing the generalization ability. We conduct extensive experiments to evaluate the effectiveness of the proposed approach. Without any bells and whistles, MoVA can achieve significant performance gains over current state-of-the-art methods in a wide range of challenging multimodal benchmarks. Codes and models will be available at https://github.com/TempleX98/MoVA.

  • 8 authors
·
Apr 19, 2024

HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context

With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.

  • 10 authors
·
Jun 26 1

VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos

Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over 920 man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA

Multi-level Matching Network for Multimodal Entity Linking

Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.

  • 4 authors
·
Dec 11, 2024

A Multi-Modal Context Reasoning Approach for Conditional Inference on Joint Textual and Visual Clues

Conditional inference on joint textual and visual clues is a multi-modal reasoning task that textual clues provide prior permutation or external knowledge, which are complementary with visual content and pivotal to deducing the correct option. Previous methods utilizing pretrained vision-language models (VLMs) have achieved impressive performances, yet they show a lack of multimodal context reasoning capability, especially for text-modal information. To address this issue, we propose a Multi-modal Context Reasoning approach, named ModCR. Compared to VLMs performing reasoning via cross modal semantic alignment, it regards the given textual abstract semantic and objective image information as the pre-context information and embeds them into the language model to perform context reasoning. Different from recent vision-aided language models used in natural language processing, ModCR incorporates the multi-view semantic alignment information between language and vision by introducing the learnable alignment prefix between image and text in the pretrained language model. This makes the language model well-suitable for such multi-modal reasoning scenario on joint textual and visual clues. We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance (exact gain by 4.8% on PMR test set) compared to previous strong baselines. Code Link: https://github.com/YunxinLi/Multimodal-Context-Reasoning.

  • 6 authors
·
May 8, 2023

Multimodal Chain of Continuous Thought for Latent-Space Reasoning in Vision-Language Models

Many reasoning techniques for large multimodal models adapt language model approaches, such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences. While effective for text, these methods are suboptimal for multimodal contexts, struggling to align audio, visual, and textual information dynamically. To explore an alternative paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which enables reasoning directly in a joint latent space rather than in natural language. In MCOUT, the reasoning state is represented as a continuous hidden vector, iteratively refined and aligned with visual and textual embeddings, inspired by human reflective cognition. We develop two variants: MCOUT-Base, which reuses the language model`s last hidden state as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates multimodal latent attention to strengthen cross-modal alignment between visual and textual features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice and open-ended tasks. These findings highlight latent continuous reasoning as a promising direction for advancing LMMs beyond language-bound CoT, offering a scalable framework for human-like reflective multimodal inference. Code is available at https://github.com/Hanhpt23/OmniMod.

  • 2 authors
·
Aug 17

MM-BigBench: Evaluating Multimodal Models on Multimodal Content Comprehension Tasks

The popularity of multimodal large language models (MLLMs) has triggered a recent surge in research efforts dedicated to evaluating these models. Nevertheless, existing evaluation studies of MLLMs primarily focus on the comprehension and reasoning of unimodal (vision) content, neglecting performance evaluations in the domain of multimodal (vision-language) content understanding. Beyond multimodal reasoning, tasks related to multimodal content comprehension necessitate a profound understanding of multimodal contexts, achieved through the multimodal interaction to obtain a final answer. In this paper, we introduce a comprehensive assessment framework called MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions across a wide spectrum of diverse multimodal content comprehension tasks. Consequently, our work complements research on the performance of MLLMs in multimodal comprehension tasks, achieving a more comprehensive and holistic evaluation of MLLMs. To begin, we employ the Best Performance metric to ascertain each model's performance upper bound on different datasets. Subsequently, the Mean Relative Gain metric offers an assessment of the overall performance of various models and instructions, while the Stability metric measures their sensitivity. Furthermore, previous research centers on evaluating models independently or solely assessing instructions, neglecting the adaptability between models and instructions. We propose the Adaptability metric to quantify the adaptability between models and instructions. Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights. Our code will be released at https://github.com/declare-lab/MM-BigBench.

  • 10 authors
·
Oct 13, 2023

Visual-Oriented Fine-Grained Knowledge Editing for MultiModal Large Language Models

Knowledge editing aims to efficiently and cost-effectively correct inaccuracies and update outdated information. Recently, there has been growing interest in extending knowledge editing from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs), which integrate both textual and visual information, introducing additional editing complexities. Existing multimodal knowledge editing works primarily focus on text-oriented, coarse-grained scenarios, failing to address the unique challenges posed by multimodal contexts. In this paper, we propose a visual-oriented, fine-grained multimodal knowledge editing task that targets precise editing in images with multiple interacting entities. We introduce the Fine-Grained Visual Knowledge Editing (FGVEdit) benchmark to evaluate this task. Moreover, we propose a Multimodal Scope Classifier-based Knowledge Editor (MSCKE) framework. MSCKE leverages a multimodal scope classifier that integrates both visual and textual information to accurately identify and update knowledge related to specific entities within images. This approach ensures precise editing while preserving irrelevant information, overcoming the limitations of traditional text-only editing methods. Extensive experiments on the FGVEdit benchmark demonstrate that MSCKE outperforms existing methods, showcasing its effectiveness in solving the complex challenges of multimodal knowledge editing.

  • 6 authors
·
Nov 19, 2024

MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks

Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.

  • 8 authors
·
Jul 25 2

DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models

A long-standing goal of AI systems is to perform complex multimodal reasoning like humans. Recently, large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking. However, the transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation and the limitations in terms of flexibility, generalizability, and explainability. To evoke CoT reasoning in multimodality, this work first conducts an in-depth analysis of these challenges posed by multimodality and presents two key insights: "keeping critical thinking" and "letting everyone do their jobs" in multimodal CoT reasoning. Furthermore, this study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning by first dividing the reasoning responsibility of LLMs into reasoning and recognition and then integrating the visual recognition capability of visual models into the joint reasoning process. The rationales generated by DDCoT not only improve the reasoning abilities of both large and small language models in zero-shot prompting and fine-tuning learning, significantly outperforming state-of-the-art methods but also exhibit impressive generalizability and explainability.

  • 5 authors
·
Oct 25, 2023

Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models

Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.

  • 12 authors
·
May 29

InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models

We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.

  • 47 authors
·
Apr 14 8

VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning

Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.

  • 12 authors
·
Jul 30 4

RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete

Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.

  • 17 authors
·
Feb 28 1

TransRefer3D: Entity-and-Relation Aware Transformer for Fine-Grained 3D Visual Grounding

Recently proposed fine-grained 3D visual grounding is an essential and challenging task, whose goal is to identify the 3D object referred by a natural language sentence from other distractive objects of the same category. Existing works usually adopt dynamic graph networks to indirectly model the intra/inter-modal interactions, making the model difficult to distinguish the referred object from distractors due to the monolithic representations of visual and linguistic contents. In this work, we exploit Transformer for its natural suitability on permutation-invariant 3D point clouds data and propose a TransRefer3D network to extract entity-and-relation aware multimodal context among objects for more discriminative feature learning. Concretely, we devise an Entity-aware Attention (EA) module and a Relation-aware Attention (RA) module to conduct fine-grained cross-modal feature matching. Facilitated by co-attention operation, our EA module matches visual entity features with linguistic entity features while RA module matches pair-wise visual relation features with linguistic relation features, respectively. We further integrate EA and RA modules into an Entity-and-Relation aware Contextual Block (ERCB) and stack several ERCBs to form our TransRefer3D for hierarchical multimodal context modeling. Extensive experiments on both Nr3D and Sr3D datasets demonstrate that our proposed model significantly outperforms existing approaches by up to 10.6% and claims the new state-of-the-art. To the best of our knowledge, this is the first work investigating Transformer architecture for fine-grained 3D visual grounding task.

  • 7 authors
·
Aug 5, 2021

Openstory++: A Large-scale Dataset and Benchmark for Instance-aware Open-domain Visual Storytelling

Recent image generation models excel at creating high-quality images from brief captions. However, they fail to maintain consistency of multiple instances across images when encountering lengthy contexts. This inconsistency is largely due to in existing training datasets the absence of granular instance feature labeling in existing training datasets. To tackle these issues, we introduce Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text. Furthermore, we develop a training methodology that emphasizes entity-centric image-text generation, ensuring that the models learn to effectively interweave visual and textual information. Specifically, Openstory++ streamlines the process of keyframe extraction from open-domain videos, employing vision-language models to generate captions that are then polished by a large language model for narrative continuity. It surpasses previous datasets by offering a more expansive open-domain resource, which incorporates automated captioning, high-resolution imagery tailored for instance count, and extensive frame sequences for temporal consistency. Additionally, we present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided, including the ability to keep the background, style, instances in the given context coherent. Compared to existing benchmarks, our work fills critical gaps in multi-modal generation, propelling the development of models that can adeptly generate and interpret complex narratives in open-domain environments. Experiments conducted within Cohere-Bench confirm the superiority of Openstory++ in nurturing high-quality visual storytelling models, enhancing their ability to address open-domain generation tasks. More details can be found at https://openstorypp.github.io/

  • 12 authors
·
Aug 7, 2024 2

Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration

Multimodal large language models (MLLMs) have attracted considerable attention due to their exceptional performance in visual content understanding and reasoning. However, their inference efficiency has been a notable concern, as the increasing length of multimodal contexts leads to quadratic complexity. Token compression techniques, which reduce the number of visual tokens, have demonstrated their effectiveness in reducing computational costs. Yet, these approaches have struggled to keep pace with the rapid advancements in MLLMs, especially the AnyRes strategy in the context of high-resolution image understanding. In this paper, we propose a novel token compression method, GlobalCom^2, tailored for high-resolution MLLMs that receive both the thumbnail and multiple crops. GlobalCom^2 treats the tokens derived from the thumbnail as the "commander" of the entire token compression process, directing the allocation of retention ratios and the specific compression for each crop. In this way, redundant tokens are eliminated while important local details are adaptively preserved to the highest extent feasible. Empirical results across 10 benchmarks reveal that GlobalCom^2 achieves an optimal balance between performance and efficiency, and consistently outperforms state-of-the-art token compression methods with LLaVA-NeXT-7B/13B models. Our code is released at https://github.com/xuyang-liu16/GlobalCom2.

  • 10 authors
·
Jan 9

ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models

Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

  • 8 authors
·
Sep 26 2

BioD2C: A Dual-level Semantic Consistency Constraint Framework for Biomedical VQA

Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.

  • 5 authors
·
Mar 4

CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation

Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.

  • 6 authors
·
Oct 3, 2024

MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions

Large vision-language models (VLMs) face challenges in achieving robust, transferable reasoning abilities due to reliance on labor-intensive manual instruction datasets or computationally expensive self-supervised methods. To address these issues, we introduce MindGYM, a framework that enhances VLMs through synthetic self-challenging questions, consisting of three stages: (1) Seed Single-Hop Question Synthesis, generating cognitive questions across textual (e.g., logical deduction) and multimodal contexts (e.g., diagram-based queries) spanning eight semantic areas like ethical analysis; (2) Challenging Multi-Hop Question Synthesis, combining seed questions via diverse principles like bridging, visual-textual alignment, to create multi-step problems demanding deeper reasoning; and (3) Thinking-Induced Curriculum Fine-Tuning, a structured pipeline that progressively trains the model from scaffolded reasoning to standalone inference. By leveraging the model's self-synthesis capability, MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks. Extensive evaluations on seven benchmarks demonstrate superior performance over strong baselines, with notable improvements (+15.77% win rates) in reasoning depth and breadth validated via GPT-based scoring. MindGYM underscores the viability of self-challenging for refining VLM capabilities while minimizing human intervention and resource demands. Code and data are released to advance multimodal reasoning research.

  • 5 authors
·
Mar 12

SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning

Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, example ordering exhibits a recency bias, i.e., placing the most relevant example last can lead to substantial performance improvements by up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context.

  • 12 authors
·
Jun 26 1

LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference

Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.

  • 8 authors
·
Jun 26, 2024

True Multimodal In-Context Learning Needs Attention to the Visual Context

Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .

  • 8 authors
·
Jul 21 2

A Multimodal In-Context Tuning Approach for E-Commerce Product Description Generation

In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing automatic generation of product descriptions in a wide range of applications.

  • 6 authors
·
Feb 21, 2024

Lightweight In-Context Tuning for Multimodal Unified Models

In-context learning (ICL) involves reasoning from given contextual examples. As more modalities comes, this procedure is becoming more challenging as the interleaved input modalities convolutes the understanding process. This is exemplified by the observation that multimodal models often struggle to effectively extrapolate from contextual examples to perform ICL. To address these challenges, we introduce MultiModal In-conteXt Tuning (M^2IXT), a lightweight module to enhance the ICL capabilities of multimodal unified models. The proposed M^2IXT module perceives an expandable context window to incorporate various labeled examples of multiple modalities (e.g., text, image, and coordinates). It can be prepended to various multimodal unified models (e.g., OFA, Unival, LLaVA) of different architectures and trained via a mixed-tasks strategy to enable rapid few-shot adaption on multiple tasks and datasets. When tuned on as little as 50K multimodal data, M^2IXT can boost the few-shot ICL performance significantly (e.g., 18\% relative increase for OFA), and obtained state-of-the-art results across an array of tasks including visual question answering, image captioning, visual grounding, and visual entailment, while being considerably small in terms of model parameters (e.g., sim20times smaller than Flamingo or MMICL), highlighting the flexibility and effectiveness of M^2IXT as a multimodal in-context learner.

  • 4 authors
·
Oct 8, 2023

CATP: Contextually Adaptive Token Pruning for Efficient and Enhanced Multimodal In-Context Learning

Modern large vision-language models (LVLMs) convert each input image into a large set of tokens, far outnumbering the text tokens. Although this improves visual perception, it introduces severe image token redundancy. Because image tokens carry sparse information, many add little to reasoning, yet greatly increase inference cost. The emerging image token pruning methods tackle this issue by identifying the most important tokens and discarding the rest. These methods can raise efficiency with only modest performance loss. However, most of them only consider single-image tasks and overlook multimodal in-context learning (ICL), where redundancy is greater and efficiency is more critical. Redundant tokens weaken the advantage of multimodal ICL for rapid domain adaptation and cause unstable performance. Applying existing pruning methods in this setting leads to large accuracy drops, exposing a clear gap and the need for new techniques. Thus, we propose Contextually Adaptive Token Pruning (CATP), a training-free pruning method targeted at multimodal ICL. CATP consists of two stages that perform progressive pruning to fully account for the complex cross-modal interactions in the input sequence. After removing 77.8\% of the image tokens, CATP produces an average performance gain of 0.6\% over the vanilla model on four LVLMs and eight benchmarks, exceeding all baselines remarkably. Meanwhile, it effectively improves efficiency by achieving an average reduction of 10.78\% in inference latency. CATP enhances the practical value of multimodal ICL and lays the groundwork for future progress in interleaved image-text scenarios.

  • 6 authors
·
Aug 11

When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios

Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

VideoWebArena: Evaluating Long Context Multimodal Agents with Video Understanding Web Tasks

Videos are often used to learn or extract the necessary information to complete tasks in ways different than what text and static imagery alone can provide. However, many existing agent benchmarks neglect long-context video understanding, instead focusing on text or static image inputs. To bridge this gap, we introduce VideoWebArena (VideoWA), a benchmark for evaluating the capabilities of long-context multimodal agents for video understanding. VideoWA consists of 2,021 web agent tasks based on manually crafted video tutorials, which total almost four hours of content. For our benchmark, we define a taxonomy of long-context video-based agent tasks with two main areas of focus: skill retention and factual retention. While skill retention tasks evaluate whether an agent can use a given human demonstration to complete a task efficiently, the factual retention task evaluates whether an agent can retrieve instruction-relevant information from a video to complete a task. We find that the best model achieves 13.3% success on factual retention tasks and 45.8% on factual retention QA pairs, far below human performance at 73.9% and 79.3%, respectively. On skill retention tasks, long-context models perform worse with tutorials than without, exhibiting a 5% performance decrease in WebArena tasks and a 10.3% decrease in VisualWebArena tasks. Our work highlights the need to improve the agentic abilities of long-context multimodal models and provides a testbed for future development with long-context video agents.

  • 8 authors
·
Oct 24, 2024 2

I Think, Therefore I Diffuse: Enabling Multimodal In-Context Reasoning in Diffusion Models

This paper presents ThinkDiff, a novel alignment paradigm that empowers text-to-image diffusion models with multimodal in-context understanding and reasoning capabilities by integrating the strengths of vision-language models (VLMs). Existing multimodal diffusion finetuning methods largely focus on pixel-level reconstruction rather than in-context reasoning, and are constrained by the complexity and limited availability of reasoning-based datasets. ThinkDiff addresses these challenges by leveraging vision-language training as a proxy task, aligning VLMs with the decoder of an encoder-decoder large language model (LLM) instead of a diffusion decoder. This proxy task builds on the observation that the LLM decoder shares the same input feature space with diffusion decoders that use the corresponding LLM encoder for prompt embedding. As a result, aligning VLMs with diffusion decoders can be simplified through alignment with the LLM decoder. Without complex training and datasets, ThinkDiff effectively unleashes understanding, reasoning, and composing capabilities in diffusion models. Experiments demonstrate that ThinkDiff significantly improves accuracy from 19.2% to 46.3% on the challenging CoBSAT benchmark for multimodal in-context reasoning generation, with only 5 hours of training on 4 A100 GPUs. Additionally, ThinkDiff demonstrates exceptional performance in composing multiple images and texts into logically coherent images. Project page: https://mizhenxing.github.io/ThinkDiff.

  • 8 authors
·
Feb 12 3

ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval

Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.

  • 3 authors
·
Jul 29

VL-ICL Bench: The Devil in the Details of Benchmarking Multimodal In-Context Learning

Large language models (LLMs) famously exhibit emergent in-context learning (ICL) -- the ability to rapidly adapt to new tasks using few-shot examples provided as a prompt, without updating the model's weights. Built on top of LLMs, vision large language models (VLLMs) have advanced significantly in areas such as recognition, reasoning, and grounding. However, investigations into multimodal ICL have predominantly focused on few-shot visual question answering (VQA), and image captioning, which we will show neither exploit the strengths of ICL, nor test its limitations. The broader capabilities and limitations of multimodal ICL remain under-explored. In this study, we introduce a comprehensive benchmark VL-ICL Bench for multimodal in-context learning, encompassing a broad spectrum of tasks that involve both images and text as inputs and outputs, and different types of challenges, from {perception to reasoning and long context length}. We evaluate the abilities of state-of-the-art VLLMs against this benchmark suite, revealing their diverse strengths and weaknesses, and showing that even the most advanced models, such as GPT-4, find the tasks challenging. By highlighting a range of new ICL tasks, and the associated strengths and limitations of existing models, we hope that our dataset will inspire future work on enhancing the in-context learning capabilities of VLLMs, as well as inspire new applications that leverage VLLM ICL. The code and dataset are available at https://github.com/ys-zong/VL-ICL.

  • 3 authors
·
Mar 19, 2024

OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text

Image-text interleaved data, consisting of multiple images and texts arranged in a natural document format, aligns with the presentation paradigm of internet data and closely resembles human reading habits. Recent studies have shown that such data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning. However, the limited scale and diversity of current image-text interleaved data restrict the development of multimodal large language models. In this paper, we introduce OmniCorpus, a 10 billion-scale image-text interleaved dataset. Using an efficient data engine, we filter and extract large-scale high-quality documents, which contain 8.6 billion images and 1,696 billion text tokens. Compared to counterparts (e.g., MMC4, OBELICS), our dataset 1) has 15 times larger scales while maintaining good data quality; 2) features more diverse sources, including both English and non-English websites as well as video-centric websites; 3) is more flexible, easily degradable from an image-text interleaved format to pure text corpus and image-text pairs. Through comprehensive analysis and experiments, we validate the quality, usability, and effectiveness of the proposed dataset. We hope this could provide a solid data foundation for future multimodal model research. Code and data are released at https://github.com/OpenGVLab/OmniCorpus.

  • 40 authors
·
Jun 12, 2024 3

Multimodal Graph Learning for Generative Tasks

Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.

  • 4 authors
·
Oct 11, 2023

Grounding Task Assistance with Multimodal Cues from a Single Demonstration

A person's demonstration often serves as a key reference for others learning the same task. However, RGB video, the dominant medium for representing these demonstrations, often fails to capture fine-grained contextual cues such as intent, safety-critical environmental factors, and subtle preferences embedded in human behavior. This sensory gap fundamentally limits the ability of Vision Language Models (VLMs) to reason about why actions occur and how they should adapt to individual users. To address this, we introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues. MICA segments demonstrations into meaningful sub-tasks and extracts keyframes and captions that capture fine-grained intent and user-specific cues, enabling richer contextual grounding for visual question answering. Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval. Notably, gaze cues alone achieves 93% of speech performance, and their combination yields the highest accuracy. Task type determines the effectiveness of implicit (gaze) vs. explicit (speech) cues, underscoring the need for adaptable multimodal models. These results highlight the limitations of frame-based context and demonstrate the value of multimodal signals for real-world AI task assistance.

  • 5 authors
·
May 2

MIBench: Evaluating Multimodal Large Language Models over Multiple Images

Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks across multiple benchmarks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images remain underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. Therefore, in this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source MLLMs and close-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as confused fine-grained perception, limited multi-image reasoning, and unstable in-context learning. The annotated data in MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.

  • 11 authors
·
Jul 21, 2024 3

CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation

Interleaved image-text generation has emerged as a crucial multimodal task, aiming at creating sequences of interleaved visual and textual content given a query. Despite notable advancements in recent multimodal large language models (MLLMs), generating integrated image-text sequences that exhibit narrative coherence and entity and style consistency remains challenging due to poor training data quality. To address this gap, we introduce CoMM, a high-quality Coherent interleaved image-text MultiModal dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content. Initially, CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling, establishing a foundation for coherent and consistent content. To further refine the data quality, we devise a multi-perspective filter strategy that leverages advanced pre-trained models to ensure the development of sentences, consistency of inserted images, and semantic alignment between them. Various quality evaluation metrics are designed to prove the high quality of the filtered dataset. Meanwhile, extensive few-shot experiments on various downstream tasks demonstrate CoMM's effectiveness in significantly enhancing the in-context learning capabilities of MLLMs. Moreover, we propose four new tasks to evaluate MLLMs' interleaved generation abilities, supported by a comprehensive evaluation framework. We believe CoMM opens a new avenue for advanced MLLMs with superior multimodal in-context learning and understanding ability.

  • 8 authors
·
Jun 14, 2024

Making LLaMA SEE and Draw with SEED Tokenizer

The great success of Large Language Models (LLMs) has expanded the potential of multimodality, contributing to the gradual evolution of General Artificial Intelligence (AGI). A true AGI agent should not only possess the capability to perform predefined multi-tasks but also exhibit emergent abilities in an open-world context. However, despite the considerable advancements made by recent multimodal LLMs, they still fall short in effectively unifying comprehension and generation tasks, let alone open-world emergent abilities. We contend that the key to overcoming the present impasse lies in enabling text and images to be represented and processed interchangeably within a unified autoregressive Transformer. To this end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with the ability to SEE and Draw at the same time. We identify two crucial design principles: (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced by large-scale pretraining and instruction tuning on the interleaved textual and visual data, demonstrating impressive performance on a broad range of multimodal comprehension and generation tasks. More importantly, SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation, acting like your AI assistant.

  • 7 authors
·
Oct 2, 2023

Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding

Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.

  • 7 authors
·
May 29, 2024

BAP v2: An Enhanced Task Framework for Instruction Following in Minecraft Dialogues

Developing interactive agents that can understand language, perceive their surroundings, and act within the physical world is a long-standing goal of AI research. The Minecraft Collaborative Building Task (MCBT) (Narayan-Chen, Jayannavar, and Hockenmaier 2019), a two-player game in which an Architect (A) instructs a Builder (B) to construct a target structure in a simulated 3D Blocks World environment, offers a rich platform to work towards this goal. In this work, we focus on the Builder Action Prediction (BAP) subtask: predicting B's actions in a multimodal game context (Jayannavar, Narayan-Chen, and Hockenmaier 2020) - a challenging testbed for grounded instruction following, with limited training data. We holistically re-examine this task and introduce BAP v2 to address key challenges in evaluation, training data, and modeling. Specifically, we define an enhanced evaluation benchmark, featuring a cleaner test set and fairer, more insightful metrics that also reveal spatial reasoning as the primary performance bottleneck. To address data scarcity and to teach models basic spatial skills, we generate different types of synthetic MCBT data. We observe that current, LLM-based SOTA models trained on the human BAP dialogues fail on these simpler, synthetic BAP ones, but show that training models on this synthetic data improves their performance across the board. We also introduce a new SOTA model, Llama-CRAFTS, which leverages richer input representations, and achieves an F1 score of 53.0 on the BAP v2 task and strong performance on the synthetic data. While this result marks a notable 6 points improvement over previous work, it also underscores the task's remaining difficulty, establishing BAP v2 as a fertile ground for future research, and providing a useful measure of the spatial capabilities of current text-only LLMs in such embodied tasks.

  • 9 authors
·
Jan 18 1

Region-Level Context-Aware Multimodal Understanding

Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM

  • 5 authors
·
Aug 17

Re-ranking the Context for Multimodal Retrieval Augmented Generation

Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-k entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.

  • 4 authors
·
Jan 8

An Efficient Multimodal Learning Framework to Comprehend Consumer Preferences Using BERT and Cross-Attention

Today, the acquisition of various behavioral log data has enabled deeper understanding of customer preferences and future behaviors in the marketing field. In particular, multimodal deep learning has achieved highly accurate predictions by combining multiple types of data. Many of these studies utilize with feature fusion to construct multimodal models, which combines extracted representations from each modality. However, since feature fusion treats information from each modality equally, it is difficult to perform flexible analysis such as the attention mechanism that has been used extensively in recent years. Therefore, this study proposes a context-aware multimodal deep learning model that combines Bidirectional Encoder Representations from Transformers (BERT) and cross-attention Transformer, which dynamically changes the attention of deep-contextualized word representations based on background information such as consumer demographic and lifestyle variables. We conduct a comprehensive analysis and demonstrate the effectiveness of our model by comparing it with six reference models in three categories using behavioral logs stored on an online platform. In addition, we present an efficient multimodal learning method by comparing the learning efficiency depending on the optimizers and the prediction accuracy depending on the number of tokens in the text data.

  • 1 authors
·
May 12, 2024

CM$^3$: Calibrating Multimodal Recommendation

Alignment and uniformity are fundamental principles within the domain of contrastive learning. In recommender systems, prior work has established that optimizing the Bayesian Personalized Ranking (BPR) loss contributes to the objectives of alignment and uniformity. Specifically, alignment aims to draw together the representations of interacting users and items, while uniformity mandates a uniform distribution of user and item embeddings across a unit hypersphere. This study revisits the alignment and uniformity properties within the context of multimodal recommender systems, revealing a proclivity among extant models to prioritize uniformity to the detriment of alignment. Our hypothesis challenges the conventional assumption of equitable item treatment through a uniformity loss, proposing a more nuanced approach wherein items with similar multimodal attributes converge toward proximal representations within the hyperspheric manifold. Specifically, we leverage the inherent similarity between items' multimodal data to calibrate their uniformity distribution, thereby inducing a more pronounced repulsive force between dissimilar entities within the embedding space. A theoretical analysis elucidates the relationship between this calibrated uniformity loss and the conventional uniformity function. Moreover, to enhance the fusion of multimodal features, we introduce a Spherical B\'ezier method designed to integrate an arbitrary number of modalities while ensuring that the resulting fused features are constrained to the same hyperspherical manifold. Empirical evaluations conducted on five real-world datasets substantiate the superiority of our approach over competing baselines. We also shown that the proposed methods can achieve up to a 5.4% increase in NDCG@20 performance via the integration of MLLM-extracted features. Source code is available at: https://github.com/enoche/CM3.

  • 3 authors
·
Aug 2 2

A Multimodal Knowledge-enhanced Whole-slide Pathology Foundation Model

Remarkable strides in computational pathology have been made in the task-agnostic foundation model that advances the performance of a wide array of downstream clinical tasks. Despite the promising performance, there are still several challenges. First, prior works have resorted to either vision-only or image-caption data, disregarding pathology reports with more clinically authentic information from pathologists and gene expression profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the current progress in pathology FMs predominantly concentrates on the patch level, where the restricted context of patch-level pretraining fails to capture whole-slide patterns. Even recent slide-level FMs still struggle to provide whole-slide context for patch representation. In this study, for the first time, we develop a pathology foundation model incorporating three levels of modalities: pathology slides, pathology reports, and gene expression data, which resulted in 26,169 slide-level modality pairs from 10,275 patients across 32 cancer types, amounting to over 116 million pathological patch images. To leverage these data for CPath, we propose a novel whole-slide pretraining paradigm that injects the multimodal whole-slide context into the patch representation, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm revolutionizes the pretraining workflow for CPath, enabling the pathology FM to acquire the whole-slide context. To the best of our knowledge, this is the first attempt to incorporate three modalities at the whole-slide context for enhancing pathology FMs. To systematically evaluate the capabilities of mSTAR, we built the largest spectrum of oncological benchmark, spanning 7 categories of oncological applications in 15 types of 97 practical oncological tasks.

  • 19 authors
·
Jul 22, 2024

Aligning Large Multimodal Models with Factually Augmented RLHF

Large Multimodal Models (LMM) are built across modalities and the misalignment between two modalities can result in "hallucination", generating textual outputs that are not grounded by the multimodal information in context. To address the multimodal misalignment issue, we adapt the Reinforcement Learning from Human Feedback (RLHF) from the text domain to the task of vision-language alignment, where human annotators are asked to compare two responses and pinpoint the more hallucinated one, and the vision-language model is trained to maximize the simulated human rewards. We propose a new alignment algorithm called Factually Augmented RLHF that augments the reward model with additional factual information such as image captions and ground-truth multi-choice options, which alleviates the reward hacking phenomenon in RLHF and further improves the performance. We also enhance the GPT-4-generated training data (for vision instruction tuning) with previously available human-written image-text pairs to improve the general capabilities of our model. To evaluate the proposed approach in real-world scenarios, we develop a new evaluation benchmark MMHAL-BENCH with a special focus on penalizing hallucinations. As the first LMM trained with RLHF, our approach achieves remarkable improvement on the LLaVA-Bench dataset with the 94% performance level of the text-only GPT-4 (while previous best methods can only achieve the 87% level), and an improvement by 60% on MMHAL-BENCH over other baselines. We opensource our code, model, data at https://llava-rlhf.github.io.

  • 12 authors
·
Sep 25, 2023 2

Diving into Self-Evolving Training for Multimodal Reasoning

Reasoning ability is essential for Large Multimodal Models (LMMs). In the absence of multimodal chain-of-thought annotated data, self-evolving training, where the model learns from its own outputs, has emerged as an effective and scalable approach for enhancing reasoning abilities. Despite its growing usage, a comprehensive understanding of self-evolving training, particularly in the context of multimodal reasoning, remains limited. In this paper, we delve into the intricacies of self-evolving training for multimodal reasoning, pinpointing three key factors: Training Method, Reward Model, and Prompt Variation. We systematically examine each factor and explore how various configurations affect the training's effectiveness. Our analysis leads to a set of best practices for each factor, aimed at optimizing multimodal reasoning. Furthermore, we explore the Self-Evolution Dynamics during training and the impact of automatic balancing mechanisms in boosting performance. After all the investigations, we present a final recipe for self-evolving training in multimodal reasoning, encapsulating these design choices into a framework we call MSTaR (Multimodal Self-evolving Training for Reasoning), which is universally effective for models with different sizes on various benchmarks, e.g., surpassing the pre-evolved model significantly on 5 multimodal reasoning benchmarks without using additional human annotations, as demonstrated on MiniCPM-V-2.5 (8B), Phi-3.5-Vision (4B) and InternVL2 (2B). We believe this study fills a significant gap in the understanding of self-evolving training for multimodal reasoning and offers a robust framework for future research. Our policy and reward models, as well as the collected data, is released to facilitate further investigation in multimodal reasoning.

  • 6 authors
·
Dec 23, 2024 2

Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning

Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.

  • 13 authors
·
Nov 27, 2024 2

Capabilities of Gemini Models in Medicine

Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.

  • 66 authors
·
Apr 29, 2024 3

Improving Multi-modal Large Language Model through Boosting Vision Capabilities

We focus on improving the visual understanding capability for boosting the vision-language models. We propose Arcana, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``ladder'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at https://arcana-project-page.github.io.

  • 8 authors
·
Oct 17, 2024

Kimi-VL Technical Report

We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.

  • 92 authors
·
Apr 10 5

GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing

Large Vision-Language Models (LVLMs) have been widely adopted in various applications; however, they exhibit significant gender biases. Existing benchmarks primarily evaluate gender bias at the demographic group level, neglecting individual fairness, which emphasizes equal treatment of similar individuals. This research gap limits the detection of discriminatory behaviors, as individual fairness offers a more granular examination of biases that group fairness may overlook. For the first time, this paper introduces the GenderBias-VL benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria. To construct this benchmark, we first utilize text-to-image diffusion models to generate occupation images and their gender counterfactuals. Subsequently, we generate corresponding textual occupation options by identifying stereotyped occupation pairs with high semantic similarity but opposite gender proportions in real-world statistics. This method enables the creation of large-scale visual question counterfactuals to expose biases in LVLMs, applicable in both multimodal and unimodal contexts through modifying gender attributes in specific modalities. Overall, our GenderBias-VL benchmark comprises 34,581 visual question counterfactual pairs, covering 177 occupations. Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs (\eg, LLaVA) and state-of-the-art commercial APIs, including GPT-4o and Gemini-Pro. Our findings reveal widespread gender biases in existing LVLMs. Our benchmark offers: (1) a comprehensive dataset for occupation-related gender bias evaluation; (2) an up-to-date leaderboard on LVLM biases; and (3) a nuanced understanding of the biases presented by these models. The dataset and code are available at the \href{https://genderbiasvl.github.io/{website}.}

  • 9 authors
·
Jun 30, 2024

Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.

  • 9 authors
·
Jun 17, 2024 1

Many-Shot In-Context Learning in Multimodal Foundation Models

Large language models are well-known to be effective at few-shot in-context learning (ICL). Recent advancements in multimodal foundation models have enabled unprecedentedly long context windows, presenting an opportunity to explore their capability to perform ICL with many more demonstrating examples. In this work, we evaluate the performance of multimodal foundation models scaling from few-shot to many-shot ICL. We benchmark GPT-4o and Gemini 1.5 Pro across 10 datasets spanning multiple domains (natural imagery, medical imagery, remote sensing, and molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification). We observe that many-shot ICL, including up to almost 2,000 multimodal demonstrating examples, leads to substantial improvements compared to few-shot (<100 examples) ICL across all of the datasets. Further, Gemini 1.5 Pro performance continues to improve log-linearly up to the maximum number of tested examples on many datasets. Given the high inference costs associated with the long prompts required for many-shot ICL, we also explore the impact of batching multiple queries in a single API call. We show that batching up to 50 queries can lead to performance improvements under zero-shot and many-shot ICL, with substantial gains in the zero-shot setting on multiple datasets, while drastically reducing per-query cost and latency. Finally, we measure ICL data efficiency of the models, or the rate at which the models learn from more demonstrating examples. We find that while GPT-4o and Gemini 1.5 Pro achieve similar zero-shot performance across the datasets, Gemini 1.5 Pro exhibits higher ICL data efficiency than GPT-4o on most datasets. Our results suggest that many-shot ICL could enable users to efficiently adapt multimodal foundation models to new applications and domains. Our codebase is publicly available at https://github.com/stanfordmlgroup/ManyICL .

  • 6 authors
·
May 16, 2024 3

Link-Context Learning for Multimodal LLMs

The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.

  • 6 authors
·
Aug 15, 2023 1

SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection

Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.

  • 4 authors
·
Mar 5, 2024

CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval

Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.

  • 5 authors
·
Jun 6

Multimodal Long Video Modeling Based on Temporal Dynamic Context

Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.

  • 4 authors
·
Apr 14 2

LLM Context Conditioning and PWP Prompting for Multimodal Validation of Chemical Formulas

Identifying subtle technical errors within complex scientific and technical documents, especially those requiring multimodal interpretation (e.g., formulas in images), presents a significant hurdle for Large Language Models (LLMs) whose inherent error-correction tendencies can mask inaccuracies. This exploratory proof-of-concept (PoC) study investigates structured LLM context conditioning, informed by Persistent Workflow Prompting (PWP) principles, as a methodological strategy to modulate this LLM behavior at inference time. The approach is designed to enhance the reliability of readily available, general-purpose LLMs (specifically Gemini 2.5 Pro and ChatGPT Plus o3) for precise validation tasks, crucially relying only on their standard chat interfaces without API access or model modifications. To explore this methodology, we focused on validating chemical formulas within a single, complex test paper with known textual and image-based errors. Several prompting strategies were evaluated: while basic prompts proved unreliable, an approach adapting PWP structures to rigorously condition the LLM's analytical mindset appeared to improve textual error identification with both models. Notably, this method also guided Gemini 2.5 Pro to repeatedly identify a subtle image-based formula error previously overlooked during manual review, a task where ChatGPT Plus o3 failed in our tests. These preliminary findings highlight specific LLM operational modes that impede detail-oriented validation and suggest that PWP-informed context conditioning offers a promising and highly accessible technique for developing more robust LLM-driven analytical workflows, particularly for tasks requiring meticulous error detection in scientific and technical documents. Extensive validation beyond this limited PoC is necessary to ascertain broader applicability.

  • 1 authors
·
May 18 2

Retrieval-augmented in-context learning for multimodal large language models in disease classification

Objectives: We aim to dynamically retrieve informative demonstrations, enhancing in-context learning in multimodal large language models (MLLMs) for disease classification. Methods: We propose a Retrieval-Augmented In-Context Learning (RAICL) framework, which integrates retrieval-augmented generation (RAG) and in-context learning (ICL) to adaptively select demonstrations with similar disease patterns, enabling more effective ICL in MLLMs. Specifically, RAICL examines embeddings from diverse encoders, including ResNet, BERT, BioBERT, and ClinicalBERT, to retrieve appropriate demonstrations, and constructs conversational prompts optimized for ICL. We evaluated the framework on two real-world multi-modal datasets (TCGA and IU Chest X-ray), assessing its performance across multiple MLLMs (Qwen, Llava, Gemma), embedding strategies, similarity metrics, and varying numbers of demonstrations. Results: RAICL consistently improved classification performance. Accuracy increased from 0.7854 to 0.8368 on TCGA and from 0.7924 to 0.8658 on IU Chest X-ray. Multi-modal inputs outperformed single-modal ones, with text-only inputs being stronger than images alone. The richness of information embedded in each modality will determine which embedding model can be used to get better results. Few-shot experiments showed that increasing the number of retrieved examples further enhanced performance. Across different similarity metrics, Euclidean distance achieved the highest accuracy while cosine similarity yielded better macro-F1 scores. RAICL demonstrated consistent improvements across various MLLMs, confirming its robustness and versatility. Conclusions: RAICL provides an efficient and scalable approach to enhance in-context learning in MLLMs for multimodal disease classification.

  • 9 authors
·
May 4

Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification

Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by sim75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the sim50\% computation consumption under decoding without KV cache, while saving sim50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .

  • 8 authors
·
Dec 1, 2024

Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts

Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.

  • 3 authors
·
Jan 26

Mobility VLA: Multimodal Instruction Navigation with Long-Context VLMs and Topological Graphs

An elusive goal in navigation research is to build an intelligent agent that can understand multimodal instructions including natural language and image, and perform useful navigation. To achieve this, we study a widely useful category of navigation tasks we call Multimodal Instruction Navigation with demonstration Tours (MINT), in which the environment prior is provided through a previously recorded demonstration video. Recent advances in Vision Language Models (VLMs) have shown a promising path in achieving this goal as it demonstrates capabilities in perceiving and reasoning about multimodal inputs. However, VLMs are typically trained to predict textual output and it is an open research question about how to best utilize them in navigation. To solve MINT, we present Mobility VLA, a hierarchical Vision-Language-Action (VLA) navigation policy that combines the environment understanding and common sense reasoning power of long-context VLMs and a robust low-level navigation policy based on topological graphs. The high-level policy consists of a long-context VLM that takes the demonstration tour video and the multimodal user instruction as input to find the goal frame in the tour video. Next, a low-level policy uses the goal frame and an offline constructed topological graph to generate robot actions at every timestep. We evaluated Mobility VLA in a 836m^2 real world environment and show that Mobility VLA has a high end-to-end success rates on previously unsolved multimodal instructions such as "Where should I return this?" while holding a plastic bin.

  • 22 authors
·
Jul 10, 2024 2

OmChat: A Recipe to Train Multimodal Language Models with Strong Long Context and Video Understanding

We introduce OmChat, a model designed to excel in handling long contexts and video understanding tasks. OmChat's new architecture standardizes how different visual inputs are processed, making it more efficient and adaptable. It uses a dynamic vision encoding process to effectively handle images of various resolutions, capturing fine details across a range of image qualities. OmChat utilizes an active progressive multimodal pretraining strategy, which gradually increases the model's capacity for long contexts and enhances its overall abilities. By selecting high-quality data during training, OmChat learns from the most relevant and informative data points. With support for a context length of up to 512K, OmChat demonstrates promising performance in tasks involving multiple images and videos, outperforming most open-source models in these benchmarks. Additionally, OmChat proposes a prompting strategy for unifying complex multimodal inputs including single image text, multi-image text and videos, and achieving competitive performance on single-image benchmarks. To further evaluate the model's capabilities, we proposed a benchmark dataset named Temporal Visual Needle in a Haystack. This dataset assesses OmChat's ability to comprehend temporal visual details within long videos. Our analysis highlights several key factors contributing to OmChat's success: support for any-aspect high image resolution, the active progressive pretraining strategy, and high-quality supervised fine-tuning datasets. This report provides a detailed overview of OmChat's capabilities and the strategies that enhance its performance in visual understanding.

  • 10 authors
·
Jul 5, 2024