new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

A flexible framework for accurate LiDAR odometry, map manipulation, and localization

LiDAR-based SLAM is a core technology for autonomous vehicles and robots. One key contribution of this work to 3D LiDAR SLAM and localization is a fierce defense of view-based maps (pose graphs with time-stamped sensor readings) as the fundamental representation of maps. As will be shown, they allow for the greatest flexibility, enabling the posterior generation of arbitrary metric maps optimized for particular tasks, e.g. obstacle avoidance, real-time localization. Moreover, this work introduces a new framework in which mapping pipelines can be defined without coding, defining the connections of a network of reusable blocks much like deep-learning networks are designed by connecting layers of standardized elements. We also introduce tightly-coupled estimation of linear and angular velocity vectors within the Iterative Closest Point (ICP)-like optimizer, leading to superior robustness against aggressive motion profiles without the need for an IMU. Extensive experimental validation reveals that the proposal compares well to, or improves, former state-of-the-art (SOTA) LiDAR odometry systems, while also successfully mapping some hard sequences where others diverge. A proposed self-adaptive configuration has been used, without parameter changes, for all 3D LiDAR datasets with sensors between 16 and 128 rings, and has been extensively tested on 83 sequences over more than 250~km of automotive, hand-held, airborne, and quadruped LiDAR datasets, both indoors and outdoors. The system flexibility is demonstrated with additional configurations for 2D LiDARs and for building 3D NDT-like maps. The framework is open-sourced online: https://github.com/MOLAorg/mola

  • 1 authors
·
Jul 29, 2024

SORSA: Singular Values and Orthonormal Regularized Singular Vectors Adaptation of Large Language Models

The rapid advancement in large language models (LLMs) comes with a significant increase in their parameter size, presenting challenges for adaptation and fine-tuning. Parameter-efficient fine-tuning (PEFT) methods are widely used to adapt LLMs for downstream tasks efficiently. In this paper, we propose Singular Values and Orthonormal Regularized Singular Vectors Adaptation, or SORSA, a novel PEFT method. We introduce a method to analyze the variation of the parameters by performing singular value decomposition (SVD) and discuss and analyze SORSA's superiority in minimizing the alteration in the SVD aspect. Each SORSA adapter consists of two main parts: trainable principal singular weights W_p = U_p Sigma_p V^top_p, and frozen residual weights W_r = U_r Sigma_r V^top_r. These parts are initialized by performing SVD on pre-trained weights. Moreover, we implement and analyze an orthonormal regularizer, which could effectively transfer the scaling information into Sigma_p and ultimately allows the training process to be more efficient. SORSA adapters could be merged during inference, thus eliminating any inference latency. After all, SORSA shows a faster convergence than PiSSA and LoRA in our experiments. On the MATH benchmark, Llama 2 7B adapted using SORSA achieved 10.36% accuracy, outperforming LoRA (5.50%), Full FT (7.22%), and PiSSA (7.44%). On the GSM-8K benchmark, SORSA achieved 56.03% accuracy, surpassing LoRA (42.30%), Full FT (49.05%), and PiSSA (53.07%). We conclude that SORSA offers a new perspective on parameter-efficient fine-tuning, demonstrating remarkable performance. The code is available at https://github.com/Gunale0926/SORSA.

  • 1 authors
·
Aug 21, 2024

Learning to Program Variational Quantum Circuits with Fast Weights

Quantum Machine Learning (QML) has surfaced as a pioneering framework addressing sequential control tasks and time-series modeling. It has demonstrated empirical quantum advantages notably within domains such as Reinforcement Learning (RL) and time-series prediction. A significant advancement lies in Quantum Recurrent Neural Networks (QRNNs), specifically tailored for memory-intensive tasks encompassing partially observable environments and non-linear time-series prediction. Nevertheless, QRNN-based models encounter challenges, notably prolonged training duration stemming from the necessity to compute quantum gradients using backpropagation-through-time (BPTT). This predicament exacerbates when executing the complete model on quantum devices, primarily due to the substantial demand for circuit evaluation arising from the parameter-shift rule. This paper introduces the Quantum Fast Weight Programmers (QFWP) as a solution to the temporal or sequential learning challenge. The QFWP leverages a classical neural network (referred to as the 'slow programmer') functioning as a quantum programmer to swiftly modify the parameters of a variational quantum circuit (termed the 'fast programmer'). Instead of completely overwriting the fast programmer at each time-step, the slow programmer generates parameter changes or updates for the quantum circuit parameters. This approach enables the fast programmer to incorporate past observations or information. Notably, the proposed QFWP model achieves learning of temporal dependencies without necessitating the use of quantum recurrent neural networks. Numerical simulations conducted in this study showcase the efficacy of the proposed QFWP model in both time-series prediction and RL tasks. The model exhibits performance levels either comparable to or surpassing those achieved by QLSTM-based models.

  • 1 authors
·
Feb 27, 2024

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.

  • 7 authors
·
Oct 2, 2024 3

Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement

Merging Large Language Models (LLMs) aims to amalgamate multiple homologous LLMs into one with all the capabilities. Ideally, any LLMs sharing the same backbone should be mergeable, irrespective of whether they are Fine-Tuned (FT) with minor parameter changes or Pre-Trained (PT) with substantial parameter shifts. However, existing methods often manually assign the model importance, rendering them feasible only for LLMs with similar parameter alterations, such as multiple FT LLMs. The diverse parameter changed ranges between FT and PT LLMs pose challenges for current solutions in empirically determining the optimal combination. In this paper, we make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs. We initially examine the efficacy of current methods in merging FT and PT LLMs, discovering that they struggle to deal with PT LLMs. Subsequently, we introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope, which first disentangles model weights into magnitude and direction components, and then performs adaptive fusion by considering their respective contributions. In the experiments, we merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales. Results reveal that: (1) existing solutions usually fail when merging Sailor, either losing both abilities or only retaining instruction-following skills; (2) WIDEN successfully injects the multilingual abilities of Sailor into Qwen1.5-Chat and make it proficient in Southeast Asian languages, achieving enhancements in the fundamental capabilities. In light of previous research, we also merge multiple 13B FT LLMs and observe that WIDEN achieves a balanced amalgamation of instruction following, mathematical reasoning, and code generation skills.

  • 5 authors
·
Aug 6, 2024

A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions

Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.

MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning

In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as meta tool learning, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.

  • 2 authors
·
Jul 31

Efficient Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories

Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.

  • 3 authors
·
Oct 16, 2023

AlignGuard-LoRA: Alignment-Preserving Fine-Tuning via Fisher-Guided Decomposition and Riemannian-Geodesic Collision Regularization

Low-rank adaptation (LoRA) has become a standard tool for efficiently fine-tuning large language models (LLMs). Yet, even minor LoRA updates can induce alignment drift, weakening safety and behavioral constraints through entangled parameter changes. To address this, we propose AlignGuard-LoRA (AGL), a principled framework for preserving alignment during finetuning. AGL introduces several key components: a primary task loss for supervision, Fisher Information Matrix-based regularization to restrict updates in alignment-sensitive subspaces, and task-specific regularization to stabilize the integration of new knowledge. We further introduce collision-aware regularization, blending Riemannian overlap -- which penalizes coordinate-wise interference -- and geodesic separation -- which encourages disjoint update geometry. We curate DriftCaps, a targeted diagnostic benchmark of safe and unsafe prompts designed to quantify alignment drift and safety degradation. Empirical evaluations show that AGL mitigates alignment drift by up to 50% on safety-critical benchmarks without degrading downstream task performance. Comprehensive ablation confirms that each component contributes distinctly to preserving latent safety behaviors. Finally, we derive and validate a scaling law for catastrophic forgetting, revealing that AGL flattens post-finetuning loss escalation while preserving adaptation dynamics. AGL is a structurally grounded refinement of LoRA, ensuring alignment preservation with minimal trade-offs. To encourage further exploration and development, we open-source our implementation.

  • 4 authors
·
Aug 4 2

UOE: Unlearning One Expert Is Enough For Mixture-of-experts LLMS

Recent advancements in large language model (LLM) unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. However, despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have received little attention and remain largely unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance and highly efficient inference processes, we ask: How can unlearning be performed effectively and efficiently on MoE LLMs? And will traditional unlearning methods be applicable to MoE architectures? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to substantial utility drops when existing unlearning methods are applied. Specifically, unlearning disrupts the router's expert selection, causing significant selection shift from the most unlearning target-related experts to irrelevant ones. As a result, more experts than necessary are affected, leading to excessive forgetting and loss of control over which knowledge is erased. To address this, we propose a novel single-expert unlearning framework, referred to as UOE, for MoE LLMs. Through expert attribution, unlearning is concentrated on the most actively engaged expert for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning that preserves model utility. The proposed UOE framework is also compatible with various unlearning algorithms. Extensive experiments demonstrate that UOE enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks, LLM architectures, while only unlearning 0.06% of the model parameters.

  • 7 authors
·
Nov 27, 2024

PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection

To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.

  • 5 authors
·
Sep 11

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Recent work in language modeling demonstrates that training large transformer models advances the state of the art in Natural Language Processing applications. However, very large models can be quite difficult to train due to memory constraints. In this work, we present our techniques for training very large transformer models and implement a simple, efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9 billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy of 89.4%).

  • 6 authors
·
Sep 17, 2019

Experience of Training a 1.7B-Parameter LLaMa Model From Scratch

Pretraining large language models is a complex endeavor influenced by multiple factors, including model architecture, data quality, training continuity, and hardware constraints. In this paper, we share insights gained from the experience of training DMaS-LLaMa-Lite, a fully open source, 1.7-billion-parameter, LLaMa-based model, on approximately 20 billion tokens of carefully curated data. We chronicle the full training trajectory, documenting how evolving validation loss levels and downstream benchmarks reflect transitions from incoherent text to fluent, contextually grounded output. Beyond standard quantitative metrics, we highlight practical considerations such as the importance of restoring optimizer states when resuming from checkpoints, and the impact of hardware changes on training stability and throughput. While qualitative evaluation provides an intuitive understanding of model improvements, our analysis extends to various performance benchmarks, demonstrating how high-quality data and thoughtful scaling enable competitive results with significantly fewer training tokens. By detailing these experiences and offering training logs, checkpoints, and sample outputs, we aim to guide future researchers and practitioners in refining their pretraining strategies. The training script is available on Github at https://github.com/McGill-DMaS/DMaS-LLaMa-Lite-Training-Code. The model checkpoints are available on Huggingface at https://huggingface.co/collections/McGill-DMaS/dmas-llama-lite-6761d97ba903f82341954ceb.

  • 3 authors
·
Dec 17, 2024

Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures

Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.

Dynamics of Instruction Tuning: Each Ability of Large Language Models Has Its Own Growth Pace

Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). However, the creation of instruction data is still largely heuristic, leading to significant variation in quality and distribution across existing datasets. Experimental conclusions drawn from these datasets are also inconsistent, with some studies emphasizing the importance of scaling instruction numbers, while others argue that a limited number of samples suffice. To better understand data construction guidelines, we deepen our focus from the overall model performance to the growth of each underlying ability, such as creative writing, code generation, and logical reasoning. We systematically investigate the effects of data volume, parameter size, and data construction methods on the development of various abilities, using hundreds of model checkpoints (7b to 33b) fully instruction-tuned on a new collection of over 40k human-curated instruction data. This proposed dataset is stringently quality-controlled and categorized into ten distinct LLM abilities. Our study reveals three primary findings: (i) Despite data volume and parameter scale directly impacting models' overall performance, some abilities are more responsive to their increases and can be effectively trained using limited data, while some are highly resistant to these changes. (ii) Human-curated data strongly outperforms synthetic data from GPT-4 in efficiency and can constantly enhance model performance with volume increases, but is unachievable with synthetic data. (iii) Instruction data brings powerful cross-ability generalization, with evaluation results on out-of-domain data mirroring the first two observations. Furthermore, we demonstrate how these findings can guide more efficient data constructions, leading to practical performance improvements on public benchmarks.

  • 6 authors
·
Oct 30, 2023

FLoRA: Low-Rank Core Space for N-dimension

Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.

  • 9 authors
·
May 23, 2024

Towards Understanding Bugs in Distributed Training and Inference Frameworks for Large Language Models

With the rapid development of large language models (LLMs), distributed training and inference frameworks like DeepSpeed have become essential for scaling model training and inference across multiple GPUs or nodes. However, the increasing complexity of these frameworks brings non-trivial software bugs, which may degrade training performance, cause unexpected failures, and result in significant resource waste. Understanding framework bugs' characteristics is fundamental for quality assurance, allowing the design of more effective debugging and repair methods. Thus, our paper conducts the first large-scale empirical analysis of 308 fixed bugs across three popular distributed training/inference frameworks: DeepSpeed, Megatron-LM, and Colossal-AI. We examine bug symptoms, root causes, bug identification and fixing efforts, and common low-effort fixing strategies. Additionally, the distributed nature of these frameworks introduces unique bug root causes, such as allocation strategy error and distributed communication error. Diagnosing and fixing complex bugs remains challenging due to factors like the disconnect between symptoms and root causes, high bug reproduction costs, and low-level or cross-component interactions. Interestingly, we observe that 48% of bug fixes require minimal code changes (<=10 LOC) and follow simple strategies such as conditional logic optimization, parameter handling enhancement, or version compatibility handling, indicating potential for automation. Based on these insights, we offer several implications for improving the reliability of both distributed training and inference frameworks and their dependent LLM projects, while also identifying opportunities to leverage LLM-based tools for automated debugging and repair.

  • 6 authors
·
Jun 12 1

Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees

There is an emerging interest in generating robust counterfactual explanations that would remain valid if the model is updated or changed even slightly. Towards finding robust counterfactuals, existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., |Params(M){-}Params(m)|{<}Delta. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure -- that we call Stability -- to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential ``naturally-occurring'' model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine practical relaxations of our proposed measure and demonstrate experimentally how they can be incorporated to find robust counterfactuals for neural networks that are close, realistic, and remain valid after potential model changes.

  • 5 authors
·
May 19, 2023

Agentic Refactoring: An Empirical Study of AI Coding Agents

Agentic coding tools, such as OpenAI Codex, Claude Code, and Cursor, are transforming the software engineering landscape. These AI-powered systems function as autonomous teammates capable of planning and executing complex development tasks. Agents have become active participants in refactoring, a cornerstone of sustainable software development aimed at improving internal code quality without altering observable behavior. Despite their increasing adoption, there is a critical lack of empirical understanding regarding how agentic refactoring is utilized in practice, how it compares to human-driven refactoring, and what impact it has on code quality. To address this empirical gap, we present a large-scale study of AI agent-generated refactorings in real-world open-source Java projects, analyzing 15,451 refactoring instances across 12,256 pull requests and 14,988 commits derived from the AIDev dataset. Our empirical analysis shows that refactoring is a common and intentional activity in this development paradigm, with agents explicitly targeting refactoring in 26.1% of commits. Analysis of refactoring types reveals that agentic efforts are dominated by low-level, consistency-oriented edits, such as Change Variable Type (11.8%), Rename Parameter (10.4%), and Rename Variable (8.5%), reflecting a preference for localized improvements over the high-level design changes common in human refactoring. Additionally, the motivations behind agentic refactoring focus overwhelmingly on internal quality concerns, with maintainability (52.5%) and readability (28.1%). Furthermore, quantitative evaluation of code quality metrics shows that agentic refactoring yields small but statistically significant improvements in structural metrics, particularly for medium-level changes, reducing class size and complexity (e.g., Class LOC median Δ = -15.25).

  • 6 authors
·
Nov 6 2

8-bit Optimizers via Block-wise Quantization

Stateful optimizers maintain gradient statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past gradient values. This state can be used to accelerate optimization compared to plain stochastic gradient descent but uses memory that might otherwise be allocated to model parameters, thereby limiting the maximum size of models trained in practice. In this paper, we develop the first optimizers that use 8-bit statistics while maintaining the performance levels of using 32-bit optimizer states. To overcome the resulting computational, quantization, and stability challenges, we develop block-wise dynamic quantization. Block-wise quantization divides input tensors into smaller blocks that are independently quantized. Each block is processed in parallel across cores, yielding faster optimization and high precision quantization. To maintain stability and performance, we combine block-wise quantization with two additional changes: (1) dynamic quantization, a form of non-linear optimization that is precise for both large and small magnitude values, and (2) a stable embedding layer to reduce gradient variance that comes from the highly non-uniform distribution of input tokens in language models. As a result, our 8-bit optimizers maintain 32-bit performance with a small fraction of the memory footprint on a range of tasks, including 1.5B parameter language modeling, GLUE finetuning, ImageNet classification, WMT'14 machine translation, MoCo v2 contrastive ImageNet pretraining+finetuning, and RoBERTa pretraining, without changes to the original optimizer hyperparameters. We open-source our 8-bit optimizers as a drop-in replacement that only requires a two-line code change.

  • 4 authors
·
Oct 6, 2021

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

  • 2 authors
·
Feb 18

Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing

Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.

  • 8 authors
·
Jul 11, 2024 4

Parameter Competition Balancing for Model Merging

While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.

  • 11 authors
·
Oct 3, 2024

HUT: A More Computation Efficient Fine-Tuning Method With Hadamard Updated Transformation

Fine-tuning pre-trained language models for downstream tasks has achieved impressive results in NLP. However, fine-tuning all parameters becomes impractical due to the rapidly increasing size of model parameters. To address this, Parameter Efficient Fine-Tuning (PEFT) methods update only a subset of parameters. Most PEFT methods, such as LoRA, use incremental updates, which involve adding learned weight matrix increments to the original parameters. Although effective, these methods face limitations in capturing complex parameter dynamics and do not maintain a strong correlation between the original and updated parameters. To overcome these challenges, we propose the direct Updated Transformation (UT) paradigm, which constructs a transformation directly from the original to the updated parameters. This approach ensures that the correlation between the original and updated parameters is preserved, leveraging the semantic features learned during pre-training. Building on this paradigm, we present the Hadamard Updated Transformation (HUT) method. HUT efficiently updates the original weight matrix using the Hadamard transformation with two low-rank matrices, offering a more expressive and flexible update mechanism. This allows HUT to capture richer parameter features through functional transformations, reducing computational complexity while maintaining or improving model quality. Theoretical analysis and extensive experiments on RoBERTa and GPT-2 validate the effectiveness of HUT. Results show that HUT performs on par with or better than other PEFT methods in terms of model quality, while significantly reducing computational complexity.

  • 3 authors
·
Sep 20, 2024

A Three-regime Model of Network Pruning

Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.

  • 4 authors
·
May 28, 2023

MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning

Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS

  • 6 authors
·
Dec 12, 2024