new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 19

SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World

Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.

  • 5 authors
·
Dec 10, 2024

EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models

Large transformer models display promising performance on a wide range of natural language processing (NLP) tasks. Although the AI community has expanded the model scale to the trillion parameter level, the practical deployment of 10-100 billion parameter models is still uncertain due to the latency, throughput, and memory constraints. In this paper, we proposed EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models on single- or multi-GPU systems. EnergonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns. It delegates the execution of sub-models to multiple workers in the single-controller style and applies tensor parallelism and pipeline parallelism among the workers in a multi-controller style. Upon the novel architecture, we propose three techniques, i.e. non-blocking pipeline parallelism, distributed redundant computation elimination, and peer memory pooling. EnergonAI enables the users to program complex parallel code the same as a serial one. Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput. In our experiments, EnergonAI can achieve 37% latency reduction in tensor parallelism, 10% scalability improvement in pipeline parallelism, and it improves the model scale inferred on a single GPU by using a larger heterogeneous memory space at cost of limited performance reduction.

  • 7 authors
·
Sep 6, 2022

Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression

Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.

  • 6 authors
·
Aug 7

Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning

Paraphrasing of offensive content is a better alternative to content removal and helps improve civility in a communication environment. Supervised paraphrasers; however, rely heavily on large quantities of labelled data to help preserve meaning and intent. They also retain a large portion of the offensiveness of the original content, which raises questions on their overall usability. In this paper we aim to assist practitioners in developing usable paraphrasers by exploring In-Context Learning (ICL) with large language models (LLMs), i.e., using a limited number of input-label demonstration pairs to guide the model in generating desired outputs for specific queries. Our study focuses on key factors such as -- number and order of demonstrations, exclusion of prompt instruction, and reduction in measured toxicity. We perform principled evaluation on three datasets, including our proposed Context-Aware Polite Paraphrase dataset, comprising of dialogue-style rude utterances, polite paraphrases, and additional dialogue context. We evaluate our approach using two closed source and one open source LLM. Our results reveal that ICL is comparable to supervised methods in generation quality, while being qualitatively better by 25% on human evaluation and attaining lower toxicity by 76%. Also, ICL-based paraphrasers only show a slight reduction in performance even with just 10% training data.

  • 6 authors
·
Oct 16, 2023

3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination

The integration of language and 3D perception is crucial for developing embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is the absence of large-scale datasets that provide dense grounding between language and 3D scenes. In this paper, we introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons among future models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the critical role of large-scale 3D-text datasets in advancing embodied AI research. Notably, our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with essential resources and insights, setting the stage for more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io

  • 7 authors
·
Jun 7, 2024 2

PRE: A Peer Review Based Large Language Model Evaluator

The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.

  • 5 authors
·
Jan 28, 2024

KMM: Key Frame Mask Mamba for Extended Motion Generation

Human motion generation is a cut-edge area of research in generative computer vision, with promising applications in video creation, game development, and robotic manipulation. The recent Mamba architecture shows promising results in efficiently modeling long and complex sequences, yet two significant challenges remain: Firstly, directly applying Mamba to extended motion generation is ineffective, as the limited capacity of the implicit memory leads to memory decay. Secondly, Mamba struggles with multimodal fusion compared to Transformers, and lack alignment with textual queries, often confusing directions (left or right) or omitting parts of longer text queries. To address these challenges, our paper presents three key contributions: Firstly, we introduce KMM, a novel architecture featuring Key frame Masking Modeling, designed to enhance Mamba's focus on key actions in motion segments. This approach addresses the memory decay problem and represents a pioneering method in customizing strategic frame-level masking in SSMs. Additionally, we designed a contrastive learning paradigm for addressing the multimodal fusion problem in Mamba and improving the motion-text alignment. Finally, we conducted extensive experiments on the go-to dataset, BABEL, achieving state-of-the-art performance with a reduction of more than 57% in FID and 70% parameters compared to previous state-of-the-art methods. See project website: https://steve-zeyu-zhang.github.io/KMM

  • 8 authors
·
Nov 10, 2024 2

UNComp: Can Matrix Entropy Uncover Sparsity? -- A Compressor Design from an Uncertainty-Aware Perspective

Deploying large language models (LLMs) for long-context inference remains challenging due to their substantial memory and computational demands. While techniques such as Key-Value (KV) cache compression are designed to reduce memory usage, they often neglect the structured sparsity inherent in the relationship between hidden states and their corresponding KV cache. In this work, we explore the role of uncertainty as a potential indicator of sparsity within LLMs. We propose UNComp, an uncertainty-aware framework that leverages truncated matrix entropy to identify areas of low information content, thereby revealing sparsity patterns that can be used for adaptive compression. Unlike traditional methods that apply uniform compression, UNComp dynamically adjusts its approach to compression, guided by uncertainty measures that reflect the importance of various model components. Our analysis shows that sparsity patterns, when derived from uncertainty estimates, can be exploited to reveal special long-range dependencies, such as retrieval heads and retrieval layers. This perspective not only enhances our understanding of how compression can be optimized but also provides new insights into the inherent sparsity of LLMs during long-context inference. By focusing on uncertainty to analyze the sparsity pattern in detail, UNComp reduces the KV cache size to 4.74% of the original, achieves a 6% prefill speedup, and improves throughput by 6.4x - not only delivering strong lossless compression performance, but also validating the effectiveness of the underlying theoretical tool. We release the code at https://github.com/menik1126/UNComp.

  • 12 authors
·
Oct 3, 2024

ViTGaze: Gaze Following with Interaction Features in Vision Transformers

Gaze following aims to interpret human-scene interactions by predicting the person's focal point of gaze. Prevailing approaches often adopt a two-stage framework, whereby multi-modality information is extracted in the initial stage for gaze target prediction. Consequently, the efficacy of these methods highly depends on the precision of the preceding modality extraction. Others use a single-modality approach with complex decoders, increasing network computational load. Inspired by the remarkable success of pre-trained plain vision transformers (ViTs), we introduce a novel single-modality gaze following framework called ViTGaze. In contrast to previous methods, it creates a novel gaze following framework based mainly on powerful encoders (relative decoder parameters less than 1%). Our principal insight is that the inter-token interactions within self-attention can be transferred to interactions between humans and scenes. Leveraging this presumption, we formulate a framework consisting of a 4D interaction encoder and a 2D spatial guidance module to extract human-scene interaction information from self-attention maps. Furthermore, our investigation reveals that ViT with self-supervised pre-training has an enhanced ability to extract correlation information. Many experiments have been conducted to demonstrate the performance of the proposed method. Our method achieves state-of-the-art (SOTA) performance among all single-modality methods (3.4% improvement in the area under curve (AUC) score, 5.1% improvement in the average precision (AP)) and very comparable performance against multi-modality methods with 59% number of parameters less.

  • 6 authors
·
Mar 19, 2024

Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting

Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.

  • 5 authors
·
Sep 26, 2023

Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

The growing computational demands posed by increasingly number of neural network's parameters necessitate low-memory-consumption training approaches. Previous memory reduction techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, suffer from the limitation of low rank and saddle point issues, particularly during intensive tasks like pre-training. In this paper, we propose Sparse Spectral Training (SST), an advanced training methodology that updates all singular values and selectively updates singular vectors of network weights, thereby optimizing resource usage while closely approximating full-rank training. SST refines the training process by employing a targeted updating strategy for singular vectors, which is determined by a multinomial sampling method weighted by the significance of the singular values, ensuring both high performance and memory reduction. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, including natural language generation, machine translation, node classification and link prediction, SST demonstrates its capability to outperform existing memory reduction training methods and is comparable with full-rank training in some cases. On OPT-125M, with rank equating to 8.3% of embedding dimension, SST reduces the perplexity gap to full-rank training by 67.6%, demonstrating a significant reduction of the performance loss with prevalent low-rank methods. This approach offers a strong alternative to traditional training techniques, paving the way for more efficient and scalable neural network training solutions.

  • 5 authors
·
May 24, 2024

Less is More: Selective Reduction of CT Data for Self-Supervised Pre-Training of Deep Learning Models with Contrastive Learning Improves Downstream Classification Performance

Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further research is necessary to incorporate the particular characteristics of these images. We hypothesize that the similarity of medical images hinders the success of contrastive learning in the medical imaging domain. To this end, we investigate different strategies based on deep embedding, information theory, and hashing in order to identify and reduce redundancy in medical pre-training datasets. The effect of these different reduction strategies on contrastive learning is evaluated on two pre-training datasets and several downstream classification tasks. In all of our experiments, dataset reduction leads to a considerable performance gain in downstream tasks, e.g., an AUC score improvement from 0.78 to 0.83 for the COVID CT Classification Grand Challenge, 0.97 to 0.98 for the OrganSMNIST Classification Challenge and 0.73 to 0.83 for a brain hemorrhage classification task. Furthermore, pre-training is up to nine times faster due to the dataset reduction. In conclusion, the proposed approach highlights the importance of dataset quality and provides a transferable approach to improve contrastive pre-training for classification downstream tasks on medical images.

  • 7 authors
·
Oct 18, 2024

Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data

Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

  • 11 authors
·
Aug 22

Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference

Transformers have emerged as the underpinning architecture for Large Language Models (LLMs). In generative language models, the inference process involves two primary phases: prompt processing and token generation. Token generation, which constitutes the majority of the computational workload, primarily entails vector-matrix multiplications and interactions with the Key-Value (KV) Cache. This phase is constrained by memory bandwidth due to the overhead of transferring weights and KV cache values from the memory system to the computing units. This memory bottleneck becomes particularly pronounced in applications that require long-context and extensive text generation, both of which are increasingly crucial for LLMs. This paper introduces "Keyformer", an innovative inference-time approach, to mitigate the challenges associated with KV cache size and memory bandwidth utilization. Keyformer leverages the observation that approximately 90% of the attention weight in generative inference focuses on a specific subset of tokens, referred to as "key" tokens. Keyformer retains only the key tokens in the KV cache by identifying these crucial tokens using a novel score function. This approach effectively reduces both the KV cache size and memory bandwidth usage without compromising model accuracy. We evaluate Keyformer's performance across three foundational models: GPT-J, Cerebras-GPT, and MPT, which employ various positional embedding algorithms. Our assessment encompasses a variety of tasks, with a particular emphasis on summarization and conversation tasks involving extended contexts. Keyformer's reduction of KV cache reduces inference latency by 2.1x and improves token generation throughput by 2.4x, while preserving the model's accuracy.

  • 6 authors
·
Mar 13, 2024

Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models

Token-based video representation has emerged as a promising approach for enabling large language models (LLMs) to interpret video content. However, existing token reduction techniques, such as pruning and merging, often disrupt essential positional embeddings and rely on continuous visual tokens sampled from nearby pixels with similar spatial-temporal locations. By removing only a small fraction of tokens, these methods still produce relatively lengthy continuous sequences, which falls short of the extreme compression required to balance computational efficiency and token count in video LLMs. In this paper, we introduce the novel task of Extreme Short Token Reduction, which aims to represent entire videos using a minimal set of discrete tokens. We propose VQToken, a neural discrete token representation framework that (i) applies adaptive vector quantization to continuous ViT embeddings to learn a compact codebook and (ii) preserves spatial-temporal positions via a token hash function by assigning each grid-level token to its nearest codebook entry. On the Extreme Short Token Reduction task, our VQToken compresses sequences to just 0.07 percent of their original length while incurring only a 0.66 percent drop in accuracy on the NextQA-MC benchmark. It also achieves comparable performance on ActNet-QA, Long Video Bench, and VideoMME. We further introduce the Token Information Density (TokDense) metric and formalize fixed-length and adaptive-length subtasks, achieving state-of-the-art results in both settings. Our approach dramatically lowers theoretical complexity, increases information density, drastically reduces token counts, and enables efficient video LLMs in resource-constrained environments.

  • 2 authors
·
Mar 21

LIFT the Veil for the Truth: Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning

Recent studies have shown that supervised fine-tuning of LLMs on a small number of high-quality datasets can yield strong reasoning capabilities. However, full fine-tuning (Full FT), while powerful, is computationally expensive and susceptible to overfitting and catastrophic forgetting, particularly when data is limited. Sparse fine-tuning, which previously achieved notable success by updating only a small subset of model parameters, offers a promising trade-off between efficiency and effectiveness. Yet, it has lagged behind in the LLM era due to the difficulty of identifying parameters truly critical for reasoning. In this work, we state that weights with the largest magnitude after low-rank approximation are critical weights for fine-tuning, which we call Principal Weights. Surprisingly, while magnitude-based sparse fine-tuning performs poorly as a baseline on LLM fine-tuning, it becomes highly effective after rank reduction. These insights motivate our method: Low-rank Informed Sparse Fine-Tuning (LIFT). LIFT only updates the top 5% Principal Weights throughout training and consistently achieves better performance on reasoning tasks than Full FT, while maintaining memory efficiency on par with popular parameter-efficient fine-tuning methods. In addition to strong performance on target domains such as arithmetic reasoning, LIFT also retains up to 20% more source-domain knowledge, compared to Full FT and LoRA. Our code is available at: https://github.com/zihanghliu/LIFT.

  • 8 authors
·
May 31 2

A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization

Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.

  • 9 authors
·
Feb 18

InfFeed: Influence Functions as a Feedback to Improve the Performance of Subjective Tasks

Recently, influence functions present an apparatus for achieving explainability for deep neural models by quantifying the perturbation of individual train instances that might impact a test prediction. Our objectives in this paper are twofold. First we incorporate influence functions as a feedback into the model to improve its performance. Second, in a dataset extension exercise, using influence functions to automatically identify data points that have been initially `silver' annotated by some existing method and need to be cross-checked (and corrected) by annotators to improve the model performance. To meet these objectives, in this paper, we introduce InfFeed, which uses influence functions to compute the influential instances for a target instance. Toward the first objective, we adjust the label of the target instance based on its influencer(s) label. In doing this, InfFeed outperforms the state-of-the-art baselines (including LLMs) by a maximum macro F1-score margin of almost 4% for hate speech classification, 3.5% for stance classification, and 3% for irony and 2% for sarcasm detection. Toward the second objective we show that manually re-annotating only those silver annotated data points in the extension set that have a negative influence can immensely improve the model performance bringing it very close to the scenario where all the data points in the extension set have gold labels. This allows for huge reduction of the number of data points that need to be manually annotated since out of the silver annotated extension dataset, the influence function scheme picks up ~1/1000 points that need manual correction.

  • 5 authors
·
Feb 22, 2024

Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction

Prevailing Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone, similar to how Large Language Models (LLMs) process the text tokens. However, the number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs. In this paper, we consider improving MLLM's efficiency from two scenarios, (I) Reducing computational cost without degrading the performance. (II) Improving the performance with given budgets. We start with our main finding that the ranking of each vision token sorted by attention scores is similar in each layer except the first layer. Based on it, we assume that the number of essential top vision tokens does not increase along layers. Accordingly, for Scenario I, we propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep. Interestingly, G-Search is able to reach the optimal reduction strategy based on our assumption. For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization. Extensive experiments demonstrate that our approach can significantly accelerate those popular MLLMs, e.g. LLaVA, and InternVL2 models, by more than 2 times without performance drops. Our approach also far outperforms other token reduction methods when budgets are limited, achieving a better trade-off between efficiency and effectiveness.

  • 10 authors
·
Nov 30, 2024

FiRST: Finetuning Router-Selective Transformers for Input-Adaptive Latency Reduction

Auto-regressive Large Language Models (LLMs) demonstrate remarkable performance across different domains such as vision and language processing. However, due to sequential processing through a stack of transformer layers, autoregressive decoding faces significant computation/latency challenges, particularly in resource-constrained environments like mobile and edge devices. Existing approaches in literature that aim to improve latency via skipping layers have two distinct flavors - 1) Early exit, and 2) Input-agnostic heuristics where tokens exit at pre-determined layers irrespective of input sequence. Both the above strategies have limitations - the former cannot be applied to handle KV Caching necessary for speed-ups in modern framework and the latter does not capture the variation in layer importance across tasks or more generally, across input sequences. To address both limitations, we propose FiRST, an algorithm that reduces inference latency by using layer-specific routers to select a subset of transformer layers adaptively for each input sequence - the prompt (during the prefill stage) decides which layers will be skipped during decoding. FiRST preserves compatibility with KV caching enabling faster inference while being quality-aware. FiRST is model-agnostic and can be easily enabled on any pre-trained LLM. Our approach reveals that input adaptivity is critical - indeed, different task-specific middle layers play a crucial role in evolving hidden representations depending on tasks. Extensive experiments show that FiRST significantly reduces latency while outperforming other layer selection strategies in quality metics. It retains competitive performance to base model (without layer skipping) and in some cases, even improves upon it. FiRST is thus a promising and efficient solution for LLM deployment in low-resource environments.

  • 4 authors
·
Oct 16, 2024

The Impact of Element Ordering on LM Agent Performance

There has been a surge of interest in language model agents that can navigate virtual environments such as the web or desktop. To navigate such environments, agents benefit from information on the various elements (e.g., buttons, text, or images) present. It remains unclear which element attributes have the greatest impact on agent performance, especially in environments that only provide a graphical representation (i.e., pixels). Here we find that the ordering in which elements are presented to the language model is surprisingly impactful--randomizing element ordering in a webpage degrades agent performance comparably to removing all visible text from an agent's state representation. While a webpage provides a hierarchical ordering of elements, there is no such ordering when parsing elements directly from pixels. Moreover, as tasks become more challenging and models more sophisticated, our experiments suggest that the impact of ordering increases. Finding an effective ordering is non-trivial. We investigate the impact of various element ordering methods in web and desktop environments. We find that dimensionality reduction provides a viable ordering for pixel-only environments. We train a UI element detection model to derive elements from pixels and apply our findings to an agent benchmark--OmniACT--where we only have access to pixels. Our method completes more than two times as many tasks on average relative to the previous state-of-the-art.

  • 3 authors
·
Sep 18, 2024

CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training

Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks. Code: https://github.com/davidbrandfonbrener/color-filter-olmo Filtered data: https://huggingface.co/datasets/davidbrandfonbrener/color-filtered-c4

  • 5 authors
·
Jun 15, 2024 1

Performance Trade-offs of Optimizing Small Language Models for E-Commerce

Large Language Models (LLMs) offer state-of-the-art performance in natural language understanding and generation tasks. However, the deployment of leading commercial models for specialized tasks, such as e-commerce, is often hindered by high computational costs, latency, and operational expenses. This paper investigates the viability of smaller, open-weight models as a resource-efficient alternative. We present a methodology for optimizing a one-billion-parameter Llama 3.2 model for multilingual e-commerce intent recognition. The model was fine-tuned using Quantized Low-Rank Adaptation (QLoRA) on a synthetically generated dataset designed to mimic real-world user queries. Subsequently, we applied post-training quantization techniques, creating GPU-optimized (GPTQ) and CPU-optimized (GGUF) versions. Our results demonstrate that the specialized 1B model achieves 99% accuracy, matching the performance of the significantly larger GPT-4.1 model. A detailed performance analysis revealed critical, hardware-dependent trade-offs: while 4-bit GPTQ reduced VRAM usage by 41%, it paradoxically slowed inference by 82% on an older GPU architecture (NVIDIA T4) due to dequantization overhead. Conversely, GGUF formats on a CPU achieved a speedup of up to 18x in inference throughput and a reduction of over 90% in RAM consumption compared to the FP16 baseline. We conclude that small, properly optimized open-weight models are not just a viable but a more suitable alternative for domain-specific applications, offering state-of-the-art accuracy at a fraction of the computational cost.

  • 2 authors
·
Oct 24 2

Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis

Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed Dimension-Reduction Attack (DRA-Ctrl), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. DRA-Ctrl provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.

  • 7 authors
·
May 29

Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification

Mammography, an X-ray-based imaging technique, remains central to the early detection of breast cancer. Recent advances in artificial intelligence have enabled increasingly sophisticated computer-aided diagnostic methods, evolving from patch-based classifiers to whole-image approaches and then to multi-view architectures that jointly analyze complementary projections. Despite this progress, several critical questions remain unanswered. In this study, we systematically investigate these issues by addressing five key research questions: (1) the role of patch classifiers in performance, (2) the transferability of natural-image-trained backbones, (3) the advantages of learn-to-resize over conventional downscaling, (4) the contribution of multi-view integration, and (5) the robustness of findings across varying image quality. Beyond benchmarking, our experiments demonstrate clear performance gains over prior work. For the CBIS-DDSM dataset, we improved single-view AUC from 0.8153 to 0.8343, and multiple-view AUC from 0.8483 to 0.8658. Using a new comparative method, we also observed a 0.0217 AUC increase when extending from single to multiple-view analysis. On the complete VinDr-Mammo dataset, the multiple-view approach further improved results, achieving a 0.0492 AUC increase over single view and reaching 0.8511 AUC overall. These results establish new state-of-the-art benchmarks, providing clear evidence of the advantages of multi-view architectures for mammogram interpretation. Beyond performance, our analysis offers principled insights into model design and transfer learning strategies, contributing to the development of more accurate and reliable breast cancer screening tools. The inference code and trained models are publicly available at https://github.com/dpetrini/multiple-view.

  • 2 authors
·
Mar 25

Hallucination reduction with CASAL: Contrastive Activation Steering For Amortized Learning

Large Language Models (LLMs) exhibit impressive capabilities but often hallucinate, confidently providing incorrect answers instead of admitting ignorance. Prior work has shown that models encode linear representations of their own knowledge and that activation steering can reduce hallucinations. These approaches, however, require real-time monitoring and intervention during inference. We introduce Contrastive Activation Steering for Amortized Learning (CASAL), an efficient algorithm that connects interpretability with amortized optimization. CASAL directly bakes the benefits of activation steering into model's weights. Once trained, LLMs answer questions they know while abstaining from answering those they do not. CASAL's light-weight design requires training only a submodule of a single transformer layer and yet reduces hallucination by 30%-40% across multiple short-form QA benchmarks. CASAL is 30x more compute-efficient and 20x more data-efficient than strong LoRA-based baselines such as SFT and DPO, boosting its practical applicability in data scarce domains. Importantly, CASAL also generalizes effectively to out-of-distribution (OOD) domains. We showcase CASAL's flexibility in mitigating hallucinations in both text-only and vision-language models. To our knowledge, CASAL is the first steering-based training method that has been shown to be effective for both dense and Mixture-of-Experts (MoE) models. CASAL represents a promising step forward for applying interpretability-inspired method for practical deployment in production systems.

  • 8 authors
·
Sep 25

Fréchet Cumulative Covariance Net for Deep Nonlinear Sufficient Dimension Reduction with Random Objects

Nonlinear sufficient dimension reductionlibing_generalSDR, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the sigma-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.

  • 3 authors
·
Feb 21

Enhancing a Convolutional Autoencoder with a Quantum Approximate Optimization Algorithm for Image Noise Reduction

Image denoising is essential for removing noise in images caused by electric device malfunctions or other factors during image acquisition. It helps preserve image quality and interpretation. Many convolutional autoencoder algorithms have proven effective in image denoising. Owing to their promising efficiency, quantum computers have gained popularity. This study introduces a quantum convolutional autoencoder (QCAE) method for improved image denoising. This method was developed by substituting the representative latent space of the autoencoder with a quantum circuit. To enhance efficiency, we leveraged the advantages of the quantum approximate optimization algorithm (QAOA)-incorporated parameter-shift rule to identify an optimized cost function, facilitating effective learning from data and gradient computation on an actual quantum computer. The proposed QCAE method outperformed its classical counterpart as it exhibited lower training loss and a higher structural similarity index (SSIM) value. QCAE also outperformed its classical counterpart in denoising the MNIST dataset by up to 40% in terms of SSIM value, confirming its enhanced capabilities in real-world applications. Evaluation of QAOA performance across different circuit configurations and layer variations showed that our technique outperformed other circuit designs by 25% on average.

  • 4 authors
·
Jan 11, 2024

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

  • 5 authors
·
Mar 4, 2021

ARMOR: High-Performance Semi-Structured Pruning via Adaptive Matrix Factorization

Large language models (LLMs) present significant deployment challenges due to their immense computational and memory requirements. While semi-structured pruning, particularly 2:4 sparsity, offers a path to practical hardware acceleration, existing methods often incur substantial performance degradation. To bridge this gap, we introduce ARMOR: (Adaptive Representation with Matrix-factORization), a novel one-shot post-training pruning algorithm. Instead of directly pruning weights, ARMOR factorizes each weight matrix into a 2:4 sparse core wrapped by two low-overhead, block diagonal matrices. These wrappers act as efficient pre and post-transformation error correctors, offering greater flexibility to preserve model quality compared to conventional 2:4 pruning techniques. The sparse core and block diagonal wrappers are chosen through a block coordinate descent algorithm that minimizes a layer-wise proxy loss. We theoretically prove this optimization is guaranteed to converge to a solution with a proxy loss less than or equal to state-of-the-art pruning algorithms. Experiments on Llama (Touvron et al., 2023; Dubey et al., 2024) and Qwen (Yang et al., 2025) model families demonstrate that ARMOR consistently and significantly outperforms state-of-the-art 2:4 pruning methods across a wide range of downstream tasks and perplexity evaluations. ARMOR achieves this superior performance while retaining the inference speedups and substantial memory usage reductions of 2:4 pruning, establishing a more effective trade-off between model compression and task accuracy

ConvFormer: Parameter Reduction in Transformer Models for 3D Human Pose Estimation by Leveraging Dynamic Multi-Headed Convolutional Attention

Recently, fully-transformer architectures have replaced the defacto convolutional architecture for the 3D human pose estimation task. In this paper we propose \textit{ConvFormer}, a novel convolutional transformer that leverages a new \textit{dynamic multi-headed convolutional self-attention} mechanism for monocular 3D human pose estimation. We designed a spatial and temporal convolutional transformer to comprehensively model human joint relations within individual frames and globally across the motion sequence. Moreover, we introduce a novel notion of \textit{temporal joints profile} for our temporal ConvFormer that fuses complete temporal information immediately for a local neighborhood of joint features. We have quantitatively and qualitatively validated our method on three common benchmark datasets: Human3.6M, MPI-INF-3DHP, and HumanEva. Extensive experiments have been conducted to identify the optimal hyper-parameter set. These experiments demonstrated that we achieved a significant parameter reduction relative to prior transformer models while attaining State-of-the-Art (SOTA) or near SOTA on all three datasets. Additionally, we achieved SOTA for Protocol III on H36M for both GT and CPN detection inputs. Finally, we obtained SOTA on all three metrics for the MPI-INF-3DHP dataset and for all three subjects on HumanEva under Protocol II.

  • 2 authors
·
Apr 4, 2023

DiffIER: Optimizing Diffusion Models with Iterative Error Reduction

Diffusion models have demonstrated remarkable capabilities in generating high-quality samples and enhancing performance across diverse domains through Classifier-Free Guidance (CFG). However, the quality of generated samples is highly sensitive to the selection of the guidance weight. In this work, we identify a critical ``training-inference gap'' and we argue that it is the presence of this gap that undermines the performance of conditional generation and renders outputs highly sensitive to the guidance weight. We quantify this gap by measuring the accumulated error during the inference stage and establish a correlation between the selection of guidance weight and minimizing this gap. Furthermore, to mitigate this gap, we propose DiffIER, an optimization-based method for high-quality generation. We demonstrate that the accumulated error can be effectively reduced by an iterative error minimization at each step during inference. By introducing this novel plug-and-play optimization framework, we enable the optimization of errors at every single inference step and enhance generation quality. Empirical results demonstrate that our proposed method outperforms baseline approaches in conditional generation tasks. Furthermore, the method achieves consistent success in text-to-image generation, image super-resolution, and text-to-speech generation, underscoring its versatility and potential for broad applications in future research.

  • 3 authors
·
Aug 19

Modeling Performance of Data Collection Systems for High-Energy Physics

Exponential increases in scientific experimental data are outstripping the rate of progress in silicon technology. As a result, heterogeneous combinations of architectures and process or device technologies are increasingly important to meet the computing demands of future scientific experiments. However, the complexity of heterogeneous computing systems requires systematic modeling to understand performance. We present a model which addresses this need by framing key aspects of data collection pipelines and constraints, and combines them with the important vectors of technology that shape alternatives, computing metrics that allow complex alternatives to be compared. For instance, a data collection pipeline may be characterized by parameters such as sensor sampling rates, amount of data collected, and the overall relevancy of retrieved samples. Alternatives to this pipeline are enabled by hardware development vectors including advancing CMOS, GPUs, neuromorphic computing, and edge computing. By calculating metrics for each alternative such as overall F1 score, power, hardware cost, and energy expended per relevant sample, this model allows alternate data collection systems to be rigorously compared. To demonstrate this model's capability, we apply it to the CMS experiment (and planned HL-LHC upgrade) to evaluate and compare the application of novel technologies in the data acquisition system (DAQ). We demonstrate that improvements to early stages in the DAQ are highly beneficial, greatly reducing the resources required at later stages of processing (such as a 60% power reduction) and increasing the amount of relevant data retrieved from the experiment per unit power (improving from 0.065 to 0.31 samples/kJ) However, we predict further advances will be required in order to meet overall power and cost constraints for the DAQ.

  • 3 authors
·
Jun 27, 2024

RSTAR: Rotational Streak Artifact Reduction in 4D CBCT using Separable and Circular Convolutions

Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.

  • 9 authors
·
Mar 24, 2024

CABINET: Content Relevance based Noise Reduction for Table Question Answering

Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at https://github.com/Sohanpatnaik106/CABINET_QA.

  • 6 authors
·
Feb 2, 2024

Noise in Relation Classification Dataset TACRED: Characterization and Reduction

The overarching objective of this paper is two-fold. First, to explore model-based approaches to characterize the primary cause of the noise. in the RE dataset TACRED Second, to identify the potentially noisy instances. Towards the first objective, we analyze predictions and performance of state-of-the-art (SOTA) models to identify the root cause of noise in the dataset. Our analysis of TACRED shows that the majority of the noise in the dataset originates from the instances labeled as no-relation which are negative examples. For the second objective, we explore two nearest-neighbor-based strategies to automatically identify potentially noisy examples for elimination and reannotation. Our first strategy, referred to as Intrinsic Strategy (IS), is based on the assumption that positive examples are clean. Thus, we have used false-negative predictions to identify noisy negative examples. Whereas, our second approach, referred to as Extrinsic Strategy, is based on using a clean subset of the dataset to identify potentially noisy negative examples. Finally, we retrained the SOTA models on the eliminated and reannotated dataset. Our empirical results based on two SOTA models trained on TACRED-E following the IS show an average 4% F1-score improvement, whereas reannotation (TACRED-R) does not improve the original results. However, following ES, SOTA models show the average F1-score improvement of 3.8% and 4.4% when trained on respective eliminated (TACRED-EN) and reannotated (TACRED-RN) datasets respectively. We further extended the ES for cleaning positive examples as well, which resulted in an average performance improvement of 5.8% and 5.6% for the eliminated (TACRED-ENP) and reannotated (TACRED-RNP) datasets respectively.

  • 3 authors
·
Nov 20, 2023

Optimization of embeddings storage for RAG systems using quantization and dimensionality reduction techniques

Retrieval-Augmented Generation enhances language models by retrieving relevant information from external knowledge bases, relying on high-dimensional vector embeddings typically stored in float32 precision. However, storing these embeddings at scale presents significant memory challenges. To address this issue, we systematically investigate on MTEB benchmark two complementary optimization strategies: quantization, evaluating standard formats (float16, int8, binary) and low-bit floating-point types (float8), and dimensionality reduction, assessing methods like PCA, Kernel PCA, UMAP, Random Projections and Autoencoders. Our results show that float8 quantization achieves a 4x storage reduction with minimal performance degradation (<0.3%), significantly outperforming int8 quantization at the same compression level, being simpler to implement. PCA emerges as the most effective dimensionality reduction technique. Crucially, combining moderate PCA (e.g., retaining 50% dimensions) with float8 quantization offers an excellent trade-off, achieving 8x total compression with less performance impact than using int8 alone (which provides only 4x compression). To facilitate practical application, we propose a methodology based on visualizing the performance-storage trade-off space to identify the optimal configuration that maximizes performance within their specific memory constraints.

  • 5 authors
·
Apr 30 1

KVCrush: Key value cache size-reduction using similarity in head-behaviour

Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.

  • 5 authors
·
Feb 23

RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank

Joint-Embedding Self Supervised Learning (JE-SSL) has seen a rapid development, with the emergence of many method variations but only few principled guidelines that would help practitioners to successfully deploy them. The main reason for that pitfall comes from JE-SSL's core principle of not employing any input reconstruction therefore lacking visual cues of unsuccessful training. Adding non informative loss values to that, it becomes difficult to deploy SSL on a new dataset for which no labels can help to judge the quality of the learned representation. In this study, we develop a simple unsupervised criterion that is indicative of the quality of the learned JE-SSL representations: their effective rank. Albeit simple and computationally friendly, this method -- coined RankMe -- allows one to assess the performance of JE-SSL representations, even on different downstream datasets, without requiring any labels. A further benefit of RankMe is that it does not have any training or hyper-parameters to tune. Through thorough empirical experiments involving hundreds of training episodes, we demonstrate how RankMe can be used for hyperparameter selection with nearly no reduction in final performance compared to the current selection method that involve a dataset's labels. We hope that RankMe will facilitate the deployment of JE-SSL towards domains that do not have the opportunity to rely on labels for representations' quality assessment.

  • 4 authors
·
Oct 5, 2022

White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?

In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .

  • 10 authors
·
Nov 21, 2023

Optimizing ViViT Training: Time and Memory Reduction for Action Recognition

In this paper, we address the challenges posed by the substantial training time and memory consumption associated with video transformers, focusing on the ViViT (Video Vision Transformer) model, in particular the Factorised Encoder version, as our baseline for action recognition tasks. The factorised encoder variant follows the late-fusion approach that is adopted by many state of the art approaches. Despite standing out for its favorable speed/accuracy tradeoffs among the different variants of ViViT, its considerable training time and memory requirements still pose a significant barrier to entry. Our method is designed to lower this barrier and is based on the idea of freezing the spatial transformer during training. This leads to a low accuracy model if naively done. But we show that by (1) appropriately initializing the temporal transformer (a module responsible for processing temporal information) (2) introducing a compact adapter model connecting frozen spatial representations ((a module that selectively focuses on regions of the input image) to the temporal transformer, we can enjoy the benefits of freezing the spatial transformer without sacrificing accuracy. Through extensive experimentation over 6 benchmarks, we demonstrate that our proposed training strategy significantly reduces training costs (by sim 50%) and memory consumption while maintaining or slightly improving performance by up to 1.79\% compared to the baseline model. Our approach additionally unlocks the capability to utilize larger image transformer models as our spatial transformer and access more frames with the same memory consumption.

  • 3 authors
·
Jun 7, 2023

Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping

Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.

  • 3 authors
·
Jun 22, 2023

APOLLO: SGD-like Memory, AdamW-level Performance

Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.

  • 10 authors
·
Dec 6, 2024 2

PyramidDrop: Accelerating Your Large Vision-Language Models via Pyramid Visual Redundancy Reduction

In large vision-language models (LVLMs), images serve as inputs that carry a wealth of information. As the idiom "A picture is worth a thousand words" implies, representing a single image in current LVLMs can require hundreds or even thousands of tokens. This results in significant computational costs, which grow quadratically as input image resolution increases, thereby severely impacting the efficiency of both training and inference. Previous approaches have attempted to reduce the number of image tokens either before or within the early layers of LVLMs. However, these strategies inevitably result in the loss of crucial image information, ultimately diminishing model performance. To address this challenge, we conduct an empirical study revealing that all visual tokens are necessary for LVLMs in the shallow layers, and token redundancy progressively increases in the deeper layers of the model. To this end, we propose PyramidDrop, a visual redundancy reduction strategy for LVLMs to boost their efficiency in both training and inference with neglectable performance loss. Specifically, we partition the LVLM into several stages and drop part of the image tokens at the end of each stage with a pre-defined ratio, creating pyramid-like visual tokens across model layers. The dropping is based on a lightweight similarity calculation with a negligible time overhead. Extensive experiments demonstrate that PyramidDrop can achieve a 40% training time and 55% inference FLOPs acceleration of LLaVA-NeXT with comparable performance. Besides, the PyramidDrop could also serve as a plug-and-play strategy for inference acceleration without training, with better performance and lower inference cost than counterparts. We hope that the insights and approach introduced by PyramidDrop will inspire future research to further investigate the role of image tokens in LVLMs.

  • 11 authors
·
Oct 22, 2024 3

TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction

Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.

  • 5 authors
·
Oct 24, 2023

A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications

Face image quality plays a critical role in determining the accuracy and reliability of face verification systems, particularly in real-time screening applications such as surveillance, identity verification, and access control. Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, occlusions, and extreme pose variations, significantly degrade the performance of face recognition models, leading to higher false rejection and false acceptance rates. In this work, we propose a lightweight yet effective framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline. Our approach utilises normalised facial landmarks in conjunction with a Random Forest Regression classifier to assess image quality, achieving an accuracy of 96.67%. By integrating this quality assessment module into the face verification process, we observe a substantial improvement in performance, including a comfortable 99.7% reduction in the false rejection rate and enhanced cosine similarity scores when paired with the ArcFace face verification model. To validate our approach, we have conducted experiments on a real-world dataset collected comprising over 600 subjects captured from CCTV footage in unconstrained environments within Dubai Police. Our results demonstrate that the proposed framework effectively mitigates the impact of poor-quality face images, outperforming existing face quality assessment techniques while maintaining computational efficiency. Moreover, the framework specifically addresses two critical challenges in real-time screening: variations in face resolution and pose deviations, both of which are prevalent in practical surveillance scenarios.

  • 8 authors
·
Jul 21

Too Large; Data Reduction for Vision-Language Pre-Training

This paper examines the problems of severe image-text misalignment and high redundancy in the widely-used large-scale Vision-Language Pre-Training (VLP) datasets. To address these issues, we propose an efficient and straightforward Vision-Language learning algorithm called TL;DR, which aims to compress the existing large VLP data into a small, high-quality set. Our approach consists of two major steps. First, a codebook-based encoder-decoder captioner is developed to select representative samples. Second, a new caption is generated to complement the original captions for selected samples, mitigating the text-image misalignment problem while maintaining uniqueness. As the result, TL;DR enables us to reduce the large dataset into a small set of high-quality data, which can serve as an alternative pre-training dataset. This algorithm significantly speeds up the time-consuming pretraining process. Specifically, TL;DR can compress the mainstream VLP datasets at a high ratio, e.g., reduce well-cleaned CC3M dataset from 2.82M to 0.67M (sim24\%) and noisy YFCC15M from 15M to 2.5M (sim16.7\%). Extensive experiments with three popular VLP models over seven downstream tasks show that VLP model trained on the compressed dataset provided by TL;DR can perform similar or even better results compared with training on the full-scale dataset. The code will be made available at https://github.com/showlab/datacentric.vlp.

  • 5 authors
·
May 31, 2023

Discovering the Gems in Early Layers: Accelerating Long-Context LLMs with 1000x Input Token Reduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in handling long context inputs, but this comes at the cost of increased computational resources and latency. Our research introduces a novel approach for the long context bottleneck to accelerate LLM inference and reduce GPU memory consumption. Our research demonstrates that LLMs can identify relevant tokens in the early layers before generating answers to a query. Leveraging this insight, we propose an algorithm that uses early layers of an LLM as filters to select and compress input tokens, significantly reducing the context length for subsequent processing. Our method, GemFilter, demonstrates substantial improvements in both speed and memory efficiency compared to existing techniques, such as standard attention and SnapKV/H2O. Notably, it achieves a 2.4times speedup and 30\% reduction in GPU memory usage compared to SOTA methods. Evaluation on the Needle in a Haystack task shows that GemFilter significantly outperforms standard attention, SnapKV and demonstrates comparable performance on the LongBench challenge. GemFilter is simple, training-free, and broadly applicable across different LLMs. Crucially, it provides interpretability by allowing humans to inspect the selected input sequence. These findings not only offer practical benefits for LLM deployment, but also enhance our understanding of LLM internal mechanisms, paving the way for further optimizations in LLM design and inference. Our code is available at https://github.com/SalesforceAIResearch/GemFilter.

  • 5 authors
·
Sep 25, 2024 5

Strain-Balanced Low-Temperature-Grown Beryllium-Doped InGaAs/InAlAs Superlattices for High-Performance Terahertz Photoconductors under 1550 nm Laser Excitation

This study systematically investigates the photoconductive properties of low-temperature-grown Beryllium (Be)-doped InGaAs/InAlAs strain-balanced superlattices (SLs) grown by molecular beam epitaxy under stationary growth conditions on semi-insulating InP:Fe substrates. The stationary growth approach enabled precise control over lateral gradients in layer strain, composition, and thickness across a single wafer, while strain-balancing facilitated pseudomorphic growth to explore a wide range of structural parameters, providing a robust platform to study their influence on photoconductive performance. Structural characterization confirmed high crystalline quality and smooth surface morphology in all samples. Time-resolved pump-probe spectroscopy revealed subpicosecond carrier lifetimes, validating the effectiveness of strain balancing and Be doping in tuning ultrafast recombination dynamics. Hall effect measurements supported by 8-band k.p modeling revealed enhanced carrier mobility in strain-balanced SLs compared to lattice-matched structures, primarily due to reduced electron and hole effective masses and stronger quantum confinement. Additionally, optical absorption under 1550 nm excitation showed improved absorption coefficients for the strain-balanced structure, consistent with the reduction in bandgap energy predicted by theoretical modeling, thereby enhancing photon-to-carrier conversion efficiency. Furthermore, transmission electron microscopy provided first-time evidence of significant Be-induced interdiffusion at the strained SL interfaces, an important factor influencing carrier transport and dynamics. These findings position low-temperature-grown Be-doped InGaAs/InAlAs strain-balanced SLs as promising materials for high-performance broadband THz photoconductive detectors operating at telecom-compatible wavelengths.

  • 6 authors
·
May 3

One Trajectory, One Token: Grounded Video Tokenization via Panoptic Sub-object Trajectory

Effective video tokenization is critical for scaling transformer models for long videos. Current approaches tokenize videos using space-time patches, leading to excessive tokens and computational inefficiencies. The best token reduction strategies degrade performance and barely reduce the number of tokens when the camera moves. We introduce grounded video tokenization, a paradigm that organizes tokens based on panoptic sub-object trajectories rather than fixed patches. Our method aligns with fundamental perceptual principles, ensuring that tokenization reflects scene complexity rather than video duration. We propose TrajViT, a video encoder that extracts object trajectories and converts them into semantically meaningful tokens, significantly reducing redundancy while maintaining temporal coherence. Trained with contrastive learning, TrajViT significantly outperforms space-time ViT (ViT3D) across multiple video understanding benchmarks, e.g., TrajViT outperforms ViT3D by a large margin of 6% top-5 recall in average at video-text retrieval task with 10x token deduction. We also show TrajViT as a stronger model than ViT3D for being the video encoder for modern VideoLLM, obtaining an average of 5.2% performance improvement across 6 VideoQA benchmarks while having 4x faster training time and 18x less inference FLOPs. TrajViT is the first efficient encoder to consistently outperform ViT3D across diverse video analysis tasks, making it a robust and scalable solution.

  • 8 authors
·
May 29

FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers

The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.

  • 7 authors
·
Jan 27

BeanCounter: A low-toxicity, large-scale, and open dataset of business-oriented text

Many of the recent breakthroughs in language modeling have resulted from scaling effectively the same model architecture to larger datasets. In this vein, recent work has highlighted performance gains from increasing training dataset size and quality, suggesting a need for novel sources of large-scale datasets. In this work, we introduce BeanCounter, a public dataset consisting of more than 159B tokens extracted from businesses' disclosures. We show that this data is indeed novel: less than 0.1% of BeanCounter appears in Common Crawl-based datasets and it is an order of magnitude larger than datasets relying on similar sources. Given the data's provenance, we hypothesize that BeanCounter is comparatively more factual and less toxic than web-based datasets. Exploring this hypothesis, we find that many demographic identities occur with similar prevalence in BeanCounter but with significantly less toxic context relative to other datasets. To demonstrate the utility of BeanCounter, we evaluate and compare two LLMs continually pre-trained on BeanCounter with their base models. We find an 18-33% reduction in toxic generation and improved performance within the finance domain for the continually pretrained models. Collectively, our work suggests that BeanCounter is a novel source of low-toxicity and high-quality domain-specific data with sufficient scale to train multi-billion parameter LLMs.

  • 2 authors
·
Sep 26, 2024

Inference Optimal VLMs Need Only One Visual Token but Larger Models

Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks. However, their real-world deployment is often constrained by high latency during inference due to substantial compute required to process the large number of input tokens (predominantly from the image) by the LLM. To reduce inference costs, one can either downsize the LLM or reduce the number of input image-tokens, the latter of which has been the focus of many recent works around token compression. However, it is unclear what the optimal trade-off is, as both the factors directly affect the VLM performance. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs, i.e., minimum downstream error at any given fixed inference compute, is achieved when using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., 5-10times), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take some initial steps towards building approaches tailored for high token compression settings. Code is available at https://github.com/locuslab/llava-token-compression.

  • 4 authors
·
Nov 5, 2024 1

Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner

The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.

  • 13 authors
·
Sep 11

Mazed and Confused: A Dataset of Cybersickness, Working Memory, Mental Load, Physical Load, and Attention During a Real Walking Task in VR

Virtual Reality (VR) is quickly establishing itself in various industries, including training, education, medicine, and entertainment, in which users are frequently required to carry out multiple complex cognitive and physical activities. However, the relationship between cognitive activities, physical activities, and familiar feelings of cybersickness is not well understood and thus can be unpredictable for developers. Researchers have previously provided labeled datasets for predicting cybersickness while users are stationary, but there have been few labeled datasets on cybersickness while users are physically walking. Thus, from 39 participants, we collected head orientation, head position, eye tracking, images, physiological readings from external sensors, and the self-reported cybersickness severity, physical load, and mental load in VR. Throughout the data collection, participants navigated mazes via real walking and performed tasks challenging their attention and working memory. To demonstrate the dataset's utility, we conducted a case study of training classifiers in which we achieved 95% accuracy for cybersickness severity classification. The noteworthy performance of the straightforward classifiers makes this dataset ideal for future researchers to develop cybersickness detection and reduction models. To better understand the features that helped with classification, we performed SHAP(SHapley Additive exPlanations) analysis, highlighting the importance of eye tracking and physiological measures for cybersickness prediction while walking. This open dataset can allow future researchers to study the connection between cybersickness and cognitive loads and develop prediction models. This dataset will empower future VR developers to design efficient and effective Virtual Environments by improving cognitive load management and minimizing cybersickness.

  • 8 authors
·
Sep 10, 2024

PEPSI++: Fast and Lightweight Network for Image Inpainting

Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, owing to two stacked generative networks, the coarse-to-fine network needs numerous computational resources such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called PEPSI: parallel extended-decoder path for semantic inpainting network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers, which employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e. the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs such as computational time and the number of network parameters.

  • 5 authors
·
May 22, 2019

TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling

Recent advancements in aligning large language models via reinforcement learning have achieved remarkable gains in solving complex reasoning problems, but at the cost of expensive on-policy rollouts and limited exploration of diverse reasoning paths. In this work, we introduce TreePO, involving a self-guided rollout algorithm that views sequence generation as a tree-structured searching process. Composed of dynamic tree sampling policy and fixed-length segment decoding, TreePO leverages local uncertainty to warrant additional branches. By amortizing computation across common prefixes and pruning low-value paths early, TreePO essentially reduces the per-update compute burden while preserving or enhancing exploration diversity. Key contributions include: (1) a segment-wise sampling algorithm that alleviates the KV cache burden through contiguous segments and spawns new branches along with an early-stop mechanism; (2) a tree-based segment-level advantage estimation that considers both global and local proximal policy optimization. and (3) analysis on the effectiveness of probability and quality-driven dynamic divergence and fallback strategy. We empirically validate the performance gain of TreePO on a set reasoning benchmarks and the efficiency saving of GPU hours from 22\% up to 43\% of the sampling design for the trained models, meanwhile showing up to 40\% reduction at trajectory-level and 35\% at token-level sampling compute for the existing models. While offering a free lunch of inference efficiency, TreePO reveals a practical path toward scaling RL-based post-training with fewer samples and less compute. Home page locates at https://m-a-p.ai/TreePO.

  • 17 authors
·
Aug 24 3

Universal Image Restoration Pre-training via Masked Degradation Classification

This study introduces a Masked Degradation Classification Pre-Training method (MaskDCPT), designed to facilitate the classification of degradation types in input images, leading to comprehensive image restoration pre-training. Unlike conventional pre-training methods, MaskDCPT uses the degradation type of the image as an extremely weak supervision, while simultaneously leveraging the image reconstruction to enhance performance and robustness. MaskDCPT includes an encoder and two decoders: the encoder extracts features from the masked low-quality input image. The classification decoder uses these features to identify the degradation type, whereas the reconstruction decoder aims to reconstruct a corresponding high-quality image. This design allows the pre-training to benefit from both masked image modeling and contrastive learning, resulting in a generalized representation suited for restoration tasks. Benefit from the straightforward yet potent MaskDCPT, the pre-trained encoder can be used to address universal image restoration and achieve outstanding performance. Implementing MaskDCPT significantly improves performance for both convolution neural networks (CNNs) and Transformers, with a minimum increase in PSNR of 3.77 dB in the 5D all-in-one restoration task and a 34.8% reduction in PIQE compared to baseline in real-world degradation scenarios. It also emergences strong generalization to previously unseen degradation types and levels. In addition, we curate and release the UIR-2.5M dataset, which includes 2.5 million paired restoration samples across 19 degradation types and over 200 degradation levels, incorporating both synthetic and real-world data. The dataset, source code, and models are available at https://github.com/MILab-PKU/MaskDCPT.

[CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster

Large vision-language models (VLMs) often rely on a substantial number of visual tokens when interacting with large language models (LLMs), which has proven to be inefficient. Recent efforts have aimed to accelerate VLM inference by pruning visual tokens. Most existing methods assess the importance of visual tokens based on the text-visual cross-attentions in LLMs. In this study, we find that the cross-attentions between text and visual tokens in LLMs are inaccurate. Pruning tokens based on these inaccurate attentions leads to significant performance degradation, especially at high reduction ratios. To this end, we introduce FasterVLM, a simple yet effective training-free visual token pruning method that evaluates the importance of visual tokens more accurately by utilizing attentions between the [CLS] token and image tokens from the visual encoder. Since FasterVLM eliminates redundant visual tokens immediately after the visual encoder, ensuring they do not interact with LLMs and resulting in faster VLM inference. It is worth noting that, benefiting from the accuracy of [CLS] cross-attentions, FasterVLM can prune 95\% of visual tokens while maintaining 90\% of the performance of LLaVA-1.5-7B. We apply FasterVLM to various VLMs, including LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA, to demonstrate its effectiveness. Experimental results show that our FasterVLM maintains strong performance across various VLM architectures and reduction ratios, significantly outperforming existing text-visual attention-based methods. Our code is available at https://github.com/Theia-4869/FasterVLM.

  • 9 authors
·
Dec 2, 2024

Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing

Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.

  • 3 authors
·
Feb 27

Promoting Efficient Reasoning with Verifiable Stepwise Reward

Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.

  • 7 authors
·
Aug 13

Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection

Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.

  • 5 authors
·
Mar 10

ModernBERT is More Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology Reports

Objective: This study aims to evaluate and compare the performance of two Japanese language models-conventional Bidirectional Encoder Representations from Transformers (BERT) and the newer ModernBERT-in classifying findings from chest CT reports, with a focus on tokenization efficiency, processing time, and classification performance. Methods: We conducted a retrospective study using the CT-RATE-JPN dataset containing 22,778 training reports and 150 test reports. Both models were fine-tuned for multi-label classification of 18 common chest CT conditions. The training data was split in 18,222:4,556 for training and validation. Performance was evaluated using F1 scores for each condition and exact match accuracy across all 18 labels. Results: ModernBERT demonstrated superior tokenization efficiency, requiring 24.0% fewer tokens per document (258.1 vs. 339.6) compared to BERT Base. This translated to significant performance improvements, with ModernBERT completing training in 1877.67 seconds versus BERT's 3090.54 seconds (39% reduction). ModernBERT processed 38.82 samples per second during training (1.65x faster) and 139.90 samples per second during inference (1.66x faster). Despite these efficiency gains, classification performance remained comparable, with ModernBERT achieving superior F1 scores in 8 conditions, while BERT performed better in 4 conditions. Overall exact match accuracy was slightly higher for ModernBERT (74.67% vs. 72.67%), though this difference was not statistically significant (p=0.6291). Conclusion: ModernBERT offers substantial improvements in tokenization efficiency and training speed without sacrificing classification performance. These results suggest that ModernBERT is a promising candidate for clinical applications in Japanese radiology reports analysis.

  • 5 authors
·
Mar 6

Exploring Token Pruning in Vision State Space Models

State Space Models (SSMs) have the advantage of keeping linear computational complexity compared to attention modules in transformers, and have been applied to vision tasks as a new type of powerful vision foundation model. Inspired by the observations that the final prediction in vision transformers (ViTs) is only based on a subset of most informative tokens, we take the novel step of enhancing the efficiency of SSM-based vision models through token-based pruning. However, direct applications of existing token pruning techniques designed for ViTs fail to deliver good performance, even with extensive fine-tuning. To address this issue, we revisit the unique computational characteristics of SSMs and discover that naive application disrupts the sequential token positions. This insight motivates us to design a novel and general token pruning method specifically for SSM-based vision models. We first introduce a pruning-aware hidden state alignment method to stabilize the neighborhood of remaining tokens for performance enhancement. Besides, based on our detailed analysis, we propose a token importance evaluation method adapted for SSM models, to guide the token pruning. With efficient implementation and practical acceleration methods, our method brings actual speedup. Extensive experiments demonstrate that our approach can achieve significant computation reduction with minimal impact on performance across different tasks. Notably, we achieve 81.7\% accuracy on ImageNet with a 41.6\% reduction in the FLOPs for pruned PlainMamba-L3. Furthermore, our work provides deeper insights into understanding the behavior of SSM-based vision models for future research.

  • 11 authors
·
Sep 27, 2024

LeanVec: Search your vectors faster by making them fit

Modern deep learning models have the ability to generate high-dimensional vectors whose similarity reflects semantic resemblance. Thus, similarity search, i.e., the operation of retrieving those vectors in a large collection that are similar to a given query, has become a critical component of a wide range of applications that demand highly accurate and timely answers. In this setting, the high vector dimensionality puts similarity search systems under compute and memory pressure, leading to subpar performance. Additionally, cross-modal retrieval tasks have become increasingly common, e.g., where a user inputs a text query to find the most relevant images for that query. However, these queries often have different distributions than the database embeddings, making it challenging to achieve high accuracy. In this work, we present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors while maintaining accuracy. We present LeanVec variants for in-distribution (ID) and out-of-distribution (OOD) queries. LeanVec-ID yields accuracies on par with those from recently introduced deep learning alternatives whose computational overhead precludes their usage in practice. LeanVec-OOD uses a novel technique for dimensionality reduction that considers the query and database distributions to simultaneously boost the accuracy and the performance of the framework even further (even presenting competitive results when the query and database distributions match). All in all, our extensive and varied experimental results show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time over the state of the art.

  • 5 authors
·
Dec 26, 2023

Preserving In-Context Learning ability in Large Language Model Fine-tuning

Pretrained large language models (LLMs) are strong in-context learners that are able to perform few-shot learning without changing model parameters. However, as we show, fine-tuning an LLM on any specific task generally destroys its in-context ability. We discover an important cause of this loss, format specialization, where the model overfits to the format of the fine-tuned task and is unable to output anything beyond this format. We further show that format specialization happens at the beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that preserves in-context abilities of the pretrained model. ProMoT first trains a soft prompt for the fine-tuning target task, and then fine-tunes the model itself with this soft prompt attached. ProMoT offloads task-specific formats into the soft prompt that can be removed when doing other in-context tasks. We fine-tune mT5 XXL with ProMoT on natural language inference (NLI) and English-French translation and evaluate the in-context abilities of the resulting models on 8 different NLP tasks. ProMoT achieves similar performance on the fine-tuned tasks compared with vanilla fine-tuning, but with much less reduction of in-context learning performances across the board. More importantly, ProMoT shows remarkable generalization ability on tasks that have different formats, e.g. fine-tuning on a NLI binary classification task improves the model's in-context ability to do summarization (+0.53 Rouge-2 score compared to the pretrained model), making ProMoT a promising method to build general purpose capabilities such as grounding and reasoning into LLMs with small but high quality datasets. When extended to sequential or multi-task training, ProMoT can achieve even better out-of-domain generalization performance.

  • 8 authors
·
Nov 1, 2022 1

ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models

Large language models (LLMs) with chain-of-thought reasoning have demonstrated remarkable problem-solving capabilities, but controlling their computational effort remains a significant challenge for practical deployment. Recent proprietary systems like OpenAI's gpt-oss series have introduced discrete operational modes for intuitive reasoning control, but the open-source community has largely failed to achieve such capabilities. In this paper, we introduce ThinkDial, the first open-recipe end-to-end framework that successfully implements gpt-oss-style controllable reasoning through discrete operational modes. Our system enables seamless switching between three distinct reasoning regimes: High mode (full reasoning capability), Medium mode (50 percent token reduction with <10 percent performance degradation), and Low mode (75 percent token reduction with <15 percent performance degradation). We achieve this through an end-to-end training paradigm that integrates budget-mode control throughout the entire pipeline: budget-mode supervised fine-tuning that embeds controllable reasoning capabilities directly into the learning process, and two-phase budget-aware reinforcement learning with adaptive reward shaping. Extensive experiments demonstrate that ThinkDial achieves target compression-performance trade-offs with clear response length reductions while maintaining performance thresholds. The framework also exhibits strong generalization capabilities on out-of-distribution tasks.

  • 5 authors
·
Aug 26 3

Activator: GLU Activations as The Core Functions of a Vision Transformer

Transformer architecture currently represents the main driver behind many successes in a variety of tasks addressed by deep learning, especially the recent advances in natural language processing (NLP) culminating with large language models (LLM). In addition, transformer architecture has found a wide spread of interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multi-task and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities both for training and inference. This paper investigates substituting the attention mechanism usually adopted for transformer architecture with an architecture incorporating gated linear unit (GLU) activation within a multi-layer perceptron (MLP) structure in conjunction with the default MLP incorporated in the traditional transformer design. Another step forward taken by this paper is to eliminate the second non-gated MLP to further reduce the computational cost. Experimental assessments conducted by this research show that both proposed modifications and reductions offer competitive performance in relation to baseline architectures, in support of the aims of this work in establishing a more efficient yet capable alternative to the traditional attention mechanism as the core component in designing transformer architectures.

  • 2 authors
·
May 24, 2024

LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference

Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.

  • 8 authors
·
Jun 26, 2024

Real-Time Iteration Scheme for Diffusion Policy

Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.

  • 3 authors
·
Aug 7

AF-KAN: Activation Function-Based Kolmogorov-Arnold Networks for Efficient Representation Learning

Kolmogorov-Arnold Networks (KANs) have inspired numerous works exploring their applications across a wide range of scientific problems, with the potential to replace Multilayer Perceptrons (MLPs). While many KANs are designed using basis and polynomial functions, such as B-splines, ReLU-KAN utilizes a combination of ReLU functions to mimic the structure of B-splines and take advantage of ReLU's speed. However, ReLU-KAN is not built for multiple inputs, and its limitations stem from ReLU's handling of negative values, which can restrict feature extraction. To address these issues, we introduce Activation Function-Based Kolmogorov-Arnold Networks (AF-KAN), expanding ReLU-KAN with various activations and their function combinations. This novel KAN also incorporates parameter reduction methods, primarily attention mechanisms and data normalization, to enhance performance on image classification datasets. We explore different activation functions, function combinations, grid sizes, and spline orders to validate the effectiveness of AF-KAN and determine its optimal configuration. In the experiments, AF-KAN significantly outperforms MLP, ReLU-KAN, and other KANs with the same parameter count. It also remains competitive even when using fewer than 6 to 10 times the parameters while maintaining the same network structure. However, AF-KAN requires a longer training time and consumes more FLOPs. The repository for this work is available at https://github.com/hoangthangta/All-KAN.

  • 2 authors
·
Mar 8

ELA: Efficient Local Attention for Deep Convolutional Neural Networks

The attention mechanism has gained significant recognition in the field of computer vision due to its ability to effectively enhance the performance of deep neural networks. However, existing methods often struggle to effectively utilize spatial information or, if they do, they come at the cost of reducing channel dimensions or increasing the complexity of neural networks. In order to address these limitations, this paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure. By analyzing the limitations of the Coordinate Attention method, we identify the lack of generalization ability in Batch Normalization, the adverse effects of dimension reduction on channel attention, and the complexity of attention generation process. To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques. This approach enables accurate localization of regions of interest by efficiently encoding two 1D positional feature maps without the need for dimension reduction, while allowing for a lightweight implementation. We carefully design three hyperparameters in ELA, resulting in four different versions: ELA-T, ELA-B, ELA-S, and ELA-L, to cater to the specific requirements of different visual tasks such as image classification, object detection and sementic segmentation. ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab. Extensive evaluations on the ImageNet, MSCOCO, and Pascal VOC datasets demonstrate the superiority of the proposed ELA module over current state-of-the-art methods in all three aforementioned visual tasks.

  • 2 authors
·
Mar 2, 2024

Scattering Vision Transformer: Spectral Mixing Matters

Vision transformers have gained significant attention and achieved state-of-the-art performance in various computer vision tasks, including image classification, instance segmentation, and object detection. However, challenges remain in addressing attention complexity and effectively capturing fine-grained information within images. Existing solutions often resort to down-sampling operations, such as pooling, to reduce computational cost. Unfortunately, such operations are non-invertible and can result in information loss. In this paper, we present a novel approach called Scattering Vision Transformer (SVT) to tackle these challenges. SVT incorporates a spectrally scattering network that enables the capture of intricate image details. SVT overcomes the invertibility issue associated with down-sampling operations by separating low-frequency and high-frequency components. Furthermore, SVT introduces a unique spectral gating network utilizing Einstein multiplication for token and channel mixing, effectively reducing complexity. We show that SVT achieves state-of-the-art performance on the ImageNet dataset with a significant reduction in a number of parameters and FLOPS. SVT shows 2\% improvement over LiTv2 and iFormer. SVT-H-S reaches 84.2\% top-1 accuracy, while SVT-H-B reaches 85.2\% (state-of-art for base versions) and SVT-H-L reaches 85.7\% (again state-of-art for large versions). SVT also shows comparable results in other vision tasks such as instance segmentation. SVT also outperforms other transformers in transfer learning on standard datasets such as CIFAR10, CIFAR100, Oxford Flower, and Stanford Car datasets. The project page is available on this webpage.https://badripatro.github.io/svt/.

  • 2 authors
·
Nov 2, 2023

Scene as Occupancy

Human driver can easily describe the complex traffic scene by visual system. Such an ability of precise perception is essential for driver's planning. To achieve this, a geometry-aware representation that quantizes the physical 3D scene into structured grid map with semantic labels per cell, termed as 3D Occupancy, would be desirable. Compared to the form of bounding box, a key insight behind occupancy is that it could capture the fine-grained details of critical obstacles in the scene, and thereby facilitate subsequent tasks. Prior or concurrent literature mainly concentrate on a single scene completion task, where we might argue that the potential of this occupancy representation might obsess broader impact. In this paper, we propose OccNet, a multi-view vision-centric pipeline with a cascade and temporal voxel decoder to reconstruct 3D occupancy. At the core of OccNet is a general occupancy embedding to represent 3D physical world. Such a descriptor could be applied towards a wide span of driving tasks, including detection, segmentation and planning. To validate the effectiveness of this new representation and our proposed algorithm, we propose OpenOcc, the first dense high-quality 3D occupancy benchmark built on top of nuScenes. Empirical experiments show that there are evident performance gain across multiple tasks, e.g., motion planning could witness a collision rate reduction by 15%-58%, demonstrating the superiority of our method.

  • 11 authors
·
Jun 5, 2023

Transform Once: Efficient Operator Learning in Frequency Domain

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

  • 7 authors
·
Nov 25, 2022

VALLR: Visual ASR Language Model for Lip Reading

Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.

  • 3 authors
·
Mar 27

Qihoo-T2X: An Efficiency-Focused Diffusion Transformer via Proxy Tokens for Text-to-Any-Task

The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy Token Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, in each transformer block, we randomly sample one token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 48% reduction compared to DiT and a 35% reduction compared to Pixart-alpha). Our source code is available at https://github.com/360CVGroup/Qihoo-T2X.

  • 6 authors
·
Sep 5, 2024 4

UniTalker: Scaling up Audio-Driven 3D Facial Animation through A Unified Model

Audio-driven 3D facial animation aims to map input audio to realistic facial motion. Despite significant progress, limitations arise from inconsistent 3D annotations, restricting previous models to training on specific annotations and thereby constraining the training scale. In this work, we present UniTalker, a unified model featuring a multi-head architecture designed to effectively leverage datasets with varied annotations. To enhance training stability and ensure consistency among multi-head outputs, we employ three training strategies, namely, PCA, model warm-up, and pivot identity embedding. To expand the training scale and diversity, we assemble A2F-Bench, comprising five publicly available datasets and three newly curated datasets. These datasets contain a wide range of audio domains, covering multilingual speech voices and songs, thereby scaling the training data from commonly employed datasets, typically less than 1 hour, to 18.5 hours. With a single trained UniTalker model, we achieve substantial lip vertex error reductions of 9.2% for BIWI dataset and 13.7% for Vocaset. Additionally, the pre-trained UniTalker exhibits promise as the foundation model for audio-driven facial animation tasks. Fine-tuning the pre-trained UniTalker on seen datasets further enhances performance on each dataset, with an average error reduction of 6.3% on A2F-Bench. Moreover, fine-tuning UniTalker on an unseen dataset with only half the data surpasses prior state-of-the-art models trained on the full dataset. The code and dataset are available at the project page https://github.com/X-niper/UniTalker.

  • 5 authors
·
Aug 1, 2024 2

Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images

Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/

  • 4 authors
·
Feb 19 2

UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity

Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.

  • 5 authors
·
Sep 6, 2024

Antislop: A Comprehensive Framework for Identifying and Eliminating Repetitive Patterns in Language Models

Widespread LLM adoption has introduced characteristic repetitive phraseology, termed "slop," which degrades output quality and makes AI-generated text immediately recognizable. We present Antislop, a comprehensive framework providing tools to both detect and eliminate these overused patterns. Our approach combines three innovations: (1) The Antislop Sampler, which uses backtracking to suppress unwanted strings at inference time without destroying vocabulary; (2) An automated pipeline that profiles model-specific slop against human baselines and generates training data; (3) Final Token Preference Optimization (FTPO), a novel fine-tuning method that operates on individual tokens, surgically adjusting logits wherever a banned pattern has appeared in an inference trace. We demonstrate that some slop patterns appear over 1,000x more frequently in LLM output than human text. The Antislop Sampler successfully suppresses 8,000+ patterns while maintaining quality, whereas token banning becomes unusable at just 2,000. Most importantly, FTPO achieves 90% slop reduction while maintaining or improving performance in cross-domain evals including GSM8K, MMLU, and creative writing tasks. In contrast, DPO suffers significant degradation in writing quality and lexical diversity despite achieving weaker suppression. We release all code and results under MIT license: https://github.com/sam-paech/auto-antislop.

  • 4 authors
·
Oct 16

POPE: 6-DoF Promptable Pose Estimation of Any Object, in Any Scene, with One Reference

Despite the significant progress in six degrees-of-freedom (6DoF) object pose estimation, existing methods have limited applicability in real-world scenarios involving embodied agents and downstream 3D vision tasks. These limitations mainly come from the necessity of 3D models, closed-category detection, and a large number of densely annotated support views. To mitigate this issue, we propose a general paradigm for object pose estimation, called Promptable Object Pose Estimation (POPE). The proposed approach POPE enables zero-shot 6DoF object pose estimation for any target object in any scene, while only a single reference is adopted as the support view. To achieve this, POPE leverages the power of the pre-trained large-scale 2D foundation model, employs a framework with hierarchical feature representation and 3D geometry principles. Moreover, it estimates the relative camera pose between object prompts and the target object in new views, enabling both two-view and multi-view 6DoF pose estimation tasks. Comprehensive experimental results demonstrate that POPE exhibits unrivaled robust performance in zero-shot settings, by achieving a significant reduction in the averaged Median Pose Error by 52.38% and 50.47% on the LINEMOD and OnePose datasets, respectively. We also conduct more challenging testings in causally captured images (see Figure 1), which further demonstrates the robustness of POPE. Project page can be found with https://paulpanwang.github.io/POPE/.

  • 7 authors
·
May 25, 2023

H4G: Unlocking Faithful Inference for Zero-Shot Graph Learning in Hyperbolic Space

Text-attributed graphs are widely used across domains, offering rich opportunities for zero-shot learning via graph-text alignment. However, existing methods struggle with tasks requiring fine-grained pattern recognition, particularly on heterophilic graphs. Through empirical and theoretical analysis, we identify an over-abstraction problem: current approaches operate at excessively large hyperbolic radii, compressing multi-scale structural information into uniform high-level abstractions. This abstraction-induced information loss obscures critical local patterns essential for accurate predictions. By analyzing embeddings in hyperbolic space, we demonstrate that optimal graph learning requires faithful preservation of fine-grained structural details, better retained by representations positioned closer to the origin. To address this, we propose H4G, a framework that systematically reduces embedding radii using learnable block-diagonal scaling matrices and M\"obius matrix multiplication. This approach restores access to fine-grained patterns while maintaining global receptive ability with minimal computational overhead. Experiments show H4G achieves state-of-the-art zero-shot performance with 12.8\% improvement on heterophilic graphs and 8.4\% on homophilic graphs, confirming that radius reduction enables faithful multi-scale representation for advancing zero-shot graph learning.

  • 9 authors
·
Oct 13

VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Vision Backbones

Recent studies have indicated that vision models pre-trained on images can serve as time series foundation models (TSFMs) by reformulating time series forecasting (TSF) as image reconstruction. However, effective cross-modal transfer from vision to time series remains challenging due to three discrepancies: (1) the data-modality gap between structured, bounded image data and unbounded, heterogeneous time series; (2) the multivariate-forecasting gap between fixed RGB-three-channel vision models and time series with arbitrary numbers of variates; and (3) the probabilistic-forecasting gap between the deterministic outputs of vision models and the requirement for uncertainty-aware probabilistic predictions. To bridge these gaps, we propose VisonTS++, a TSFM based on continual pre-training of a vision model on large-scale time series. Our approach introduces three key innovations: (1) vision-model-based filtering to identify high-quality sequences to stabilize pre-training and mitigate modality gap; (2) colorized multivariate conversion, encoding multivariate series as multi-subfigure RGB images to enhance cross-variate modeling; (3) multi-quantile forecasting, using parallel reconstruction heads to generate quantile forecasts without parametric assumptions. Experiments show that VisionTS++ achieves state-of-the-art performance in both in-distribution and out-of-distribution forecasting, outperforming specialized TSFMs by 6%-44% in MSE reduction and ranking first in GIFT-Eval benchmark which comprises 23 datasets across 7 domains. Our work demonstrates that with appropriate adaptation, vision models can effectively generalize to TSF, thus advancing the pursuit of universal TSFMs. Code is available at https://github.com/HALF111/VisionTSpp.

  • 8 authors
·
Aug 6

Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis

Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.

  • 11 authors
·
Jun 12, 2024

Efficient Model Development through Fine-tuning Transfer

Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.

  • 5 authors
·
Mar 25 2

PortLLM: Personalizing Evolving Large Language Models with Training-Free and Portable Model Patches

As large language models (LLMs) increasingly shape the AI landscape, fine-tuning pretrained models has become more popular than in the pre-LLM era for achieving optimal performance in domain-specific tasks. However, pretrained LLMs such as ChatGPT are periodically evolved, i.e., model parameters are frequently updated), making it challenging for downstream users with limited resources to keep up with fine-tuning the newest LLMs for their domain application. Even though fine-tuning costs have nowadays been reduced thanks to the innovations of parameter-efficient fine-tuning such as LoRA, not all downstream users have adequate computing for frequent personalization. Moreover, access to fine-tuning datasets, particularly in sensitive domains such as healthcare, could be time-restrictive, making it crucial to retain the knowledge encoded in earlier fine-tuned rounds for future adaptation. In this paper, we present PortLLM, a training-free framework that (i) creates an initial lightweight model update patch to capture domain-specific knowledge, and (ii) allows a subsequent seamless plugging for the continual personalization of evolved LLM at minimal cost. Our extensive experiments cover seven representative datasets, from easier question-answering tasks {BoolQ, SST2} to harder reasoning tasks {WinoGrande, GSM8K}, and models including {Mistral-7B, Llama2, Llama3.1, and Gemma2}, validating the portability of our designed model patches and showcasing the effectiveness of our proposed framework. For instance, PortLLM achieves comparable performance to LoRA fine-tuning with reductions of up to 12.2x in GPU memory usage. Finally, we provide theoretical justifications to understand the portability of our model update patches, which offers new insights into the theoretical dimension of LLMs' personalization.

  • 7 authors
·
Oct 8, 2024

CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning

High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.

  • 4 authors
·
May 16

Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

In this paper, we uncover that Language Models (LMs), either encoder- or decoder-based, can obtain new capabilities by assimilating the parameters of homologous models without retraining or GPUs. Typically, new abilities of LMs can be imparted by Supervised Fine-Tuning (SFT), reflected in the disparity between fine-tuned and pre-trained parameters (i.e., delta parameters). We initially observe that by introducing a novel operation called DARE (Drop And REscale), most delta parameters can be directly set to zeros without affecting the capabilities of SFT LMs and larger models can tolerate a higher proportion of discarded parameters. Based on this observation, we further sparsify delta parameters of multiple SFT homologous models with DARE and subsequently merge them into a single model by parameter averaging. We conduct experiments on eight datasets from the GLUE benchmark with BERT and RoBERTa. We also merge WizardLM, WizardMath, and Code Alpaca based on Llama 2. Experimental results show that: (1) The delta parameter value ranges for SFT models are typically small, often within 0.005, and DARE can eliminate 99% of them effortlessly. However, once the models are continuously pre-trained, the value ranges can grow to around 0.03, making DARE impractical. We have also tried to remove fine-tuned instead of delta parameters and find that a 10% reduction can lead to drastically decreased performance (even to 0). This highlights that SFT merely stimulates the abilities via delta parameters rather than injecting new abilities into LMs; (2) DARE can merge multiple task-specific LMs into one LM with diverse abilities. For instance, the merger of WizardLM and WizardMath improves the GSM8K zero-shot accuracy of WizardLM from 2.2 to 66.3, retaining its instruction-following ability while surpassing WizardMath's original 64.2 performance. Codes are available at https://github.com/yule-BUAA/MergeLM.

  • 5 authors
·
Nov 6, 2023 7

TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos

The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.

AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning

In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.

  • 6 authors
·
Mar 3

VFlowOpt: A Token Pruning Framework for LMMs with Visual Information Flow-Guided Optimization

Large Multimodal Models (LMMs) excel in visual-language tasks by leveraging numerous visual tokens for fine-grained visual information, but this token redundancy results in significant computational costs. Previous research aimed at reducing visual tokens during inference typically leverages importance maps derived from attention scores among vision-only tokens or vision-language tokens to prune tokens across one or multiple pruning stages. Despite this progress, pruning frameworks and strategies remain simplistic and insufficiently explored, often resulting in substantial performance degradation. In this paper, we propose VFlowOpt, a token pruning framework that introduces an importance map derivation process and a progressive pruning module with a recycling mechanism. The hyperparameters of its pruning strategy are further optimized by a visual information flow-guided method. Specifically, we compute an importance map for image tokens based on their attention-derived context relevance and patch-level information entropy. We then decide which tokens to retain or prune and aggregate the pruned ones as recycled tokens to avoid potential information loss. Finally, we apply a visual information flow-guided method that regards the last token in the LMM as the most representative signal of text-visual interactions. This method minimizes the discrepancy between token representations in LMMs with and without pruning, thereby enabling superior pruning strategies tailored to different LMMs. Experiments demonstrate that VFlowOpt can prune 90% of visual tokens while maintaining comparable performance, leading to an 89% reduction in KV-Cache memory and 3.8 times faster inference.

  • 6 authors
·
Aug 7

Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models

Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.

  • 4 authors
·
Oct 8, 2023

Can Representation Gaps Be the Key to Enhancing Robustness in Graph-Text Alignment?

Representation learning on text-attributed graphs (TAGs) integrates structural connectivity with rich textual semantics, enabling applications in diverse domains. Current methods largely rely on contrastive learning to maximize cross-modal similarity, assuming tighter coupling between graph and text representations improves transfer performance. However, our empirical analysis reveals that both natural gap expansion and forced gap reduction result in performance degradation by disrupting pre-trained knowledge structures and impairing generalization. This arises from the geometric incompatibility between encoders, where graph encoders capture topological patterns, while text encoders capture semantic structures. Over-alignment compresses these distinct spaces into shared subspaces, causing structure collapse that diminishes both topological reasoning and semantic understanding. We propose LLM4GTA, a gap-aware alignment framework that preserves representation gaps as geometric necessities for maintaining modality-specific knowledge and improving transfer performance. LLM4GTA includes an adaptive gap preservation module to prevent over-alignment by monitoring similarity evolution and an intra-modal compensation mechanism that boosts discriminative power using auxiliary classifiers in graph space. Extensive experiments show significant improvements over existing methods in zero-shot and few-shot scenarios.

  • 9 authors
·
Oct 13

Sub-MoE: Efficient Mixture-of-Expert LLMs Compression via Subspace Expert Merging

Mixture of Experts (MoE) LLMs face significant obstacles due to their massive parameter scale, which imposes memory, storage, and deployment challenges. Although recent expert merging methods promise greater efficiency by consolidating multiple experts, they are fundamentally hindered by parameter conflicts arising from expert specialization. In this paper, we present Sub-MoE, a novel MoE compression framework via Subspace Expert Merging. Our key insight is to perform joint Singular Value Decomposition (SVD) on concatenated expert weights, reducing conflicting parameters by extracting shared U-matrices while enabling effective merging of the expert-specific V components. Specifically, Sub-MoE consists of two innovative phases: (1) Adaptive Expert Clustering, which groups functionally coherent experts via K-means clustering based on cosine similarity of expert outputs; and (2) Subspace Expert Merging, which first enforces Experts Union Decomposition to derive the shared U-matrix across experts in the same group, then pursues frequency-based merging for individual V-matrices, and finalizes expert reconstruction using the merged V-matrix. In this way, we align and fuse experts in a shared subspace, and can be extended with intra-expert compression for further inference optimization. Extensive experiments on Mixtral, DeepSeek, and Qwen-1.5|3 MoE LLMs demonstrate that our Sub-MoE significantly outperforms existing expert pruning and merging methods. Notably, our Sub-MoE maintains 96\%|86\% of original performance with 25\%|50\% expert reduction on Mixtral-8x7B in zero-shot benchmarks. Code will be released at https://github.com/lliai/MoERazor.

  • 7 authors
·
Jun 29

Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections

Post-training processes are essential phases in grounding pre-trained language models to real-world tasks, with learning from demonstrations or preference signals playing a crucial role in this adaptation. We present a unified theoretical framework bridging Supervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training. Through rigorous mathematical derivation, we demonstrate that both SFT and preference learning methods like Direct Preference Optimization (DPO) operate within the same optimal policy-reward subspace, with SFT representing a special case of implicit reward learning. Our analysis reveals a critical limitation in conventional SFT: the KL divergence term in distribution matching becomes constant with respect to the policy during optimization, failing to constrain model updates. To address this, we propose a simple yet effective learning rate reduction approach that yields significant performance improvements (up to 25\% relative gain and 6\% absolute win rate increase in instruction following tasks. Additionally, we derive alternative SFT objectives from various f-divergence functions that preserve the KL term during optimization, further enhancing post-DPO model performance. Finally, we extend the theoretical relationship between LLM logits and Q-functions from preference learning to the SFT context, providing mathematical derivations and experimental validation.

  • 10 authors
·
Jun 15

Leveraging Semantic Asymmetry for Precise Gross Tumor Volume Segmentation of Nasopharyngeal Carcinoma in Planning CT

In the radiation therapy of nasopharyngeal carcinoma (NPC), clinicians typically delineate the gross tumor volume (GTV) using non-contrast planning computed tomography to ensure accurate radiation dose delivery. However, the low contrast between tumors and adjacent normal tissues necessitates that radiation oncologists manually delineate the tumors, often relying on diagnostic MRI for guidance. % In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method. Specifically, we posit that a healthy nasopharyngeal region is characteristically bilaterally symmetric, whereas the emergence of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose a Siamese contrastive learning segmentation framework that minimizes the voxel-wise distance between original and flipped areas without tumor and encourages a larger distance between original and flipped areas with tumor. Thus, our approach enhances the sensitivity of features to semantic asymmetries. % Extensive experiments demonstrate that the proposed SATs achieves the leading NPC GTV segmentation performance in both internal and external testing, e.g., with at least 2\% absolute Dice score improvement and 12\% average distance error reduction when compared to other state-of-the-art methods in the external testing.

  • 15 authors
·
Nov 27, 2024

Towards Accurate and Efficient Sub-8-Bit Integer Training

Neural network training is a memory- and compute-intensive task. Quantization, which enables low-bitwidth formats in training, can significantly mitigate the workload. To reduce quantization error, recent methods have developed new data formats and additional pre-processing operations on quantizers. However, it remains quite challenging to achieve high accuracy and efficiency simultaneously. In this paper, we explore sub-8-bit integer training from its essence of gradient descent optimization. Our integer training framework includes two components: ShiftQuant to realize accurate gradient estimation, and L1 normalization to smoothen the loss landscape. ShiftQuant attains performance that approaches the theoretical upper bound of group quantization. Furthermore, it liberates group quantization from inefficient memory rearrangement. The L1 normalization facilitates the implementation of fully quantized normalization layers with impressive convergence accuracy. Our method frees sub-8-bit integer training from pre-processing and supports general devices. This framework achieves negligible accuracy loss across various neural networks and tasks (0.92% on 4-bit ResNets, 0.61% on 6-bit Transformers). The prototypical implementation of ShiftQuant achieves more than 1.85times/15.3% performance improvement on CPU/GPU compared to its FP16 counterparts, and 33.9% resource consumption reduction on FPGA than the FP16 counterparts. The proposed fully-quantized L1 normalization layers achieve more than 35.54% improvement in throughout on CPU compared to traditional L2 normalization layers. Moreover, theoretical analysis verifies the advancement of our method.

  • 10 authors
·
Nov 16, 2024

DiffCalib: Reformulating Monocular Camera Calibration as Diffusion-Based Dense Incident Map Generation

Monocular camera calibration is a key precondition for numerous 3D vision applications. Despite considerable advancements, existing methods often hinge on specific assumptions and struggle to generalize across varied real-world scenarios, and the performance is limited by insufficient training data. Recently, diffusion models trained on expansive datasets have been confirmed to maintain the capability to generate diverse, high-quality images. This success suggests a strong potential of the models to effectively understand varied visual information. In this work, we leverage the comprehensive visual knowledge embedded in pre-trained diffusion models to enable more robust and accurate monocular camera intrinsic estimation. Specifically, we reformulate the problem of estimating the four degrees of freedom (4-DoF) of camera intrinsic parameters as a dense incident map generation task. The map details the angle of incidence for each pixel in the RGB image, and its format aligns well with the paradigm of diffusion models. The camera intrinsic then can be derived from the incident map with a simple non-learning RANSAC algorithm during inference. Moreover, to further enhance the performance, we jointly estimate a depth map to provide extra geometric information for the incident map estimation. Extensive experiments on multiple testing datasets demonstrate that our model achieves state-of-the-art performance, gaining up to a 40% reduction in prediction errors. Besides, the experiments also show that the precise camera intrinsic and depth maps estimated by our pipeline can greatly benefit practical applications such as 3D reconstruction from a single in-the-wild image.

  • 6 authors
·
May 24, 2024

RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence

As Large Language Models (LLMs) continue to advance, Retrieval-Augmented Generation (RAG) has emerged as a vital technique to enhance factual accuracy by integrating external knowledge into the generation process. However, LLMs often fail to faithfully integrate retrieved evidence into their generated responses, leading to factual inconsistencies. To quantify this gap, we introduce Entity-Context Divergence (ECD), a metric that measures the extent to which retrieved information is accurately reflected in model outputs. We systematically evaluate contemporary LLMs on their ability to preserve factual consistency in retrieval-augmented settings, a capability we define as RAG-ability. Our empirical analysis reveals that RAG-ability remains low across most LLMs, highlighting significant challenges in entity retention and context fidelity. This paper introduces Radiant (Retrieval AugmenteD entIty-context AligNmenT), a novel framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content. Radiant extends Direct Preference Optimization (DPO) to teach LLMs how to integrate provided additional information into subsequent generations. As a behavior correction mechanism, Radiant boosts RAG performance across varied retrieval scenarios, such as noisy web contexts, knowledge conflicts, and hallucination reduction. This enables more reliable, contextually grounded, and factually coherent content generation.

  • 14 authors
·
Jun 28

Less is More: Local Intrinsic Dimensions of Contextual Language Models

Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.

  • 11 authors
·
Jun 1

Affordance-Guided Reinforcement Learning via Visual Prompting

Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive reasoning about affordances through keypoints in zero-shot, and we use these to define dense rewards that guide autonomous robotic learning. On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 35K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl

  • 5 authors
·
Jul 14, 2024

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity. To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution. Furthermore, we develop a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction. The proposed ECA module is efficient yet effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFLOPs vs. 3.86 GFLOPs, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.

  • 6 authors
·
Oct 7, 2019

Tina: Tiny Reasoning Models via LoRA

How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.

  • 6 authors
·
Apr 22 4

Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition

Large Reasoning Models (LRMs) are criticized for the excessively lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking units; each unit attempts to produce a candidate answer to the original query. Hence, a natural idea to improve efficiency is to reduce the unit number. Yet, the fact that the thinking units in vanilla CoT cannot be explicitly managed renders doing so challenging. This paper introduces Multi-Turn Decomposition (MinD) to decode conventional CoT into a sequence of explicit, structured, and turn-wise interactions to bridge the gap. In MinD, the model provides a multi-turn response to the query, where each turn embraces a thinking unit and yields a corresponding answer. The subsequent turns can reflect, verify, revise, or explore alternative approaches to both the thinking and answer parts of earlier ones. This not only makes the answer delivered more swiftly, but also enables explicit controls over the iterative reasoning process (i.e., users may halt or continue at any turn). We follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats by prompting another LLM, and then tune the LRM with such data. Observing that the tuned model tends to consume even more tokens than the original one (probably due to that the multi-turn formats introduce additional answer tokens), we advocate leveraging RL algorithms like GRPO to prioritize correct outputs with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD can achieve up to ~70% reduction in both output token usage and time to first token (TTFT), while maintaining competitive performance on reasoning benchmarks such as MATH-500, AIME24, AMC23, and GPQA-Diamond.

  • 5 authors
·
May 26 2

From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients

Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at https://github.com/VITA-Group/welore

  • 7 authors
·
Jul 15, 2024 2

Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence

Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.

  • 6 authors
·
May 15 2

LoRA vs Full Fine-tuning: An Illusion of Equivalence

Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to match the performance of fully fine-tuned models on various tasks with an extreme reduction in the number of trainable parameters. Even in settings where both methods learn similarly accurate models, are their learned solutions really equivalent? We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure; moreover, the fine-tuned models themselves show distinct generalization behaviors when tested outside the adaptation task's distribution. More specifically, we first show that the weight matrices trained with LoRA have new, high-ranking singular vectors, which we call intruder dimensions. Intruder dimensions do not appear during full fine-tuning. Second, we show that LoRA models with intruder dimensions, despite achieving similar performance to full fine-tuning on the target task, become worse models of the pre-training distribution and adapt less robustly to multiple tasks sequentially. Higher-rank, rank-stabilized LoRA models closely mirror full fine-tuning, even when performing on par with lower-rank LoRA models on the same tasks. These results suggest that models updated with LoRA and full fine-tuning access different parts of parameter space, even when they perform equally on the fine-tuned distribution. We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.

  • 4 authors
·
Oct 28, 2024

AdaThink-Med: Medical Adaptive Thinking with Uncertainty-Guided Length Calibration

Recent advances in inference time scaling with extended long chain-of thought have significantly improved the reasoning capabilities of both general and medical large language models (LLMs). However, these models tend to engage in lengthy reasoning processes regardless of the difficulty of the input question, leading to increased inference costs in real-world applications. Therefore, enabling adaptive thinking where models think less for simpler questions and think more for complex ones is critical for the effective use of medical LLMs in practice. Despite its importance, there is a lack of end-to-end approaches designed to enhance the adaptive thinking capabilities of medical LLMs while providing a comprehensive examination of the trade-off between performance and computational cost. To bridge this gap, we propose AdaThink-Med, the first end-to-end framework designed to enhance adaptive thinking ability in medical reasoning models with uncertainty-guided length calibration. AdaThink-Med first generates multiple candidate outputs for each question, evaluates the correctness and uncertainty of each candidate, and then estimates problem difficulty via an uncertainty-guided length calibration module. For outputs with low difficulty and correct answers, the framework penalizes longer reasoning paths; whereas for those with high difficulty and incorrect answers, it encourages extending the chain of thought to explore alternative solutions. On six public medical QA benchmarks, AdaThink-Med achieves up to 6.4x length reduction on average while retaining performance with only minimal degradation. Intriguingly, we observe that AdaThink-Med spontaneously develops two distinct reasoning modes, which we characterize as "non-thinking" and "thinking", demonstrating the model's ability to suppress redundant reasoning processes dynamically.

  • 4 authors
·
Sep 29

S2A: A Unified Framework for Parameter and Memory Efficient Transfer Learning

Parameter-efficient transfer learning (PETL) aims to reduce the scales of pretrained models for multiple downstream tasks. However, as the models keep scaling up, the memory footprint of existing PETL methods is not significantly reduced compared to the reduction of learnable parameters. This limitation hinders the practical deployment of PETL methods on memory-constrained devices. To this end, we proposed a new PETL framework, called Structure to Activation (S2A), to reduce the memory footprint of activation during fine-tuning. Specifically, our framework consists of: 1) Activation modules design(i.e., bias, prompt and side modules) in the parametric model structure, which results in a significant reduction of adjustable parameters and activation memory; 2) 4-bit quantization of activations based on their derivatives for non-parametric structures (e.g., nonlinear functions), which maintains accuracy while significantly reducing memory usage. Our S2A method consequently offers a lightweight solution in terms of both parameters and memory footprint. We evaluated S2A with different backbones and performed extensive experiments on various datasets to evaluate the effectiveness. The results show that our methods not only outperform existing PETL techniques, achieving a fourfold reduction in GPU memory footprint on average, but also shows competitive performance in accuracy with fewer tunable parameters. These demonstrate that our method is highly suitable for practical transfer learning on hardware-constrained devices.

  • 5 authors
·
Mar 11

Vision-Free Retrieval: Rethinking Multimodal Search with Textual Scene Descriptions

Contrastively-trained Vision-Language Models (VLMs), such as CLIP, have become the standard approach for learning discriminative vision-language representations. However, these models often exhibit shallow language understanding, manifesting bag-of-words behaviour. These limitations are reinforced by their dual-encoder design, which induces a modality gap. Additionally, the reliance on vast web-collected data corpora for training makes the process computationally expensive and introduces significant privacy concerns. To address these limitations, in this work, we challenge the necessity of vision encoders for retrieval tasks by introducing a vision-free, single-encoder retrieval pipeline. Departing from the traditional text-to-image retrieval paradigm, we migrate to a text-to-text paradigm with the assistance of VLLM-generated structured image descriptions. We demonstrate that this paradigm shift has significant advantages, including a substantial reduction of the modality gap, improved compositionality, and better performance on short and long caption queries, all attainable with only a few hours of calibration on two GPUs. Additionally, substituting raw images with textual descriptions introduces a more privacy-friendly alternative for retrieval. To further assess generalisation and address some of the shortcomings of prior compositionality benchmarks, we release two benchmarks derived from Flickr30k and COCO, containing diverse compositional queries made of short captions, which we coin subFlickr and subCOCO. Our vision-free retriever matches and often surpasses traditional multimodal models. Importantly, our approach achieves state-of-the-art zero-shot performance on multiple retrieval and compositionality benchmarks, with models as small as 0.3B parameters. Code is available at: https://github.com/IoannaNti/LexiCLIP

  • 5 authors
·
Sep 23

Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model

Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

  • 8 authors
·
Jul 9

Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration

Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by times1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.

  • 4 authors
·
Jun 5

Retro-Search: Exploring Untaken Paths for Deeper and Efficient Reasoning

Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.

  • 11 authors
·
Apr 6

Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

By treating visual tokens from visual encoders as text tokens, Multimodal Large Language Models (MLLMs) have achieved remarkable progress across diverse visual understanding tasks, leveraging the robust architectures of Large Language Models (LLMs). However, as token counts grow, the quadratic scaling of computation in LLMs introduces a significant efficiency bottleneck, impeding further scalability. Although recent approaches have explored pruning visual tokens or employing lighter LLM architectures, the computational overhead from an increasing number of visual tokens remains a substantial challenge. In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA, a representative MLLM, and introduce a suite of streamlined strategies to enhance efficiency. These include neighbor-aware visual token attention, pruning of inactive visual attention heads, and selective layer dropping for visual computations. By implementing these strategies in LLaVA, we achieve a reduction in computational demands of 88% while maintaining model performance across key benchmarks. Additionally, we validate the existence of visual computational redundancy in other MLLMs, such as Qwen2-VL-7B and InternVL-2.0-4B/8B/26B. These results present a novel pathway for MLLMs to handle dense visual tokens with minimal computational costs. Code and model checkpoints will be released to support further research.

  • 9 authors
·
Oct 8, 2024

Searching for Efficient Multi-Stage Vision Transformers

Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.

  • 3 authors
·
Sep 1, 2021

Exploring Parameter-Efficient Fine-Tuning to Enable Foundation Models in Federated Learning

Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices. In the typical FL paradigm (e.g., FedAvg), model weights are sent to and from the server each round to participating clients. Recently, the use of small pre-trained models has been shown to be effective in federated learning optimization and improving convergence. However, recent state-of-the-art pre-trained models are getting more capable but also have more parameters, known as the "Foundation Models." In conventional FL, sharing the enormous model weights can quickly put a massive communication burden on the system, especially if more capable models are employed. Can we find a solution to enable those strong and readily available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden? To this end, we investigate the use of parameter-efficient fine-tuning in federated learning and thus introduce a new framework: FedPEFT. Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings. By only locally tuning and globally sharing a small portion of the model weights, significant reductions in the total communication overhead can be achieved while maintaining competitive or even better performance in a wide range of federated learning scenarios, providing insight into a new paradigm for practical and effective federated systems.

  • 5 authors
·
Oct 4, 2022

Predictive Data Selection: The Data That Predicts Is the Data That Teaches

Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmark (Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning. To leverage this insight, we introduce data selection based on data's Predictive strength (Preselect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpasses the performance of a vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect.

  • 8 authors
·
Mar 2 2

Aligning Large Multimodal Models with Factually Augmented RLHF

Large Multimodal Models (LMM) are built across modalities and the misalignment between two modalities can result in "hallucination", generating textual outputs that are not grounded by the multimodal information in context. To address the multimodal misalignment issue, we adapt the Reinforcement Learning from Human Feedback (RLHF) from the text domain to the task of vision-language alignment, where human annotators are asked to compare two responses and pinpoint the more hallucinated one, and the vision-language model is trained to maximize the simulated human rewards. We propose a new alignment algorithm called Factually Augmented RLHF that augments the reward model with additional factual information such as image captions and ground-truth multi-choice options, which alleviates the reward hacking phenomenon in RLHF and further improves the performance. We also enhance the GPT-4-generated training data (for vision instruction tuning) with previously available human-written image-text pairs to improve the general capabilities of our model. To evaluate the proposed approach in real-world scenarios, we develop a new evaluation benchmark MMHAL-BENCH with a special focus on penalizing hallucinations. As the first LMM trained with RLHF, our approach achieves remarkable improvement on the LLaVA-Bench dataset with the 94% performance level of the text-only GPT-4 (while previous best methods can only achieve the 87% level), and an improvement by 60% on MMHAL-BENCH over other baselines. We opensource our code, model, data at https://llava-rlhf.github.io.

  • 12 authors
·
Sep 25, 2023 2

AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning

Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.

  • 4 authors
·
Dec 4, 2024 2

Which Heads Matter for Reasoning? RL-Guided KV Cache Compression

Reasoning large language models exhibit complex reasoning behaviors through the extended chain-of-thought generation, creating unprecedented Key-Value (KV) cache overhead during the decoding phase. Existing KV cache compression methods underperform on reasoning models: token-dropping methods break reasoning integrity by discarding critical information, while head-reallocating methods mistakenly compress reasoning-critical heads since they are designed for retrieval tasks, resulting in significant performance degradation as compression rates increase. We hypothesize that KV heads exhibit functional heterogeneity in reasoning models-some heads are critical for chain-of-thought consistency while others are compressible. To validate and exploit this insight, we propose RLKV, a novel reasoning-critical head identification framework, which uses reinforcement learning to directly optimize the relationship between each head's cache usage and reasoning quality. As RLKV produces rewards from actual generated samples during training, it naturally identifies heads relevant to reasoning behaviors. We then allocate full KV cache to these heads while applying compressed constant KV cache to others for efficient inference. Our experiments reveal that only a small fraction of attention heads is essential for reasoning, enabling our KV compression approach to outperform baseline methods while achieving 20-50% cache reduction with near lossless performance compared to uncompressed results.

  • 5 authors
·
Oct 9 2

Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models

State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input x, combined with a per-state-group quantization for input-dependent parameters B and C. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms several state-of-the-art SSM quantization methods and delivers 1.3times and 3times speed-ups in the pre-filling and generation stages, respectively, while offering 4times memory reduction with only a 1.6% average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.

  • 6 authors
·
Mar 28 2

Fine-Tuning Language Models with Just Forward Passes

Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12x memory reduction; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.

  • 7 authors
·
May 26, 2023 2

Retrofitting (Large) Language Models with Dynamic Tokenization

Current language models (LMs) use a fixed, static subword tokenizer. This choice, often taken for granted, typically results in degraded efficiency and capabilities in languages other than English, and makes it challenging to apply LMs to new domains or languages. To address these issues, we propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text. For encoder-style models, we introduce a subword-merging algorithm inspired by byte-pair encoding (BPE), but at a batch level. We merge frequent subword sequences in a batch, then apply a pretrained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. When applied with word-level boundaries, this on average reduces token sequence lengths by >20% across 14 languages on XNLI with XLM-R while degrading its task performance by less than 2%. For decoder-style models, we apply dynamic tokenization in two ways: 1) for prefilling, maintaining performance of Mistral-7B almost completely with up to 40% sequence reduction - relative to the word-level; and 2) via an approximate nearest neighbor index, achieving fast generation with a one million token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall, our findings show that dynamic tokenization substantially improves inference speed and promotes fairness across languages, making a leap towards overcoming the limitations of static tokenization and enabling more equitable and adaptable LMs.

  • 3 authors
·
Nov 27, 2024

Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time

We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.

  • 6 authors
·
Feb 16 2

HFT: Half Fine-Tuning for Large Language Models

Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.

  • 6 authors
·
Apr 29, 2024 1

Learning Low-Rank Representations for Model Compression

Vector Quantization (VQ) is an appealing model compression method to obtain a tiny model with less accuracy loss. While methods to obtain better codebooks and codes under fixed clustering dimensionality have been extensively studied, optimizations of the vectors in favour of clustering performance are not carefully considered, especially via the reduction of vector dimensionality. This paper reports our recent progress on the combination of dimensionality compression and vector quantization, proposing a Low-Rank Representation Vector Quantization (LR^2VQ) method that outperforms previous VQ algorithms in various tasks and architectures. LR^2VQ joins low-rank representation with subvector clustering to construct a new kind of building block that is directly optimized through end-to-end training over the task loss. Our proposed design pattern introduces three hyper-parameters, the number of clusters k, the size of subvectors m and the clustering dimensionality d. In our method, the compression ratio could be directly controlled by m, and the final accuracy is solely determined by d. We recognize d as a trade-off between low-rank approximation error and clustering error and carry out both theoretical analysis and experimental observations that empower the estimation of the proper d before fine-tunning. With a proper d, we evaluate LR^2VQ with ResNet-18/ResNet-50 on ImageNet classification datasets, achieving 2.8\%/1.0\% top-1 accuracy improvements over the current state-of-the-art VQ-based compression algorithms with 43times/31times compression factor.

  • 3 authors
·
Nov 21, 2022

Bridging Fairness and Environmental Sustainability in Natural Language Processing

Fairness and environmental impact are important research directions for the sustainable development of artificial intelligence. However, while each topic is an active research area in natural language processing (NLP), there is a surprising lack of research on the interplay between the two fields. This lacuna is highly problematic, since there is increasing evidence that an exclusive focus on fairness can actually hinder environmental sustainability, and vice versa. In this work, we shed light on this crucial intersection in NLP by (1) investigating the efficiency of current fairness approaches through surveying example methods for reducing unfair stereotypical bias from the literature, and (2) evaluating a common technique to reduce energy consumption (and thus environmental impact) of English NLP models, knowledge distillation (KD), for its impact on fairness. In this case study, we evaluate the effect of important KD factors, including layer and dimensionality reduction, with respect to: (a) performance on the distillation task (natural language inference and semantic similarity prediction), and (b) multiple measures and dimensions of stereotypical bias (e.g., gender bias measured via the Word Embedding Association Test). Our results lead us to clarify current assumptions regarding the effect of KD on unfair bias: contrary to other findings, we show that KD can actually decrease model fairness.

  • 4 authors
·
Nov 8, 2022

EcoFormer: Energy-Saving Attention with Linear Complexity

Transformer is a transformative framework that models sequential data and has achieved remarkable performance on a wide range of tasks, but with high computational and energy cost. To improve its efficiency, a popular choice is to compress the models via binarization which constrains the floating-point values into binary ones to save resource consumption owing to cheap bitwise operations significantly. However, existing binarization methods only aim at minimizing the information loss for the input distribution statistically, while ignoring the pairwise similarity modeling at the core of the attention. To this end, we propose a new binarization paradigm customized to high-dimensional softmax attention via kernelized hashing, called EcoFormer, to map the original queries and keys into low-dimensional binary codes in Hamming space. The kernelized hash functions are learned to match the ground-truth similarity relations extracted from the attention map in a self-supervised way. Based on the equivalence between the inner product of binary codes and the Hamming distance as well as the associative property of matrix multiplication, we can approximate the attention in linear complexity by expressing it as a dot-product of binary codes. Moreover, the compact binary representations of queries and keys enable us to replace most of the expensive multiply-accumulate operations in attention with simple accumulations to save considerable on-chip energy footprint on edge devices. Extensive experiments on both vision and language tasks show that EcoFormer consistently achieves comparable performance with standard attentions while consuming much fewer resources. For example, based on PVTv2-B0 and ImageNet-1K, Ecoformer achieves a 73% on-chip energy footprint reduction with only a 0.33% performance drop compared to the standard attention. Code is available at https://github.com/ziplab/EcoFormer.

  • 5 authors
·
Sep 19, 2022

Lottery Jackpots Exist in Pre-trained Models

Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex searching on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight training, termed "lottery jackpots", exist in pre-trained models with unexpanded width. Furthermore, we improve the efficiency for searching lottery jackpots from two perspectives. Firstly, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Consequently, our searched lottery jackpot removes 90% weights in ResNet-50, while it easily obtains more than 70% top-1 accuracy using only 5 searching epochs on ImageNet. In compliance with this insight, we initialize our sparse mask using the magnitude-based pruning, resulting in at least 3x cost reduction on the lottery jackpot searching while achieving comparable or even better performance. Secondly, we conduct an in-depth analysis of the searching process for lottery jackpots. Our theoretical result suggests that the decrease in training loss during weight searching can be disturbed by the dependency between weights in modern networks. To mitigate this, we propose a novel short restriction method to restrict change of masks that may have potential negative impacts on the training loss. Our code is available at https://github.com/zyxxmu/lottery-jackpots.

  • 5 authors
·
Apr 17, 2021

DRPO: Efficient Reasoning via Decoupled Reward Policy Optimization

Recent large reasoning models (LRMs) driven by reinforcement learning algorithms (e.g., GRPO) have achieved remarkable performance on challenging reasoning tasks. However, these models suffer from overthinking, generating unnecessarily long and redundant reasoning even for simple questions, which substantially increases computational cost and response latency. While existing methods incorporate length rewards to GRPO to promote concise reasoning, they incur significant performance degradation. We identify the root cause: when rewards for correct but long rollouts are penalized, GRPO's group-relative advantage function can assign them negative advantages, actively discouraging valid reasoning. To overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a novel framework that decouples the length-based learning signal of correct rollouts from incorrect ones. DRPO ensures that reward signals for correct rollouts are normalized solely within the positive group, shielding them from interference by negative samples. The DRPO's objective is grounded in integrating an optimized positive data distribution, which maximizes length-based rewards under a KL regularization, into a discriminative objective. We derive a closed-form solution for this distribution, enabling efficient computation of the objective and its gradients using only on-policy data and importance weighting. Of independent interest, this formulation is general and can incorporate other preference rewards of positive data beyond length. Experiments on mathematical reasoning tasks demonstrate DRPO's significant superiority over six efficient reasoning baselines. Notably, with a 1.5B model, our method achieves 77\% length reduction with only 1.1\% performance loss on simple questions like GSM8k dataset, while the follow-up baseline sacrifices 4.3\% for 68\% length reduction.

  • 4 authors
·
Oct 6

Towards Safe Reasoning in Large Reasoning Models via Corrective Intervention

Although Large Reasoning Models (LRMs) have progressed in solving complex problems, their chain-of-thought (CoT) reasoning often contains harmful content that can persist even when the final responses appear safe. We show that this issue still remains in existing methods which overlook the unique significance of safe reasoning, undermining their trustworthiness and posing potential risks in applications if unsafe reasoning is accessible for and exploited by malicious users. We therefore shift our focus to aligning the safety of reasoning itself in this paper and explore process supervision as the solution. However, simply rewarding safe reasoning proves inadequate due to low rollout diversity and limited training signals. To tackle this challenge, we first delve into the characteristics of safe reasoning and uncover several critical insights that 1) safe reasoning is often consolidated by a few critical steps of safety triggers; 2) compliance cues strongly correlate with unsafe continuations; and 3) corrective interventions reliably steer unsafe trajectories towards safer traces. Motivated by these, we propose Intervened Preference Optimization (IPO), an alignment method that enforces safe reasoning by substituting compliance steps with safety triggers and constructing pairs for preference learning with strong signals. Experiments on jailbreak and adversarial safety benchmarks demonstrate that IPO remarkably improves overall safety regarding both reasoning and responses, outperforming SFT-based and RL-based baselines with a relative reduction of over 30% in harmfulness, while preserving excellent performance across diverse reasoning tasks. The results highlight the importance of explicit alignment for reasoning and provide a practical path to safer LRMs.

  • 10 authors
·
Sep 29

Multi-view-guided Passage Reranking with Large Language Models

Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP

  • 4 authors
·
Sep 9

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation

Image tokenization plays a critical role in reducing the computational demands of modeling high-resolution images, significantly improving the efficiency of image and multimodal understanding and generation. Recent advances in 1D latent spaces have reduced the number of tokens required by eliminating the need for a 2D grid structure. In this paper, we further advance compact discrete image representation by introducing 1D binary image latents. By representing each image as a sequence of binary vectors, rather than using traditional one-hot codebook tokens, our approach preserves high-resolution details while maintaining the compactness of 1D latents. To the best of our knowledge, our text-to-image models are the first to achieve competitive performance in both diffusion and auto-regressive generation using just 128 discrete tokens for images up to 1024x1024, demonstrating up to a 32-fold reduction in token numbers compared to standard VQ-VAEs. The proposed 1D binary latent space, coupled with simple model architectures, achieves marked improvements in speed training and inference speed. Our text-to-image models allow for a global batch size of 4096 on a single GPU node with 8 AMD MI300X GPUs, and the training can be completed within 200 GPU days. Our models achieve competitive performance compared to modern image generation models without any in-house private training data or post-training refinements, offering a scalable and efficient alternative to conventional tokenization methods.

  • 10 authors
·
Jun 26

MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models

High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a MAthematical data Selection framework using the Skill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.

  • 7 authors
·
Mar 19

White-Box Diffusion Transformer for single-cell RNA-seq generation

As a powerful tool for characterizing cellular subpopulations and cellular heterogeneity, single cell RNA sequencing (scRNA-seq) technology offers advantages of high throughput and multidimensional analysis. However, the process of data acquisition is often constrained by high cost and limited sample availability. To overcome these limitations, we propose a hybrid model based on Diffusion model and White-Box transformer that aims to generate synthetic and biologically plausible scRNA-seq data. Diffusion model progressively introduce noise into the data and then recover the original data through a denoising process, a forward and reverse process that is particularly suitable for generating complex data distributions. White-Box transformer is a deep learning architecture that emphasizes mathematical interpretability. By minimizing the encoding rate of the data and maximizing the sparsity of the representation, it not only reduces the computational burden, but also provides clear insight into underlying structure. Our White-Box Diffusion Transformer combines the generative capabilities of Diffusion model with the mathematical interpretability of White-Box transformer. Through experiments using six different single-cell RNA-Seq datasets, we visualize both generated and real data using t-SNE dimensionality reduction technique, as well as quantify similarity between generated and real data using various metrics to demonstrate comparable performance of White-Box Diffusion Transformer and Diffusion Transformer in generating scRNA-seq data alongside significant improvements in training efficiency and resource utilization. Our code is available at https://github.com/lingximamo/White-Box-Diffusion-Transformer

  • 3 authors
·
Nov 11, 2024

LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba

Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.

  • 3 authors
·
Aug 5, 2024

SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining

Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.

  • 7 authors
·
Jun 4, 2024 2

Emerging Property of Masked Token for Effective Pre-training

Driven by the success of Masked Language Modeling (MLM), the realm of self-supervised learning for computer vision has been invigorated by the central role of Masked Image Modeling (MIM) in driving recent breakthroughs. Notwithstanding the achievements of MIM across various downstream tasks, its overall efficiency is occasionally hampered by the lengthy duration of the pre-training phase. This paper presents a perspective that the optimization of masked tokens as a means of addressing the prevailing issue. Initially, we delve into an exploration of the inherent properties that a masked token ought to possess. Within the properties, we principally dedicated to articulating and emphasizing the `data singularity' attribute inherent in masked tokens. Through a comprehensive analysis of the heterogeneity between masked tokens and visible tokens within pre-trained models, we propose a novel approach termed masked token optimization (MTO), specifically designed to improve model efficiency through weight recalibration and the enhancement of the key property of masked tokens. The proposed method serves as an adaptable solution that seamlessly integrates into any MIM approach that leverages masked tokens. As a result, MTO achieves a considerable improvement in pre-training efficiency, resulting in an approximately 50% reduction in pre-training epochs required to attain converged performance of the recent approaches.

  • 6 authors
·
Apr 12, 2024

Training Bayesian Neural Networks with Sparse Subspace Variational Inference

Bayesian neural networks (BNNs) offer uncertainty quantification but come with the downside of substantially increased training and inference costs. Sparse BNNs have been investigated for efficient inference, typically by either slowly introducing sparsity throughout the training or by post-training compression of dense BNNs. The dilemma of how to cut down massive training costs remains, particularly given the requirement to learn about the uncertainty. To solve this challenge, we introduce Sparse Subspace Variational Inference (SSVI), the first fully sparse BNN framework that maintains a consistently highly sparse Bayesian model throughout the training and inference phases. Starting from a randomly initialized low-dimensional sparse subspace, our approach alternately optimizes the sparse subspace basis selection and its associated parameters. While basis selection is characterized as a non-differentiable problem, we approximate the optimal solution with a removal-and-addition strategy, guided by novel criteria based on weight distribution statistics. Our extensive experiments show that SSVI sets new benchmarks in crafting sparse BNNs, achieving, for instance, a 10-20x compression in model size with under 3\% performance drop, and up to 20x FLOPs reduction during training compared with dense VI training. Remarkably, SSVI also demonstrates enhanced robustness to hyperparameters, reducing the need for intricate tuning in VI and occasionally even surpassing VI-trained dense BNNs on both accuracy and uncertainty metrics.

  • 4 authors
·
Feb 16, 2024

Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers

Despite their remarkable effectiveness and broad application, the drivers of success underlying ensembles of trees are still not fully understood. In this paper, we highlight how interpreting tree ensembles as adaptive and self-regularizing smoothers can provide new intuition and deeper insight to this topic. We use this perspective to show that, when studied as smoothers, randomized tree ensembles not only make predictions that are quantifiably more smooth than the predictions of the individual trees they consist of, but also further regulate their smoothness at test-time based on the dissimilarity between testing and training inputs. First, we use this insight to revisit, refine and reconcile two recent explanations of forest success by providing a new way of quantifying the conjectured behaviors of tree ensembles objectively by measuring the effective degree of smoothing they imply. Then, we move beyond existing explanations for the mechanisms by which tree ensembles improve upon individual trees and challenge the popular wisdom that the superior performance of forests should be understood as a consequence of variance reduction alone. We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles -- because the prevailing definition of bias does not capture differences in the expressivity of the hypothesis classes formed by trees and forests. Instead, we show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled. In particular, we demonstrate that the smoothing effect of ensembling can reduce variance in predictions due to noise in outcome generation, reduce variability in the quality of the learned function given fixed input data and reduce potential bias in learnable functions by enriching the available hypothesis space.

  • 3 authors
·
Feb 2, 2024

LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units

Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.

  • 4 authors
·
Jan 19, 2024

CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding

Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.

  • 3 authors
·
Sep 1, 2023

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

Self-supervised speech representation learning has shown promising results in various speech processing tasks. However, the pre-trained models, e.g., HuBERT, are storage-intensive Transformers, limiting their scope of applications under low-resource settings. To this end, we propose LightHuBERT, a once-for-all Transformer compression framework, to find the desired architectures automatically by pruning structured parameters. More precisely, we create a Transformer-based supernet that is nested with thousands of weight-sharing subnets and design a two-stage distillation strategy to leverage the contextualized latent representations from HuBERT. Experiments on automatic speech recognition (ASR) and the SUPERB benchmark show the proposed LightHuBERT enables over 10^9 architectures concerning the embedding dimension, attention dimension, head number, feed-forward network ratio, and network depth. LightHuBERT outperforms the original HuBERT on ASR and five SUPERB tasks with the HuBERT size, achieves comparable performance to the teacher model in most tasks with a reduction of 29% parameters, and obtains a 3.5times compression ratio in three SUPERB tasks, e.g., automatic speaker verification, keyword spotting, and intent classification, with a slight accuracy loss. The code and pre-trained models are available at https://github.com/mechanicalsea/lighthubert.

  • 9 authors
·
Mar 29, 2022

DeepPeep: Exploiting Design Ramifications to Decipher the Architecture of Compact DNNs

The remarkable predictive performance of deep neural networks (DNNs) has led to their adoption in service domains of unprecedented scale and scope. However, the widespread adoption and growing commercialization of DNNs have underscored the importance of intellectual property (IP) protection. Devising techniques to ensure IP protection has become necessary due to the increasing trend of outsourcing the DNN computations on the untrusted accelerators in cloud-based services. The design methodologies and hyper-parameters of DNNs are crucial information, and leaking them may cause massive economic loss to the organization. Furthermore, the knowledge of DNN's architecture can increase the success probability of an adversarial attack where an adversary perturbs the inputs and alter the prediction. In this work, we devise a two-stage attack methodology "DeepPeep" which exploits the distinctive characteristics of design methodologies to reverse-engineer the architecture of building blocks in compact DNNs. We show the efficacy of "DeepPeep" on P100 and P4000 GPUs. Additionally, we propose intelligent design maneuvering strategies for thwarting IP theft through the DeepPeep attack and proposed "Secure MobileNet-V1". Interestingly, compared to vanilla MobileNet-V1, secure MobileNet-V1 provides a significant reduction in inference latency (approx60%) and improvement in predictive performance (approx2%) with very-low memory and computation overheads.

  • 4 authors
·
Jul 30, 2020

Quantized Spike-driven Transformer

Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage.For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0times and 8.1times in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.

  • 10 authors
·
Jan 23

MCUFormer: Deploying Vision Transformers on Microcontrollers with Limited Memory

Due to the high price and heavy energy consumption of GPUs, deploying deep models on IoT devices such as microcontrollers makes significant contributions for ecological AI. Conventional methods successfully enable convolutional neural network inference of high resolution images on microcontrollers, while the framework for vision transformers that achieve the state-of-the-art performance in many vision applications still remains unexplored. In this paper, we propose a hardware-algorithm co-optimizations method called MCUFormer to deploy vision transformers on microcontrollers with extremely limited memory, where we jointly design transformer architecture and construct the inference operator library to fit the memory resource constraint. More specifically, we generalize the one-shot network architecture search (NAS) to discover the optimal architecture with highest task performance given the memory budget from the microcontrollers, where we enlarge the existing search space of vision transformers by considering the low-rank decomposition dimensions and patch resolution for memory reduction. For the construction of the inference operator library of vision transformers, we schedule the memory buffer during inference through operator integration, patch embedding decomposition, and token overwriting, allowing the memory buffer to be fully utilized to adapt to the forward pass of the vision transformer. Experimental results demonstrate that our MCUFormer achieves 73.62\% top-1 accuracy on ImageNet for image classification with 320KB memory on STM32F746 microcontroller. Code is available at https://github.com/liangyn22/MCUFormer.

  • 6 authors
·
Oct 25, 2023

Entropy Adaptive Decoding: Dynamic Model Switching for Efficient Inference

We present Entropy Adaptive Decoding (EAD), a novel approach for efficient language model inference that dynamically switches between different-sized models based on prediction uncertainty. By monitoring rolling entropy in model logit distributions, our method identifies text regions where a smaller model suffices and switches to a larger model only when prediction uncertainty exceeds a threshold. Unlike speculative decoding approaches that maintain perfect output fidelity through verification, EAD accepts controlled output divergence in exchange for computational efficiency. Our experiments on the MATH benchmark demonstrate remarkable efficiency gains across different model families. Using the LLaMA family, we maintain 96.7\% of the 11B model's performance (50.4\% vs 52.1\%) while using it for only 43\% of tokens, decreasing computational cost by 41.5\%. These gains become more pronounced with larger size differentials in the Qwen family, where we achieve 92.9\% of the 14B model's performance (74.3\% vs 80.0\%) while using it for just 25\% of tokens, decreasing computational cost by 67\%. The consistency of these results across model pairs suggests that language model computation can be significantly optimized by selectively deploying model capacity based on local generation complexity. Our findings indicate that current approaches to model inference may be unnecessarily conservative in their pursuit of perfect output fidelity, and that accepting minor performance trade-offs can enable dramatic reductions in computational costs.

  • 1 authors
·
Feb 5

SWIFT:A Scalable lightWeight Infrastructure for Fine-Tuning

Recent development in Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) have leverage Attention-based Transformer architectures and achieved superior performance and generalization capabilities. They have since covered extensive areas of traditional learning tasks. For instance, text-based tasks such as text-classification and sequence-labeling, as well as multi-modal tasks like Visual Question Answering (VQA) and Optical Character Recognition (OCR), which were previously addressed using different models, can now be tackled based on one foundation model. Consequently, the training and lightweight fine-tuning of LLMs and MLLMs, especially those based on Transformer architecture, has become particularly important. In recognition of these overwhelming needs, we develop SWIFT, a customizable one-stop infrastructure for large models. With support of over 300+ LLMs and 50+ MLLMs, SWIFT stands as the open-source framework that provide the most comprehensive support for fine-tuning large models. In particular, it is the first training framework that provides systematic support for MLLMs. In addition to the core functionalities of fine-tuning, SWIFT also integrates post-training processes such as inference, evaluation, and model quantization, to facilitate fast adoptions of large models in various application scenarios. With a systematic integration of various training techniques, SWIFT offers helpful utilities such as benchmark comparisons among different training techniques for large models. For fine-tuning models specialized in agent framework, we show that notable improvements on the ToolBench leader-board can be achieved by training with customized dataset on SWIFT, with an increase of 5.2%-21.8% in the Act.EM metric over various baseline models, a reduction in hallucination by 1.6%-14.1%, and an average performance improvement of 8%-17%.

  • 12 authors
·
Aug 10, 2024

Adaptive Deep Learning for Efficient Visual Pose Estimation aboard Ultra-low-power Nano-drones

Sub-10cm diameter nano-drones are gaining momentum thanks to their applicability in scenarios prevented to bigger flying drones, such as in narrow environments and close to humans. However, their tiny form factor also brings their major drawback: ultra-constrained memory and processors for the onboard execution of their perception pipelines. Therefore, lightweight deep learning-based approaches are becoming increasingly popular, stressing how computational efficiency and energy-saving are paramount as they can make the difference between a fully working closed-loop system and a failing one. In this work, to maximize the exploitation of the ultra-limited resources aboard nano-drones, we present a novel adaptive deep learning-based mechanism for the efficient execution of a vision-based human pose estimation task. We leverage two State-of-the-Art (SoA) convolutional neural networks (CNNs) with different regression performance vs. computational costs trade-offs. By combining these CNNs with three novel adaptation strategies based on the output's temporal consistency and on auxiliary tasks to swap the CNN being executed proactively, we present six different systems. On a real-world dataset and the actual nano-drone hardware, our best-performing system, compared to executing only the bigger and most accurate SoA model, shows 28% latency reduction while keeping the same mean absolute error (MAE), 3% MAE reduction while being iso-latency, and the absolute peak performance, i.e., 6% better than SoA model.

  • 7 authors
·
Jan 26, 2024

RoRecomp: Enhancing Reasoning Efficiency via Rollout Response Recomposition in Reinforcement Learning

Reinforcement learning with verifiable rewards (RLVR) has proven effective in eliciting complex reasoning in large language models (LLMs). However, standard RLVR training often leads to excessively verbose processes (in reasoning tasks) and inefficient exploration trajectories (in agentic settings), as outcome-only rewards provide no incentive for efficiency and the high variance in response length within relatively small rollout groups results in noisy optimization signals. To address this, we propose Rollout Response Recomposition (RoRecomp), a plug-and-play method that guides models toward concise reasoning by strategically recomposing the training data. RoRecomp separates responses into two distinct batch types: 1) priority batches, which combine short-correct and long-incorrect responses selected from online batches to provide a clear gradient signal for brevity, and 2) compensation batches, which utilize remaining responses from a replay buffer to maintain stability and prevent model collapse. To comprehensively evaluate effectiveness, we test RoRecomp across three settings where results demonstrate substantial efficiency gains: reducing reasoning length by 27.7% in zero RL training, reducing unnecessary tool calls by 46.8% while improving accuracy in agentic RL, and achieving up to 52.5% length reduction in thinking compression, all with minimal performance impact.

  • 9 authors
·
Sep 30

Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation

Whilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semi-supervised semantic segmentation methods with application domains such as autonomous driving. Existing work very often employs relatively large segmentation backbone networks to improve segmentation accuracy, at the expense of computational costs. In addition, many use uniform sampling to reduce ground truth data requirements for learning needed, often resulting in sub-optimal performance. To address these issues, we propose a new pipeline that employs a smaller architecture, requiring fewer ground-truth annotations to achieve superior segmentation accuracy compared to contemporary approaches. This is facilitated via a novel Sparse Depthwise Separable Convolution module that significantly reduces the network parameter count while retaining overall task performance. To effectively sub-sample our training data, we propose a new Spatio-Temporal Redundant Frame Downsampling (ST-RFD) method that leverages knowledge of sensor motion within the environment to extract a more diverse subset of training data frame samples. To leverage the use of limited annotated data samples, we further propose a soft pseudo-label method informed by LiDAR reflectivity. Our method outperforms contemporary semi-supervised work in terms of mIoU, using less labeled data, on the SemanticKITTI (59.5@5%) and ScribbleKITTI (58.1@5%) benchmark datasets, based on a 2.3x reduction in model parameters and 641x fewer multiply-add operations whilst also demonstrating significant performance improvement on limited training data (i.e., Less is More).

  • 3 authors
·
Mar 20, 2023

Qwen-GUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding

This paper introduces Qwen-GUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, Qwen-GUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights Qwen-GUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The Qwen-GUI-3B is available at: https://github.com/Han1018/Qwen-GUI-3B

  • 2 authors
·
Jun 29

Scale Efficient Training for Large Datasets

The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.

  • 3 authors
·
Mar 17

PRvL: Quantifying the Capabilities and Risks of Large Language Models for PII Redaction

Redacting Personally Identifiable Information (PII) from unstructured text is critical for ensuring data privacy in regulated domains. While earlier approaches have relied on rule-based systems and domain-specific Named Entity Recognition (NER) models, these methods fail to generalize across formats and contexts. Recent advances in Large Language Models (LLMs) offer a promising alternative, yet the effect of architectural and training choices on redaction performance remains underexplored. LLMs have demonstrated strong performance in tasks that require contextual language understanding, including the redaction of PII in free-form text. Prior work suggests that with appropriate adaptation, LLMs can become effective contextual privacy learners. However, the consequences of architectural and training choices for PII Redaction remain underexplored. In this work, we present a comprehensive analysis of LLMs as privacy-preserving PII Redaction systems. We evaluate a range of LLM architectures and training strategies for their effectiveness in PII Redaction. Our analysis measures redaction performance, semantic preservation, and PII leakage, and compares these outcomes against latency and computational cost. The results provide practical guidance for configuring LLM-based redactors that are accurate, efficient, and privacy-aware. To support reproducibility and real-world deployment, we release PRvL, an open-source suite of fine-tuned models, and evaluation tools for general-purpose PII Redaction. PRvL is built entirely on open-source LLMs and supports multiple inference settings for flexibility and compliance. It is designed to be easily customized for different domains and fully operable within secure, self-managed environments. This enables data owners to perform redactions without relying on third-party services or exposing sensitive content beyond their own infrastructure.

  • 6 authors
·
Aug 7 2

Dual Mutual Learning Network with Global-local Awareness for RGB-D Salient Object Detection

RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.

  • 5 authors
·
Jan 3

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.

  • 6 authors
·
Mar 6, 2024 15

Trained Rank Pruning for Efficient Deep Neural Networks

The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning

  • 9 authors
·
Dec 6, 2018

Scalable Parameter and Memory Efficient Pretraining for LLM: Recent Algorithmic Advances and Benchmarking

Fueled by their remarkable ability to tackle diverse tasks across multiple domains, large language models (LLMs) have grown at an unprecedented rate, with some recent models containing trillions of parameters. This growth is accompanied by substantial computational challenges, particularly regarding the memory and compute resources required for training and fine-tuning. Numerous approaches have been explored to address these issues, such as LoRA. While these methods are effective for fine-tuning, their application to pre-training is significantly more challenging due to the need to learn vast datasets. Motivated by this issue, we aim to address the following questions: Can parameter- or memory-efficient methods enhance pre-training efficiency while achieving performance comparable to full-model training? How can the performance gap be narrowed? To this end, the contributions of this work are the following. (1) We begin by conducting a comprehensive survey that summarizes state-of-the-art methods for efficient pre-training. (2) We perform a benchmark evaluation of several representative memory efficient pre-training approaches to comprehensively evaluate their performance across model sizes. We observe that with a proper choice of optimizer and hyperparameters, full-rank training delivers the best performance, as expected. We also notice that incorporating high-rank updates in low-rank approaches is the key to improving their performance. (3) Finally, we propose two practical techniques, namely weight refactorization and momentum reset, to enhance the performance of efficient pre-training methods. We observe that applying these techniques to the low-rank method (on a 1B model) can achieve a lower perplexity than popular memory efficient algorithms such as GaLore and Fira, while simultaneously using about 25% less memory.

  • 7 authors
·
May 28

Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources

Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.

  • 4 authors
·
Jul 5, 2023

ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models

Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.

  • 7 authors
·
Oct 16, 2023

Evaluating Language Models for Efficient Code Generation

We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.

  • 6 authors
·
Aug 12, 2024 1

LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization

With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.

  • 1 authors
·
Dec 8, 2023

Compacter: Efficient Low-Rank Hypercomplex Adapter Layers

Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work has developed parameter-efficient fine-tuning methods, but these approaches either still require a relatively large number of parameters or underperform standard fine-tuning. In this work, we propose Compacter, a method for fine-tuning large-scale language models with a better trade-off between task performance and the number of trainable parameters than prior work. Compacter accomplishes this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex multiplication layers. Specifically, Compacter inserts task-specific weight matrices into a pretrained model's weights, which are computed efficiently as a sum of Kronecker products between shared "slow" weights and "fast" rank-one matrices defined per Compacter layer. By only training 0.047% of a pretrained model's parameters, Compacter performs on par with standard fine-tuning on GLUE and outperforms standard fine-tuning on SuperGLUE and low-resource settings. Our code is publicly available at~https://github.com/rabeehk/compacter.

  • 3 authors
·
Jun 8, 2021

SWE-fficiency: Can Language Models Optimize Real-World Repositories on Real Workloads?

Optimizing the performance of large-scale software repositories demands expertise in code reasoning and software engineering (SWE) to reduce runtime while preserving program correctness. However, most benchmarks emphasize what to fix rather than how to fix code. We introduce SWE-fficiency, a benchmark for evaluating repository-level performance optimization on real workloads. Our suite contains 498 tasks across nine widely used data-science, machine-learning, and HPC repositories (e.g., numpy, pandas, scipy): given a complete codebase and a slow workload, an agent must investigate code semantics, localize bottlenecks and relevant tests, and produce a patch that matches or exceeds expert speedup while passing the same unit tests. To enable this how-to-fix evaluation, our automated pipeline scrapes GitHub pull requests for performance-improving edits, combining keyword filtering, static analysis, coverage tooling, and execution validation to both confirm expert speedup baselines and identify relevant repository unit tests. Empirical evaluation of state-of-the-art agents reveals significant underperformance. On average, agents achieve less than 0.15x the expert speedup: agents struggle in localizing optimization opportunities, reasoning about execution across functions, and maintaining correctness in proposed edits. We release the benchmark and accompanying data pipeline to facilitate research on automated performance engineering and long-horizon software reasoning.

How far away are truly hyperparameter-free learning algorithms?

Despite major advances in methodology, hyperparameter tuning remains a crucial (and expensive) part of the development of machine learning systems. Even ignoring architectural choices, deep neural networks have a large number of optimization and regularization hyperparameters that need to be tuned carefully per workload in order to obtain the best results. In a perfect world, training algorithms would not require workload-specific hyperparameter tuning, but would instead have default settings that performed well across many workloads. Recently, there has been a growing literature on optimization methods which attempt to reduce the number of hyperparameters -- particularly the learning rate and its accompanying schedule. Given these developments, how far away is the dream of neural network training algorithms that completely obviate the need for painful tuning? In this paper, we evaluate the potential of learning-rate-free methods as components of hyperparameter-free methods. We freeze their (non-learning rate) hyperparameters to default values, and score their performance using the recently-proposed AlgoPerf: Training Algorithms benchmark. We found that literature-supplied default settings performed poorly on the benchmark, so we performed a search for hyperparameter configurations that performed well across all workloads simultaneously. The best AlgoPerf-calibrated learning-rate-free methods had much improved performance but still lagged slightly behind a similarly calibrated NadamW baseline in overall benchmark score. Our results suggest that there is still much room for improvement for learning-rate-free methods, and that testing against a strong, workload-agnostic baseline is important to improve hyperparameter reduction techniques.

  • 7 authors
·
May 29

TiM4Rec: An Efficient Sequential Recommendation Model Based on Time-Aware Structured State Space Duality Model

The Sequential Recommendation modeling paradigm is shifting from Transformer to Mamba architecture, which comprises two generations: Mamba1, based on the State Space Model (SSM), and Mamba2, based on State Space Duality (SSD). Although SSD offers superior computational efficiency compared to SSM, it suffers performance degradation in sequential recommendation tasks, especially in low-dimensional scenarios that are critical for these tasks. Considering that time-aware enhancement methods are commonly employed to mitigate performance loss, our analysis reveals that the performance decline of SSD can similarly be fundamentally compensated by leveraging mechanisms in time-aware methods. Thus, we propose integrating time-awareness into the SSD framework to address these performance issues. However, integrating current time-aware methods, modeled after TiSASRec, into SSD faces the following challenges: 1) the complexity of integrating these transformer-based mechanisms with the SSD architecture, and 2) the computational inefficiency caused by the need for dimensionality expansion of time-difference modeling. To overcome these challenges, we introduce a novel Time-aware Structured Masked Matrix that efficiently incorporates time-aware capabilities into SSD. Building on this, we propose Time-Aware Mamba for Recommendation (TiM4Rec), which mitigates performance degradation in low-dimensional SSD contexts while preserving computational efficiency. This marks the inaugural application of a time-aware enhancement method specifically tailored for the Mamba architecture within the domain of sequential recommendation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our approach. The code for our model is accessible at https://github.com/AlwaysFHao/TiM4Rec.

  • 7 authors
·
Sep 24, 2024

TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs

Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.

  • 6 authors
·
Jul 29 2

Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment

Large Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics. These visual tokens often outnumber their textual counterparts by a large margin, leading to substantial computational overhead and limiting the scalability of LVLMs in practice. Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs). However, most in-LLM reduction approaches rely on text-conditioned interactions, implicitly assuming that textual tokens can reliably capture the importance of visual tokens. In this work, we revisit this assumption and reveal causal, semantic, and spatial forms of cross-modal misalignment. These misalignments undermine the effectiveness of text-guided visual token reduction. To address this, we introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention, without relying on textual signals. To further suppress redundancy throughout the model hierarchy, we treat the visual encoder and the LLM as a unified system and design a progressive pruning pipeline. Our method performs dominant token selection and lightweight contextual merging at multiple stages, enabling fine-grained visual information to be retained even under aggressive token budgets. Extensive experiments across diverse benchmarks show that VisionDrop achieves consistent improvements over existing approaches, despite requiring no additional training or complex modifications. Notably, when integrated with LLaVA-NeXT-7B, VisionDrop achieves a 2.7x reduction in inference latency and 6x in FLOPs, while retaining 95.71% of the original performance.

  • 4 authors
·
Jun 27

Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition

Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: https://github.com/arkel23/CLCA

  • 6 authors
·
Dec 30, 2024

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data- and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware. We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8.3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create the world's largest language model (Turing-NLG, 17B parameters) with record breaking accuracy.

  • 4 authors
·
Oct 4, 2019

Learning Performance-Improving Code Edits

The waning of Moore's Law has shifted the focus of the tech industry towards alternative methods for continued performance gains. While optimizing compilers are a standard tool to help increase program efficiency, programmers continue to shoulder much responsibility in crafting and refactoring code with better performance characteristics. In this paper, we investigate the ability of large language models (LLMs) to suggest functionally correct, performance improving code edits. We hypothesize that language models can suggest such edits in ways that would be impractical for static analysis alone. We investigate these questions by curating a large-scale dataset of Performance-Improving Edits, PIE. PIE contains trajectories of programs, where a programmer begins with an initial, slower version and iteratively makes changes to improve the program's performance. We use PIE to evaluate and improve the capacity of large language models. Specifically, use examples from PIE to fine-tune multiple variants of CODEGEN, a billion-scale Transformer-decoder model. Additionally, we use examples from PIE to prompt OpenAI's CODEX using a few-shot prompting. By leveraging PIE, we find that both CODEX and CODEGEN can generate performance-improving edits, with speedups of more than 2.5x for over 25% of the programs, for C++ and Python, even after the C++ programs were compiled using the O3 optimization level. Crucially, we show that PIE allows CODEGEN, an open-sourced and 10x smaller model than CODEX, to match the performance of CODEX on this challenging task. Overall, this work opens new doors for creating systems and methods that can help programmers write efficient code.

  • 8 authors
·
Feb 15, 2023

Layer Normalization

Training state-of-the-art, deep neural networks is computationally expensive. One way to reduce the training time is to normalize the activities of the neurons. A recently introduced technique called batch normalization uses the distribution of the summed input to a neuron over a mini-batch of training cases to compute a mean and variance which are then used to normalize the summed input to that neuron on each training case. This significantly reduces the training time in feed-forward neural networks. However, the effect of batch normalization is dependent on the mini-batch size and it is not obvious how to apply it to recurrent neural networks. In this paper, we transpose batch normalization into layer normalization by computing the mean and variance used for normalization from all of the summed inputs to the neurons in a layer on a single training case. Like batch normalization, we also give each neuron its own adaptive bias and gain which are applied after the normalization but before the non-linearity. Unlike batch normalization, layer normalization performs exactly the same computation at training and test times. It is also straightforward to apply to recurrent neural networks by computing the normalization statistics separately at each time step. Layer normalization is very effective at stabilizing the hidden state dynamics in recurrent networks. Empirically, we show that layer normalization can substantially reduce the training time compared with previously published techniques.

  • 3 authors
·
Jul 21, 2016

Accelerating Neural Architecture Search using Performance Prediction

Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series validation performance data. We empirically show that our performance prediction models are much more effective than prominent Bayesian counterparts, are simpler to implement, and are faster to train. Our models can predict final performance in both visual classification and language modeling domains, are effective for predicting performance of drastically varying model architectures, and can even generalize between model classes. Using these prediction models, we also propose an early stopping method for hyperparameter optimization and meta-modeling, which obtains a speedup of a factor up to 6x in both hyperparameter optimization and meta-modeling. Finally, we empirically show that our early stopping method can be seamlessly incorporated into both reinforcement learning-based architecture selection algorithms and bandit based search methods. Through extensive experimentation, we empirically show our performance prediction models and early stopping algorithm are state-of-the-art in terms of prediction accuracy and speedup achieved while still identifying the optimal model configurations.

  • 4 authors
·
May 30, 2017

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.

  • 6 authors
·
Feb 18

SysLLMatic: Large Language Models are Software System Optimizers

Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.

  • 10 authors
·
Jun 1

Reducing Inference Energy Consumption Using Dual Complementary CNNs

Energy efficiency of Convolutional Neural Networks (CNNs) has become an important area of research, with various strategies being developed to minimize the power consumption of these models. Previous efforts, including techniques like model pruning, quantization, and hardware optimization, have made significant strides in this direction. However, there remains a need for more effective on device AI solutions that balance energy efficiency with model performance. In this paper, we propose a novel approach to reduce the energy requirements of inference of CNNs. Our methodology employs two small Complementary CNNs that collaborate with each other by covering each other's "weaknesses" in predictions. If the confidence for a prediction of the first CNN is considered low, the second CNN is invoked with the aim of producing a higher confidence prediction. This dual-CNN setup significantly reduces energy consumption compared to using a single large deep CNN. Additionally, we propose a memory component that retains previous classifications for identical inputs, bypassing the need to re-invoke the CNNs for the same input, further saving energy. Our experiments on a Jetson Nano computer demonstrate an energy reduction of up to 85.8% achieved on modified datasets where each sample was duplicated once. These findings indicate that leveraging a complementary CNN pair along with a memory component effectively reduces inference energy while maintaining high accuracy.

  • 4 authors
·
Dec 1, 2024

PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs

Neural Networks can be efficiently compressed through pruning, significantly reducing storage and computational demands while maintaining predictive performance. Simple yet effective methods like Iterative Magnitude Pruning (IMP, Han et al., 2015) remove less important parameters and require a costly retraining procedure to recover performance after pruning. However, with the rise of Large Language Models (LLMs), full retraining has become infeasible due to memory and compute constraints. In this study, we challenge the practice of retraining all parameters by demonstrating that updating only a small subset of highly expressive parameters is often sufficient to recover or even improve performance compared to full retraining. Surprisingly, retraining as little as 0.27%-0.35% of the parameters of GPT-architectures (OPT-2.7B/6.7B/13B/30B) achieves comparable performance to One Shot IMP across various sparsity levels. Our method, Parameter-Efficient Retraining after Pruning (PERP), drastically reduces compute and memory demands, enabling pruning and retraining of up to 30 billion parameter models on a single NVIDIA A100 GPU within minutes. Despite magnitude pruning being considered as unsuited for pruning LLMs, our findings show that PERP positions it as a strong contender against state-of-the-art retraining-free approaches such as Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023), opening up a promising alternative to avoiding retraining.

  • 4 authors
·
Dec 23, 2023

Object Remover Performance Evaluation Methods using Class-wise Object Removal Images

Object removal refers to the process of erasing designated objects from an image while preserving the overall appearance, and it is one area where image inpainting is widely used in real-world applications. The performance of an object remover is quantitatively evaluated by measuring the quality of object removal results, similar to how the performance of an image inpainter is gauged. Current works reporting quantitative performance evaluations utilize original images as references. In this letter, to validate the current evaluation methods cannot properly evaluate the performance of an object remover, we create a dataset with object removal ground truth and compare the evaluations made by the current methods using original images to those utilizing object removal ground truth images. The disparities between two evaluation sets validate that the current methods are not suitable for measuring the performance of an object remover. Additionally, we propose new evaluation methods tailored to gauge the performance of an object remover. The proposed methods evaluate the performance through class-wise object removal results and utilize images without the target class objects as a comparison set. We confirm that the proposed methods can make judgments consistent with human evaluators in the COCO dataset, and that they can produce measurements aligning with those using object removal ground truth in the self-acquired dataset.

  • 4 authors
·
Apr 17, 2024

Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model

With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7times peak memory reduction with almost no accuracy drop and enables up to 6.4times larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes.

  • 11 authors
·
May 24, 2023