new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

Mastering Board Games by External and Internal Planning with Language Models

While large language models perform well on a range of complex tasks (e.g., text generation, question answering, summarization), robust multi-step planning and reasoning remains a considerable challenge for them. In this paper we show that search-based planning can significantly improve LLMs' playing strength across several board games (Chess, Fischer Random / Chess960, Connect Four, and Hex). We introduce, compare and contrast two major approaches: In external search, the model guides Monte Carlo Tree Search (MCTS) rollouts and evaluations without calls to an external engine, and in internal search, the model directly generates in-context a linearized tree of potential futures and a resulting final choice. Both build on a language model pre-trained on relevant domain knowledge, capturing the transition and value functions across these games. We find that our pre-training method minimizes hallucinations, as our model is highly accurate regarding state prediction and legal moves. Additionally, both internal and external search indeed improve win-rates against state-of-the-art bots, even reaching Grandmaster-level performance in chess while operating on a similar move count search budget per decision as human Grandmasters. The way we combine search with domain knowledge is not specific to board games, suggesting direct extensions into more general language model inference and training techniques.

  • 16 authors
·
Dec 2, 2024

Dynamic Planning for LLM-based Graphical User Interface Automation

The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% rightarrow 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at https://github.com/sqzhang-lazy/D-PoT.

  • 7 authors
·
Oct 1, 2024

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation

The recent advancement of autonomous agents powered by Large Language Models (LLMs) has demonstrated significant potential for automating tasks on mobile devices through graphical user interfaces (GUIs). Despite initial progress, these agents still face challenges when handling complex real-world tasks. These challenges arise from a lack of knowledge about real-life mobile applications in LLM-based agents, which may lead to ineffective task planning and even cause hallucinations. To address these challenges, we propose a novel LLM-based agent framework called MapAgent that leverages memory constructed from historical trajectories to augment current task planning. Specifically, we first propose a trajectory-based memory mechanism that transforms task execution trajectories into a reusable and structured page-memory database. Each page within a trajectory is extracted as a compact yet comprehensive snapshot, capturing both its UI layout and functional context. Secondly, we introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity and injects them into the LLM planner to compensate for potential deficiencies in understanding real-world app scenarios, thereby achieving more informed and context-aware task planning. Finally, planned tasks are transformed into executable actions through a task executor supported by a dual-LLM architecture, ensuring effective tracking of task progress. Experimental results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods. The code will be open-sourced to support further research.

  • 7 authors
·
Jul 29

Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents

Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.

  • 1 authors
·
May 25

Automatic Curriculum Expert Iteration for Reliable LLM Reasoning

Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness.

  • 5 authors
·
Oct 10, 2024

A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models

As Large Language Models (LLMs) continue to advance in their ability to write human-like text, a key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded. This issue of hallucination is arguably the biggest hindrance to safely deploying these powerful LLMs into real-world production systems that impact people's lives. The journey toward widespread adoption of LLMs in practical settings heavily relies on addressing and mitigating hallucinations. Unlike traditional AI systems focused on limited tasks, LLMs have been exposed to vast amounts of online text data during training. While this allows them to display impressive language fluency, it also means they are capable of extrapolating information from the biases in training data, misinterpreting ambiguous prompts, or modifying the information to align superficially with the input. This becomes hugely alarming when we rely on language generation capabilities for sensitive applications, such as summarizing medical records, financial analysis reports, etc. This paper presents a comprehensive survey of over 32 techniques developed to mitigate hallucination in LLMs. Notable among these are Retrieval Augmented Generation (Lewis et al, 2021), Knowledge Retrieval (Varshney et al,2023), CoNLI (Lei et al, 2023), and CoVe (Dhuliawala et al, 2023). Furthermore, we introduce a detailed taxonomy categorizing these methods based on various parameters, such as dataset utilization, common tasks, feedback mechanisms, and retriever types. This classification helps distinguish the diverse approaches specifically designed to tackle hallucination issues in LLMs. Additionally, we analyze the challenges and limitations inherent in these techniques, providing a solid foundation for future research in addressing hallucinations and related phenomena within the realm of LLMs.

  • 7 authors
·
Jan 2, 2024

Zero-Resource Hallucination Prevention for Large Language Models

The prevalent use of large language models (LLMs) in various domains has drawn attention to the issue of "hallucination," which refers to instances where LLMs generate factually inaccurate or ungrounded information. Existing techniques for hallucination detection in language assistants rely on intricate fuzzy, specific free-language-based chain of thought (CoT) techniques or parameter-based methods that suffer from interpretability issues. Additionally, the methods that identify hallucinations post-generation could not prevent their occurrence and suffer from inconsistent performance due to the influence of the instruction format and model style. In this paper, we introduce a novel pre-detection self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction and withholding the generation of response in case of unfamiliar concepts. This approach emulates the human ability to refrain from responding to unfamiliar topics, thus reducing hallucinations. We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques. Our findings propose a significant shift towards preemptive strategies for hallucination mitigation in LLM assistants, promising improvements in reliability, applicability, and interpretability.

  • 3 authors
·
Sep 5, 2023

TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs

Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.

  • 6 authors
·
Jul 29 2

Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective

Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step reasoning tasks. However, alongside these successes, a more deceptive form of model error has emerged--Reasoning Hallucination--where logically coherent but factually incorrect reasoning traces lead to persuasive yet faulty conclusions. Unlike traditional hallucinations, these errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful. In this work, we investigate reasoning hallucinations from a mechanistic perspective. We propose the Reasoning Score, which quantifies the depth of reasoning by measuring the divergence between logits obtained from projecting late layers of LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching from genuine deep reasoning. Using this score, we conduct an in-depth analysis on the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps. These insights motivate our Reasoning Hallucination Detection (RHD) framework, which achieves state-of-the-art performance across multiple domains. To mitigate reasoning hallucinations, we further introduce GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping. Our theoretical analysis establishes stronger generalization guarantees, and experiments demonstrate improved reasoning quality and reduced hallucination rates.

  • 5 authors
·
May 19

Medical Hallucinations in Foundation Models and Their Impact on Healthcare

Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model generates misleading medical content. This paper examines the unique characteristics, causes, and implications of medical hallucinations, with a particular focus on how these errors manifest themselves in real-world clinical scenarios. Our contributions include (1) a taxonomy for understanding and addressing medical hallucinations, (2) benchmarking models using medical hallucination dataset and physician-annotated LLM responses to real medical cases, providing direct insight into the clinical impact of hallucinations, and (3) a multi-national clinician survey on their experiences with medical hallucinations. Our results reveal that inference techniques such as Chain-of-Thought (CoT) and Search Augmented Generation can effectively reduce hallucination rates. However, despite these improvements, non-trivial levels of hallucination persist. These findings underscore the ethical and practical imperative for robust detection and mitigation strategies, establishing a foundation for regulatory policies that prioritize patient safety and maintain clinical integrity as AI becomes more integrated into healthcare. The feedback from clinicians highlights the urgent need for not only technical advances but also for clearer ethical and regulatory guidelines to ensure patient safety. A repository organizing the paper resources, summaries, and additional information is available at https://github.com/mitmedialab/medical hallucination.

  • 25 authors
·
Feb 25

AUTOHALLUSION: Automatic Generation of Hallucination Benchmarks for Vision-Language Models

Large vision-language models (LVLMs) hallucinate: certain context cues in an image may trigger the language module's overconfident and incorrect reasoning on abnormal or hypothetical objects. Though a few benchmarks have been developed to investigate LVLM hallucinations, they mainly rely on hand-crafted corner cases whose fail patterns may hardly generalize, and finetuning on them could undermine their validity. These motivate us to develop the first automatic benchmark generation approach, AUTOHALLUSION, that harnesses a few principal strategies to create diverse hallucination examples. It probes the language modules in LVLMs for context cues and uses them to synthesize images by: (1) adding objects abnormal to the context cues; (2) for two co-occurring objects, keeping one and excluding the other; or (3) removing objects closely tied to the context cues. It then generates image-based questions whose ground-truth answers contradict the language module's prior. A model has to overcome contextual biases and distractions to reach correct answers, while incorrect or inconsistent answers indicate hallucinations. AUTOHALLUSION enables us to create new benchmarks at the minimum cost and thus overcomes the fragility of hand-crafted benchmarks. It also reveals common failure patterns and reasons, providing key insights to detect, avoid, or control hallucinations. Comprehensive evaluations of top-tier LVLMs, e.g., GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5, show a 97.7% and 98.7% success rate of hallucination induction on synthetic and real-world datasets of AUTOHALLUSION, paving the way for a long battle against hallucinations.

  • 12 authors
·
Jun 16, 2024 4

Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models

Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.

  • 1 authors
·
Feb 21, 2024

Aligning Modalities in Vision Large Language Models via Preference Fine-tuning

Instruction-following Vision Large Language Models (VLLMs) have achieved significant progress recently on a variety of tasks. These approaches merge strong pre-trained vision models and large language models (LLMs). Since these components are trained separately, the learned representations need to be aligned with joint training on additional image-language pairs. This procedure is not perfect and can cause the model to hallucinate - provide answers that do not accurately reflect the image, even when the core LLM is highly factual and the vision backbone has sufficiently complete representations. In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning. Specifically, we propose POVID to generate feedback data with AI models. We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data. First, we prompt GPT-4V to inject plausible hallucinations into the correct answer. Second, we distort the image to trigger the inherent hallucination behavior of the VLLM. This is an automated approach, which does not rely on human data generation or require a perfect expert, which makes it easily scalable. Finally, both of these generation strategies are integrated into an RLHF pipeline via Direct Preference Optimization. In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches. Our data and code are available at https://github.com/YiyangZhou/POVID.

  • 5 authors
·
Feb 17, 2024

Are Reasoning Models More Prone to Hallucination?

Recently evolved large reasoning models (LRMs) show powerful performance in solving complex tasks with long chain-of-thought (CoT) reasoning capability. As these LRMs are mostly developed by post-training on formal reasoning tasks, whether they generalize the reasoning capability to help reduce hallucination in fact-seeking tasks remains unclear and debated. For instance, DeepSeek-R1 reports increased performance on SimpleQA, a fact-seeking benchmark, while OpenAI-o3 observes even severer hallucination. This discrepancy naturally raises the following research question: Are reasoning models more prone to hallucination? This paper addresses the question from three perspectives. (1) We first conduct a holistic evaluation for the hallucination in LRMs. Our analysis reveals that LRMs undergo a full post-training pipeline with cold start supervised fine-tuning (SFT) and verifiable reward RL generally alleviate their hallucination. In contrast, both distillation alone and RL training without cold start fine-tuning introduce more nuanced hallucinations. (2) To explore why different post-training pipelines alters the impact on hallucination in LRMs, we conduct behavior analysis. We characterize two critical cognitive behaviors that directly affect the factuality of a LRM: Flaw Repetition, where the surface-level reasoning attempts repeatedly follow the same underlying flawed logic, and Think-Answer Mismatch, where the final answer fails to faithfully match the previous CoT process. (3) Further, we investigate the mechanism behind the hallucination of LRMs from the perspective of model uncertainty. We find that increased hallucination of LRMs is usually associated with the misalignment between model uncertainty and factual accuracy. Our work provides an initial understanding of the hallucination in LRMs.

  • 8 authors
·
May 29 2

Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation

Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.

  • 4 authors
·
Aug 27, 2024

The Troubling Emergence of Hallucination in Large Language Models -- An Extensive Definition, Quantification, and Prescriptive Remediations

The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (HILT), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations.

  • 8 authors
·
Oct 7, 2023

Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification

Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.

  • 10 authors
·
Jun 4

Can Knowledge Editing Really Correct Hallucinations?

Large Language Models (LLMs) suffer from hallucinations, referring to the non-factual information in generated content, despite their superior capacities across tasks. Meanwhile, knowledge editing has been developed as a new popular paradigm to correct the erroneous factual knowledge encoded in LLMs with the advantage of avoiding retraining from scratch. However, one common issue of existing evaluation datasets for knowledge editing is that they do not ensure LLMs actually generate hallucinated answers to the evaluation questions before editing. When LLMs are evaluated on such datasets after being edited by different techniques, it is hard to directly adopt the performance to assess the effectiveness of different knowledge editing methods in correcting hallucinations. Thus, the fundamental question remains insufficiently validated: Can knowledge editing really correct hallucinations in LLMs? We proposed HalluEditBench to holistically benchmark knowledge editing methods in correcting real-world hallucinations. First, we rigorously construct a massive hallucination dataset with 9 domains, 26 topics and more than 6,000 hallucinations. Then, we assess the performance of knowledge editing methods in a holistic way on five dimensions including Efficacy, Generalization, Portability, Locality, and Robustness. Through HalluEditBench, we have provided new insights into the potentials and limitations of different knowledge editing methods in correcting hallucinations, which could inspire future improvements and facilitate the progress in the field of knowledge editing.

  • 5 authors
·
Oct 21, 2024 2

MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM

Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.

  • 6 authors
·
May 30

How Large Language Models are Designed to Hallucinate

Large language models (LLMs) achieve remarkable fluency across linguistic and reasoning tasks but remain systematically prone to hallucination. Prevailing accounts attribute hallucinations to data gaps, limited context, or optimization errors. We argue instead that hallucination is a structural outcome of the transformer architecture. As coherence engines, transformers are compelled to produce fluent continuations, with self-attention simulating the relational structure of meaning but lacking the existential grounding of temporality, mood, and care that stabilizes human understanding. On this basis, we distinguish ontological hallucination, arising when continuations require disclosure of beings in world, and residual reasoning hallucination, where models mimic inference by recycling traces of human reasoning in text. We illustrate these patterns through case studies aligned with Heideggerian categories and an experiment across twelve LLMs showing how simulated "self-preservation" emerges under extended prompts. Our contribution is threefold: (1) a comparative account showing why existing explanations are insufficient; (2) a predictive taxonomy of hallucination linked to existential structures with proposed benchmarks; and (3) design directions toward "truth-constrained" architectures capable of withholding or deferring when disclosure is absent. We conclude that hallucination is not an incidental defect but a defining limit of transformer-based models, an outcome scaffolding can mask but never resolve.

  • 2 authors
·
Sep 19

Calibrated Language Models Must Hallucinate

Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.

  • 2 authors
·
Nov 24, 2023

Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models

Hallucination is often regarded as a major impediment for using large language models (LLMs), especially for knowledge-intensive tasks. Even when the training corpus consists solely of true statements, language models still generate hallucinations in the form of amalgamations of multiple facts. We coin this phenomenon as ``knowledge overshadowing'': when we query knowledge from a language model with multiple conditions, some conditions overshadow others, leading to hallucinated outputs. This phenomenon partially stems from training data imbalance, which we verify on both pretrained models and fine-tuned models, over a wide range of LM model families and sizes.From a theoretical point of view, knowledge overshadowing can be interpreted as over-generalization of the dominant conditions (patterns). We show that the hallucination rate grows with both the imbalance ratio (between the popular and unpopular condition) and the length of dominant condition description, consistent with our derived generalization bound. Finally, we propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced, along with a training-free self-contrastive decoding method to alleviate hallucination during inference. Our proposed approach showcases up to 82% F1 for hallucination anticipation and 11.2% to 39.4% hallucination control, with different models and datasets.

  • 8 authors
·
Jul 10, 2024

Large Language Models Hallucination: A Comprehensive Survey

Large language models (LLMs) have transformed natural language processing, achieving remarkable performance across diverse tasks. However, their impressive fluency often comes at the cost of producing false or fabricated information, a phenomenon known as hallucination. Hallucination refers to the generation of content by an LLM that is fluent and syntactically correct but factually inaccurate or unsupported by external evidence. Hallucinations undermine the reliability and trustworthiness of LLMs, especially in domains requiring factual accuracy. This survey provides a comprehensive review of research on hallucination in LLMs, with a focus on causes, detection, and mitigation. We first present a taxonomy of hallucination types and analyze their root causes across the entire LLM development lifecycle, from data collection and architecture design to inference. We further examine how hallucinations emerge in key natural language generation tasks. Building on this foundation, we introduce a structured taxonomy of detection approaches and another taxonomy of mitigation strategies. We also analyze the strengths and limitations of current detection and mitigation approaches and review existing evaluation benchmarks and metrics used to quantify LLMs hallucinations. Finally, we outline key open challenges and promising directions for future research, providing a foundation for the development of more truthful and trustworthy LLMs.

  • 2 authors
·
Oct 5

Hallucination of Multimodal Large Language Models: A Survey

This survey presents a comprehensive analysis of the phenomenon of hallucination in multimodal large language models (MLLMs), also known as Large Vision-Language Models (LVLMs), which have demonstrated significant advancements and remarkable abilities in multimodal tasks. Despite these promising developments, MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination, which poses substantial obstacles to their practical deployment and raises concerns regarding their reliability in real-world applications. This problem has attracted increasing attention, prompting efforts to detect and mitigate such inaccuracies. We review recent advances in identifying, evaluating, and mitigating these hallucinations, offering a detailed overview of the underlying causes, evaluation benchmarks, metrics, and strategies developed to address this issue. Additionally, we analyze the current challenges and limitations, formulating open questions that delineate potential pathways for future research. By drawing the granular classification and landscapes of hallucination causes, evaluation benchmarks, and mitigation methods, this survey aims to deepen the understanding of hallucinations in MLLMs and inspire further advancements in the field. Through our thorough and in-depth review, we contribute to the ongoing dialogue on enhancing the robustness and reliability of MLLMs, providing valuable insights and resources for researchers and practitioners alike. Resources are available at: https://github.com/showlab/Awesome-MLLM-Hallucination.

  • 7 authors
·
Apr 29, 2024

MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models

The remarkable capabilities of large language models (LLMs) in language understanding and generation have not rendered them immune to hallucinations. LLMs can still generate plausible-sounding but factually incorrect or fabricated information. As LLM-empowered chatbots become popular, laypeople may frequently ask health-related queries and risk falling victim to these LLM hallucinations, resulting in various societal and healthcare implications. In this work, we conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients. We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics and the corresponding hallucinated responses from LLMs with labeled hallucination types and hallucinated text spans. We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations. We also employ three groups of evaluators -- medical experts, LLMs, and laypeople -- to study who are more vulnerable to these medical hallucinations. We find that LLMs are much worse than the experts. They also perform no better than laypeople and even worse in few cases in detecting hallucinations. To fill this gap, we propose expert-in-the-loop approach to improve hallucination detection through LLMs by infusing expert reasoning. We observe significant performance gains for all the LLMs with an average macro-F1 improvement of 6.3 percentage points for GPT-4.

  • 6 authors
·
Sep 28, 2024

Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers

Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we propose a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we introduce a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.

  • 2 authors
·
Apr 27

UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation

Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.

  • 11 authors
·
Nov 26, 2023

HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation

Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), achieving remarkable performance across diverse tasks and enabling widespread real-world applications. However, LLMs are prone to hallucination, generating content that either conflicts with established knowledge or is unfaithful to the original sources. Existing hallucination benchmarks primarily focus on sentence- or passage-level hallucination detection, neglecting dialogue-level evaluation, hallucination localization, and rationale provision. They also predominantly target factuality hallucinations while underestimating faithfulness hallucinations, often relying on labor-intensive or non-specialized evaluators. To address these limitations, we propose HalluDial, the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation. HalluDial encompasses both spontaneous and induced hallucination scenarios, covering factuality and faithfulness hallucinations. The benchmark includes 4,094 dialogues with a total of 146,856 samples. Leveraging HalluDial, we conduct a comprehensive meta-evaluation of LLMs' hallucination evaluation capabilities in information-seeking dialogues and introduce a specialized judge language model, HalluJudge. The high data quality of HalluDial enables HalluJudge to achieve superior or competitive performance in hallucination evaluation, facilitating the automatic assessment of dialogue-level hallucinations in LLMs and providing valuable insights into this phenomenon. The dataset and the code are available at https://github.com/FlagOpen/HalluDial.

  • 7 authors
·
Jun 11, 2024

VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap

Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.

  • 7 authors
·
May 24, 2024

INTER: Mitigating Hallucination in Large Vision-Language Models by Interaction Guidance Sampling

Hallucinations in large vision-language models (LVLMs) pose significant challenges for real-world applications, as LVLMs may generate responses that appear plausible yet remain inconsistent with the associated visual content. This issue rarely occurs in human cognition. We argue that this discrepancy arises from humans' ability to effectively leverage multimodal interaction information in data samples. Specifically, humans typically first gather multimodal information, analyze the interactions across modalities for understanding, and then express their understanding through language. Motivated by this observation, we conduct extensive experiments on popular LVLMs and obtained insights that surprisingly reveal human-like, though less pronounced, cognitive behavior of LVLMs on multimodal samples. Building on these findings, we further propose INTER: Interaction Guidance Sampling, a novel training-free algorithm that mitigate hallucinations without requiring additional data. Specifically, INTER explicitly guides LVLMs to effectively reapply their understanding of multimodal interaction information when generating responses, thereby reducing potential hallucinations. On six benchmarks including VQA and image captioning tasks, INTER achieves an average improvement of up to 3.4\% on five LVLMs compared to the state-of-the-art decoding strategy. The code will be released when the paper is accepted.

  • 10 authors
·
Jul 7

HallE-Switch: Rethinking and Controlling Object Existence Hallucinations in Large Vision Language Models for Detailed Caption

Current large vision-language models (LVLMs) achieve remarkable progress, yet there remains significant uncertainty regarding their ability to accurately apprehend visual details, that is, in performing detailed captioning. To address this, we introduce CCEval, a GPT-4 assisted evaluation method tailored for detailed captioning. Interestingly, while LVLMs demonstrate minimal object existence hallucination in existing VQA benchmarks, our proposed evaluation reveals continued susceptibility to such hallucinations. In this paper, we make the first attempt to investigate and attribute such hallucinations, including image resolution, the language decoder size, and instruction data amount, quality, granularity. Our findings underscore the unwarranted inference when the language description includes details at a finer object granularity than what the vision module can ground or verify, thus inducing hallucination. To control such hallucinations, we further attribute the reliability of captioning to contextual knowledge (involving only contextually grounded objects) and parametric knowledge (containing inferred objects by the model). Thus, we introduce HallE-Switch, a controllable LVLM in terms of Hallucination in object Existence. HallE-Switch can condition the captioning to shift between (i) exclusively depicting contextual knowledge for grounded objects and (ii) blending it with parametric knowledge to imagine inferred objects. Our method reduces hallucination by 44% compared to LLaVA_{7B} and maintains the same object coverage.

  • 10 authors
·
Oct 3, 2023

Decoupling Contrastive Decoding: Robust Hallucination Mitigation in Multimodal Large Language Models

Although multimodal large language models (MLLMs) exhibit remarkable reasoning capabilities on complex multimodal understanding tasks, they still suffer from the notorious hallucination issue: generating outputs misaligned with obvious visual or factual evidence. Currently, training-based solutions, like direct preference optimization (DPO), leverage paired preference data to suppress hallucinations. However, they risk sacrificing general reasoning capabilities due to the likelihood displacement. Meanwhile, training-free solutions, like contrastive decoding, achieve this goal by subtracting the estimated hallucination pattern from a distorted input. Yet, these handcrafted perturbations (e.g., add noise to images) may poorly capture authentic hallucination patterns. To avoid these weaknesses of existing methods, and realize robust hallucination mitigation (i.e., maintaining general reasoning performance), we propose a novel framework: Decoupling Contrastive Decoding (DCD). Specifically, DCD decouples the learning of positive and negative samples in preference datasets, and trains separate positive and negative image projections within the MLLM. The negative projection implicitly models real hallucination patterns, which enables vision-aware negative images in the contrastive decoding inference stage. Our DCD alleviates likelihood displacement by avoiding pairwise optimization and generalizes robustly without handcrafted degradation. Extensive ablations across hallucination benchmarks and general reasoning tasks demonstrate the effectiveness of DCD, i.e., it matches DPO's hallucination suppression while preserving general capabilities and outperforms the handcrafted contrastive decoding methods.

  • 7 authors
·
Apr 8

Exploring Hallucination of Large Multimodal Models in Video Understanding: Benchmark, Analysis and Mitigation

The hallucination of large multimodal models (LMMs), providing responses that appear correct but are actually incorrect, limits their reliability and applicability. This paper aims to study the hallucination problem of LMMs in video modality, which is dynamic and more challenging compared to static modalities like images and text. From this motivation, we first present a comprehensive benchmark termed HAVEN for evaluating hallucinations of LMMs in video understanding tasks. It is built upon three dimensions, i.e., hallucination causes, hallucination aspects, and question formats, resulting in 6K questions. Then, we quantitatively study 7 influential factors on hallucinations, e.g., duration time of videos, model sizes, and model reasoning, via experiments of 16 LMMs on the presented benchmark. In addition, inspired by recent thinking models like OpenAI o1, we propose a video-thinking model to mitigate the hallucinations of LMMs via supervised reasoning fine-tuning (SRFT) and direct preference optimization (TDPO)-- where SRFT enhances reasoning capabilities while TDPO reduces hallucinations in the thinking process. Extensive experiments and analyses demonstrate the effectiveness. Remarkably, it improves the baseline by 7.65% in accuracy on hallucination evaluation and reduces the bias score by 4.5%. The code and data are public at https://github.com/Hongcheng-Gao/HAVEN.

  • 9 authors
·
Mar 25 4

Mitigating Hallucinations in Large Vision-Language Models via DPO: On-Policy Data Hold the Key

Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples. Our implementation is available at https://github.com/zhyang2226/OPA-DPO.

  • 5 authors
·
Jan 16

OmniDPO: A Preference Optimization Framework to Address Omni-Modal Hallucination

Recently, Omni-modal large language models (OLLMs) have sparked a new wave of research, achieving impressive results in tasks such as audio-video understanding and real-time environment perception. However, hallucination issues still persist. Similar to the bimodal setting, the priors from the text modality tend to dominate, leading OLLMs to rely more heavily on textual cues while neglecting visual and audio information. In addition, fully multimodal scenarios introduce new challenges. Most existing models align visual or auditory modalities with text independently during training, while ignoring the intrinsic correlations between video and its corresponding audio. This oversight results in hallucinations when reasoning requires interpreting hidden audio cues embedded in video content. To address these challenges, we propose OmniDPO, a preference-alignment framework designed to mitigate hallucinations in OLLMs. Specifically, OmniDPO incorporates two strategies: (1) constructing text-preference sample pairs to enhance the model's understanding of audio-video interactions; and (2) constructing multimodal-preference sample pairs to strengthen the model's attention to visual and auditory information. By tackling both challenges, OmniDPO effectively improves multimodal grounding and reduces hallucination. Experiments conducted on two OLLMs demonstrate that OmniDPO not only effectively mitigates multimodal hallucinations but also significantly enhances the models' reasoning capabilities across modalities. All code and datasets will be released upon paper acceptance.

  • 9 authors
·
Aug 31

Look, Compare, Decide: Alleviating Hallucination in Large Vision-Language Models via Multi-View Multi-Path Reasoning

Recently, Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multi-modal context comprehension. However, they still suffer from hallucination problems referring to generating inconsistent outputs with the image content. To mitigate hallucinations, previous studies mainly focus on retraining LVLMs with custom datasets. Although effective, they inherently come with additional computational costs. In this paper, we propose a training-free framework, MVP, that aims to reduce hallucinations by making the most of the innate capabilities of the LVLMs via Multi-View Multi-Path Reasoning. Specifically, we first devise a multi-view information-seeking strategy to thoroughly perceive the comprehensive information in the image, which enriches the general global information captured by the original vision encoder in LVLMs. Furthermore, during the answer decoding, we observe that the occurrence of hallucinations has a strong correlation with the certainty of the answer tokens. Thus, we propose multi-path reasoning for each information view to quantify and aggregate the certainty scores for each potential answer among multiple decoding paths and finally decide the output answer. By fully grasping the information in the image and carefully considering the certainty of the potential answers when decoding, our MVP can effectively reduce hallucinations in LVLMs.The extensive experiments verify that our proposed MVP significantly mitigates the hallucination problem across four well-known LVLMs. The source code is available at: https://github.com/GasolSun36/MVP.

  • 4 authors
·
Aug 30, 2024

Agent Planning with World Knowledge Model

Recent endeavors towards directly using large language models (LLMs) as agent models to execute interactive planning tasks have shown commendable results. Despite their achievements, however, they still struggle with brainless trial-and-error in global planning and generating hallucinatory actions in local planning due to their poor understanding of the ''real'' physical world. Imitating humans' mental world knowledge model which provides global prior knowledge before the task and maintains local dynamic knowledge during the task, in this paper, we introduce parametric World Knowledge Model (WKM) to facilitate agent planning. Concretely, we steer the agent model to self-synthesize knowledge from both expert and sampled trajectories. Then we develop WKM, providing prior task knowledge to guide the global planning and dynamic state knowledge to assist the local planning. Experimental results on three complex real-world simulated datasets with three state-of-the-art open-source LLMs, Mistral-7B, Gemma-7B, and Llama-3-8B, demonstrate that our method can achieve superior performance compared to various strong baselines. Besides, we analyze to illustrate that our WKM can effectively alleviate the blind trial-and-error and hallucinatory action issues, providing strong support for the agent's understanding of the world. Other interesting findings include: 1) our instance-level task knowledge can generalize better to unseen tasks, 2) weak WKM can guide strong agent model planning, and 3) unified WKM training has promising potential for further development. Code will be available at https://github.com/zjunlp/WKM.

  • 10 authors
·
May 23, 2024

SelfCheckAgent: Zero-Resource Hallucination Detection in Generative Large Language Models

Detecting hallucinations in Large Language Models (LLMs) remains a critical challenge for their reliable deployment in real-world applications. To address this, we introduce SelfCheckAgent, a novel framework integrating three different agents: the Symbolic Agent, the Specialized Detection Agent, and the Contextual Consistency Agent. These agents provide a robust multi-dimensional approach to hallucination detection. Notable results include the Contextual Consistency Agent leveraging Llama 3.1 with Chain-of-Thought (CoT) to achieve outstanding performance on the WikiBio dataset, with NonFactual hallucination detection scoring 93.64%, Factual 70.26%, and Ranking 78.48% respectively. On the AIME dataset, GPT-4o with CoT excels in NonFactual detection with 94.89% but reveals trade-offs in Factual with 30.58% and Ranking with 30.68%, underscoring the complexity of hallucination detection in the complex mathematical domains. The framework also incorporates a triangulation strategy, which increases the strengths of the SelfCheckAgent, yielding significant improvements in real-world hallucination identification. The comparative analysis demonstrates SelfCheckAgent's applicability across diverse domains, positioning it as a crucial advancement for trustworthy LLMs. These findings highlight the potentiality of consistency-driven methodologies in detecting hallucinations in LLMs.

  • 3 authors
·
Feb 3

Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling

Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 28% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.

  • 6 authors
·
Apr 17 2

"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing

Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.

  • 7 authors
·
Mar 27, 2024

Exposing Hallucinations To Suppress Them: VLMs Representation Editing With Generative Anchors

Multimodal large language models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet they remain highly susceptible to hallucinations, producing content that is fluent but inconsistent with visual evidence. Such hallucinations, spanning objects, attributes, and relations, persist even in larger models, while existing mitigation approaches often require additional finetuning, handcrafted priors, or trade-offs that compromise informativeness and scalability. To address this limitation, we propose a training-free, self-supervised method for hallucination mitigation. Our approach introduces a novel hallucination amplification mechanism: a caption is projected into the visual space via a text-to-image model to reveal implicit hallucination signals, serving as a negative anchor, while the original image provides a positive anchor. Leveraging these dual anchors, we edit decoder hidden states by pulling representations toward faithful semantics and pushing them away from hallucination directions. This correction requires no human priors or additional training costs, ensuring both effectiveness and efficiency. Extensive experiments across multiple benchmarks show that our method significantly reduces hallucinations at the object, attribute, and relation levels while largely preserving recall and caption richness, e.g., achieving a hallucination reduction by over 5% using LLaVA-v1.5-7B on CHAIR. Furthermore, results on diverse architectures, including LLaVA-NEXT-7B, Cambrian-8B, and InstructBLIP-7B, validate strong cross-architecture generalization. More importantly, when applied to hallucination-free captions, our method introduces almost no side effects, underscoring its robustness and practical plug-and-play applicability. The implementation will be publicly available.

  • 3 authors
·
Sep 26

Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence

Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.

  • 9 authors
·
Dec 18, 2024

Fine-Grained Detection of Context-Grounded Hallucinations Using LLMs

Context-grounded hallucinations are cases where model outputs contain information not verifiable against the source text. We study the applicability of LLMs for localizing such hallucinations, as a more practical alternative to existing complex evaluation pipelines. In the absence of established benchmarks for meta-evaluation of hallucinations localization, we construct one tailored to LLMs, involving a challenging human annotation of over 1,000 examples. We complement the benchmark with an LLM-based evaluation protocol, verifying its quality in a human evaluation. Since existing representations of hallucinations limit the types of errors that can be expressed, we propose a new representation based on free-form textual descriptions, capturing the full range of possible errors. We conduct a comprehensive study, evaluating four large-scale LLMs, which highlights the benchmark's difficulty, as the best model achieves an F1 score of only 0.67. Through careful analysis, we offer insights into optimal prompting strategies for the task and identify the main factors that make it challenging for LLMs: (1) a tendency to incorrectly flag missing details as inconsistent, despite being instructed to check only facts in the output; and (2) difficulty with outputs containing factually correct information absent from the source - and thus not verifiable - due to alignment with the model's parametric knowledge.

Toward Reliable Biomedical Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models

Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful biomedical hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.

  • 8 authors
·
May 20 2

Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations

Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.

  • 8 authors
·
Sep 14

MetaGPT: Meta Programming for Multi-Agent Collaborative Framework

Recently, remarkable progress has been made in automated task-solving through the use of multi-agent driven by large language models (LLMs). However, existing LLM-based multi-agent works primarily focus on solving simple dialogue tasks, and complex tasks are rarely studied, mainly due to the LLM hallucination problem. This type of hallucination becomes cascading when naively chaining multiple intelligent agents, resulting in a failure to effectively address complex problems. Therefore, we introduce MetaGPT, an innovative framework that incorporates efficient human workflows as a meta programming approach into LLM-based multi-agent collaboration. Specifically, MetaGPT encodes Standardized Operating Procedures (SOPs) into prompts to enhance structured coordination. Subsequently, it mandates modular outputs, empowering agents with domain expertise comparable to human professionals, to validate outputs and minimize compounded errors. In this way, MetaGPT leverages the assembly line paradigm to assign diverse roles to various agents, thereby establishing a framework that can effectively and cohesively deconstruct complex multi-agent collaborative problems. Our experiments on collaborative software engineering benchmarks demonstrate that MetaGPT generates more coherent and correct solutions compared to existing chat-based multi-agent systems. This highlights the potential of integrating human domain knowledge into multi-agent systems, thereby creating new opportunities to tackle complex real-world challenges. The GitHub repository of this project is publicly available on:https://github.com/geekan/MetaGPT.

  • 13 authors
·
Aug 1, 2023

The HalluRAG Dataset: Detecting Closed-Domain Hallucinations in RAG Applications Using an LLM's Internal States

Detecting hallucinations in large language models (LLMs) is critical for enhancing their reliability and trustworthiness. Most research focuses on hallucinations as deviations from information seen during training. However, the opaque nature of an LLM's parametric knowledge complicates the understanding of why generated texts appear ungrounded: The LLM might not have picked up the necessary knowledge from large and often inaccessible datasets, or the information might have been changed or contradicted during further training. Our focus is on hallucinations involving information not used in training, which we determine by using recency to ensure the information emerged after a cut-off date. This study investigates these hallucinations by detecting them at sentence level using different internal states of various LLMs. We present HalluRAG, a dataset designed to train classifiers on these hallucinations. Depending on the model and quantization, MLPs trained on HalluRAG detect hallucinations with test accuracies ranging up to 75 %, with Mistral-7B-Instruct-v0.1 achieving the highest test accuracies. Our results show that IAVs detect hallucinations as effectively as CEVs and reveal that answerable and unanswerable prompts are encoded differently as separate classifiers for these categories improved accuracy. However, HalluRAG showed some limited generalizability, advocating for more diversity in datasets on hallucinations.

  • 2 authors
·
Dec 22, 2024

HalluLens: LLM Hallucination Benchmark

Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.

  • 8 authors
·
Apr 24

Multi-Modal Hallucination Control by Visual Information Grounding

Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "hallucination" and show that it stems from an excessive reliance on the language prior. In particular, we show that as more tokens are generated, the reliance on the visual prompt decreases, and this behavior strongly correlates with the emergence of hallucinations. To reduce hallucinations, we introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification. M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt. M3ID can be applied to any pre-trained autoregressive VLM at inference time without necessitating further training and with minimal computational overhead. If training is an option, we show that M3ID can be paired with Direct Preference Optimization (DPO) to improve the model's reliance on the prompt image without requiring any labels. Our empirical findings show that our algorithms maintain the fluency and linguistic capabilities of pre-trained VLMs while reducing hallucinations by mitigating visually ungrounded answers. Specifically, for the LLaVA 13B model, M3ID and M3ID+DPO reduce the percentage of hallucinated objects in captioning tasks by 25% and 28%, respectively, and improve the accuracy on VQA benchmarks such as POPE by 21% and 24%.

  • 8 authors
·
Mar 20, 2024

Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks but still face challenges such as hallucinations. One potential reason for hallucinations is the lack of relevant knowledge or context. Thus, a promising solution to mitigate this issue involves instructing LLMs to respond with "I do not know" when a question falls outside their knowledge domain or the provided context. However, in this work, we observed that LLMs struggle to admit their lack of knowledge, primarily due to existing instruction datasets designed to encourage specific answers. To improve large language models' capability to recognize the boundaries of their knowledge, we propose a novel approach called uncertainty-sensitive tuning. This method involves two-stage training designed for uncertainty recognition and prompt-sensitive activation. In the first stage, we guide the LLM to reject unknown questions. In the second stage, we recover the decreased performance in QA tasks by incorporating designed causal instructions. By leveraging this method, we aim to enhance the model's ability to identify areas of uncertainty. The experimental results demonstrate that our proposed uncertainty-sensitive tuning method significantly improves the performance of the Llama2-chat-7B model. Specifically, it achieves a substantial 34.7% improvement in handling questions involving knowledge gaps compared to the original model. Moreover, our approach outperforms GPT-4, exhibiting a 9.4% increase in overall performance. We open-source the model and code on GitHub.

  • 3 authors
·
Jun 14, 2024

FactCheckmate: Preemptively Detecting and Mitigating Hallucinations in LMs

Language models (LMs) hallucinate. We inquire: Can we detect and mitigate hallucinations before they happen? This work answers this research question in the positive, by showing that the internal representations of LMs provide rich signals that can be used for this purpose. We introduce FactCheckMate, which preemptively detects hallucinations by learning a classifier that predicts whether the LM will hallucinate, based on the model's hidden states produced over the inputs, before decoding begins. If a hallucination is detected, FactCheckMate then intervenes, by adjusting the LM's hidden states such that the model will produce more factual outputs. FactCheckMate provides fresh insights that the inner workings of LMs can be revealed by their hidden states. Practically, both the detection and mitigation models in FactCheckMate are lightweight, adding little inference overhead; FactCheckMate proves a more efficient approach for mitigating hallucinations compared to many post-hoc alternatives. We evaluate FactCheckMate over LMs of different scales and model families (including Llama, Mistral, and Gemma), across a variety of QA datasets from different domains. Our results demonstrate the effectiveness of leveraging internal representations for early hallucination detection and mitigation, achieving over 70% preemptive detection accuracy. On average, outputs generated by LMs with intervention are 34.4% more factual compared to those without intervention. The average overhead difference in the inference time introduced by FactCheckMate is around 3.16 seconds.

  • 4 authors
·
Oct 3, 2024

Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning

Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities. However, these models are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as LLM hallucinations. Reliable uncertainty estimation in LLMs is essential for fostering trust in their generated responses and serves as a critical tool for the detection and prevention of erroneous or hallucinated outputs. To achieve reliable and well-calibrated uncertainty quantification in open-ended and free-form natural language generation, we propose an uncertainty-aware fine-tuning approach for LLMs. This approach enhances the model's ability to provide reliable uncertainty estimates without compromising accuracy, thereby guiding them to produce more trustworthy responses. We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory. Through rigorous evaluation on multiple free-form question-answering datasets and models, we demonstrate that our uncertainty-aware fine-tuning approach yields better calibrated uncertainty estimates in natural language generation tasks than fine-tuning with the standard causal language modeling loss. Furthermore, the experimental results show that the proposed method significantly improves the model's ability to detect hallucinations and identify out-of-domain prompts.

  • 3 authors
·
Dec 3, 2024

The Law of Knowledge Overshadowing: Towards Understanding, Predicting, and Preventing LLM Hallucination

Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.

  • 11 authors
·
Feb 22

Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models

Large Language Models (LLMs) are prone to hallucination, the generation of plausible yet factually incorrect statements. This work investigates the intrinsic, architectural origins of this failure mode through three primary contributions.First, to enable the reliable tracing of internal semantic failures, we propose Distributional Semantics Tracing (DST), a unified framework that integrates established interpretability techniques to produce a causal map of a model's reasoning, treating meaning as a function of context (distributional semantics). Second, we pinpoint the model's layer at which a hallucination becomes inevitable, identifying a specific commitment layer where a model's internal representations irreversibly diverge from factuality. Third, we identify the underlying mechanism for these failures. We observe a conflict between distinct computational pathways, which we interpret using the lens of dual-process theory: a fast, heuristic associative pathway (akin to System 1) and a slow, deliberate contextual pathway (akin to System 2), leading to predictable failure modes such as Reasoning Shortcut Hijacks. Our framework's ability to quantify the coherence of the contextual pathway reveals a strong negative correlation (rho = -0.863) with hallucination rates, implying that these failures are predictable consequences of internal semantic weakness. The result is a mechanistic account of how, when, and why hallucinations occur within the Transformer architecture.

  • 4 authors
·
Oct 7 2

ELV-Halluc: Benchmarking Semantic Aggregation Hallucinations in Long Video Understanding

Video multimodal large language models (Video-MLLMs) have achieved remarkable progress in video understanding. However, they remain vulnerable to hallucination-producing content inconsistent with or unrelated to video inputs. Previous video hallucination benchmarks primarily focus on short-videos. They attribute hallucinations to factors such as strong language priors, missing frames, or vision-language biases introduced by the visual encoder. While these causes indeed account for most hallucinations in short videos, they still oversimplify the cause of hallucinations. Sometimes, models generate incorrect outputs but with correct frame-level semantics. We refer to this type of hallucination as Semantic Aggregation Hallucination (SAH), which arises during the process of aggregating frame-level semantics into event-level semantic groups. Given that SAH becomes particularly critical in long videos due to increased semantic complexity across multiple events, it is essential to separate and thoroughly investigate the causes of this type of hallucination. To address the above issues, we introduce ELV-Halluc, the first benchmark dedicated to long-video hallucination, enabling a systematic investigation of SAH. Our experiments confirm the existence of SAH and show that it increases with semantic complexity. Additionally, we find that models are more prone to SAH on rapidly changing semantics. Moreover, we discuss potential approaches to mitigate SAH. We demonstrate that positional encoding strategy contributes to alleviating SAH, and further adopt DPO strategy to enhance the model's ability to distinguish semantics within and across events. To support this, we curate a dataset of 8K adversarial data pairs and achieve improvements on both ELV-Halluc and Video-MME, including a substantial 27.7% reduction in SAH ratio.

  • 8 authors
·
Aug 29 1

Hallucination Score: Towards Mitigating Hallucinations in Generative Image Super-Resolution

Generative super-resolution (GSR) currently sets the state-of-the-art in terms of perceptual image quality, overcoming the "regression-to-the-mean" blur of prior non-generative models. However, from a human perspective, such models do not fully conform to the optimal balance between quality and fidelity. Instead, a different class of artifacts, in which generated details fail to perceptually match the low resolution image (LRI) or ground-truth image (GTI), is a critical but under studied issue in GSR, limiting its practical deployments. In this work, we focus on measuring, analyzing, and mitigating these artifacts (i.e., "hallucinations"). We observe that hallucinations are not well-characterized with existing image metrics or quality models, as they are orthogonal to both exact fidelity and no-reference quality. Instead, we take advantage of a multimodal large language model (MLLM) by constructing a prompt that assesses hallucinatory visual elements and generates a "Hallucination Score" (HS). We find that our HS is closely aligned with human evaluations, and also provides complementary insights to prior image metrics used for super-resolution (SR) models. In addition, we find certain deep feature distances have strong correlations with HS. We therefore propose to align the GSR models by using such features as differentiable reward functions to mitigate hallucinations.

  • 6 authors
·
Jul 18

From Noise to Narrative: Tracing the Origins of Hallucinations in Transformers

As generative AI systems become competent and democratized in science, business, and government, deeper insight into their failure modes now poses an acute need. The occasional volatility in their behavior, such as the propensity of transformer models to hallucinate, impedes trust and adoption of emerging AI solutions in high-stakes areas. In the present work, we establish how and when hallucinations arise in pre-trained transformer models through concept representations captured by sparse autoencoders, under scenarios with experimentally controlled uncertainty in the input space. Our systematic experiments reveal that the number of semantic concepts used by the transformer model grows as the input information becomes increasingly unstructured. In the face of growing uncertainty in the input space, the transformer model becomes prone to activate coherent yet input-insensitive semantic features, leading to hallucinated output. At its extreme, for pure-noise inputs, we identify a wide variety of robustly triggered and meaningful concepts in the intermediate activations of pre-trained transformer models, whose functional integrity we confirm through targeted steering. We also show that hallucinations in the output of a transformer model can be reliably predicted from the concept patterns embedded in transformer layer activations. This collection of insights on transformer internal processing mechanics has immediate consequences for aligning AI models with human values, AI safety, opening the attack surface for potential adversarial attacks, and providing a basis for automatic quantification of a model's hallucination risk.

  • 5 authors
·
Sep 8 2

Preliminary Explorations with GPT-4o(mni) Native Image Generation

Recently, the visual generation ability by GPT-4o(mni) has been unlocked by OpenAI. It demonstrates a very remarkable generation capability with excellent multimodal condition understanding and varied task instructions. In this paper, we aim to explore the capabilities of GPT-4o across various tasks. Inspired by previous study, we constructed a task taxonomy along with a carefully curated set of test samples to conduct a comprehensive qualitative test. Benefiting from GPT-4o's powerful multimodal comprehension, its image-generation process demonstrates abilities surpassing those of traditional image-generation tasks. Thus, regarding the dimensions of model capabilities, we evaluate its performance across six task categories: traditional image generation tasks, discriminative tasks, knowledge-based generation, commonsense-based generation, spatially-aware image generation, and temporally-aware image generation. These tasks not only assess the quality and conditional alignment of the model's outputs but also probe deeper into GPT-4o's understanding of real-world concepts. Our results reveal that GPT-4o performs impressively well in general-purpose synthesis tasks, showing strong capabilities in text-to-image generation, visual stylization, and low-level image processing. However, significant limitations remain in its ability to perform precise spatial reasoning, instruction-grounded generation, and consistent temporal prediction. Furthermore, when faced with knowledge-intensive or domain-specific scenarios, such as scientific illustrations or mathematical plots, the model often exhibits hallucinations, factual errors, or structural inconsistencies. These findings suggest that while GPT-4o marks a substantial advancement in unified multimodal generation, there is still a long way to go before it can be reliably applied to professional or safety-critical domains.

  • 11 authors
·
May 6

HALoGEN: Fantastic LLM Hallucinations and Where to Find Them

Despite their impressive ability to generate high-quality and fluent text, generative large language models (LLMs) also produce hallucinations: statements that are misaligned with established world knowledge or provided input context. However, measuring hallucination can be challenging, as having humans verify model generations on-the-fly is both expensive and time-consuming. In this work, we release HALoGEN, a comprehensive hallucination benchmark consisting of: (1) 10,923 prompts for generative models spanning nine domains including programming, scientific attribution, and summarization, and (2) automatic high-precision verifiers for each use case that decompose LLM generations into atomic units, and verify each unit against a high-quality knowledge source. We use this framework to evaluate ~150,000 generations from 14 language models, finding that even the best-performing models are riddled with hallucinations (sometimes up to 86% of generated atomic facts depending on the domain). We further define a novel error classification for LLM hallucinations based on whether they likely stem from incorrect recollection of training data (Type A errors), or incorrect knowledge in training data (Type B errors), or are fabrication (Type C errors). We hope our framework provides a foundation to enable the principled study of why generative models hallucinate, and advances the development of trustworthy large language models.

  • 4 authors
·
Jan 14 2

Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model

Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.

  • 5 authors
·
Jan 21 2