new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 3

DualToken-ViT: Position-aware Efficient Vision Transformer with Dual Token Fusion

Self-attention-based vision transformers (ViTs) have emerged as a highly competitive architecture in computer vision. Unlike convolutional neural networks (CNNs), ViTs are capable of global information sharing. With the development of various structures of ViTs, ViTs are increasingly advantageous for many vision tasks. However, the quadratic complexity of self-attention renders ViTs computationally intensive, and their lack of inductive biases of locality and translation equivariance demands larger model sizes compared to CNNs to effectively learn visual features. In this paper, we propose a light-weight and efficient vision transformer model called DualToken-ViT that leverages the advantages of CNNs and ViTs. DualToken-ViT effectively fuses the token with local information obtained by convolution-based structure and the token with global information obtained by self-attention-based structure to achieve an efficient attention structure. In addition, we use position-aware global tokens throughout all stages to enrich the global information, which further strengthening the effect of DualToken-ViT. Position-aware global tokens also contain the position information of the image, which makes our model better for vision tasks. We conducted extensive experiments on image classification, object detection and semantic segmentation tasks to demonstrate the effectiveness of DualToken-ViT. On the ImageNet-1K dataset, our models of different scales achieve accuracies of 75.4% and 79.4% with only 0.5G and 1.0G FLOPs, respectively, and our model with 1.0G FLOPs outperforms LightViT-T using global tokens by 0.7%.

  • 7 authors
·
Sep 21, 2023 2

HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models

State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, when combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Last but not least, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.

  • 6 authors
·
Aug 6

PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration

Learning rotation-invariant distinctive features is a fundamental requirement for point cloud registration. Existing methods often use rotation-sensitive networks to extract features, while employing rotation augmentation to learn an approximate invariant mapping rudely. This makes networks fragile to rotations, overweight, and hinders the distinctiveness of features. To tackle these problems, we propose a novel position-aware rotation-equivariant network, for efficient, light-weighted, and robust registration. The network can provide a strong model inductive bias to learn rotation-equivariant/invariant features, thus addressing the aforementioned limitations. To further improve the distinctiveness of descriptors, we propose a position-aware convolution, which can better learn spatial information of local structures. Moreover, we also propose a feature-based hypothesis proposer. It leverages rotation-equivariant features that encode fine-grained structure orientations to generate reliable model hypotheses. Each correspondence can generate a hypothesis, thus it is more efficient than classic estimators that require multiple reliable correspondences. Accordingly, a contrastive rotation loss is presented to enhance the robustness of rotation-equivariant features against data degradation. Extensive experiments on indoor and outdoor datasets demonstrate that our method significantly outperforms the SOTA methods in terms of registration recall while being lightweight and keeping a fast speed. Moreover, experiments on rotated datasets demonstrate its robustness against rotation variations. Code is available at https://github.com/yaorz97/PARENet.

  • 5 authors
·
Jul 14, 2024

ZeroBP: Learning Position-Aware Correspondence for Zero-shot 6D Pose Estimation in Bin-Picking

Bin-picking is a practical and challenging robotic manipulation task, where accurate 6D pose estimation plays a pivotal role. The workpieces in bin-picking are typically textureless and randomly stacked in a bin, which poses a significant challenge to 6D pose estimation. Existing solutions are typically learning-based methods, which require object-specific training. Their efficiency of practical deployment for novel workpieces is highly limited by data collection and model retraining. Zero-shot 6D pose estimation is a potential approach to address the issue of deployment efficiency. Nevertheless, existing zero-shot 6D pose estimation methods are designed to leverage feature matching to establish point-to-point correspondences for pose estimation, which is less effective for workpieces with textureless appearances and ambiguous local regions. In this paper, we propose ZeroBP, a zero-shot pose estimation framework designed specifically for the bin-picking task. ZeroBP learns Position-Aware Correspondence (PAC) between the scene instance and its CAD model, leveraging both local features and global positions to resolve the mismatch issue caused by ambiguous regions with similar shapes and appearances. Extensive experiments on the ROBI dataset demonstrate that ZeroBP outperforms state-of-the-art zero-shot pose estimation methods, achieving an improvement of 9.1% in average recall of correct poses.

  • 6 authors
·
Feb 2

Visual Position Prompt for MLLM based Visual Grounding

Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets (sim21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.

  • 4 authors
·
Mar 19

BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous Driving

The ability to accurately predict the trajectory of surrounding vehicles is a critical hurdle to overcome on the journey to fully autonomous vehicles. To address this challenge, we pioneer a novel behavior-aware trajectory prediction model (BAT) that incorporates insights and findings from traffic psychology, human behavior, and decision-making. Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules that perceive and understand the underlying interactions and account for uncertainty and variability in prediction, enabling higher-level learning and flexibility without rigid categorization of driving behavior. Importantly, this approach eliminates the need for manual labeling in the training process and addresses the challenges of non-continuous behavior labeling and the selection of appropriate time windows. We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets, showcasing its superiority over prevailing state-of-the-art (SOTA) benchmarks in terms of prediction accuracy and efficiency. Remarkably, even when trained on reduced portions of the training data (25%), our model outperforms most of the baselines, demonstrating its robustness and efficiency in predicting vehicle trajectories, and the potential to reduce the amount of data required to train autonomous vehicles, especially in corner cases. In conclusion, the behavior-aware model represents a significant advancement in the development of autonomous vehicles capable of predicting trajectories with the same level of proficiency as human drivers. The project page is available at https://github.com/Petrichor625/BATraj-Behavior-aware-Model.

  • 8 authors
·
Dec 11, 2023

PosFormer: Recognizing Complex Handwritten Mathematical Expression with Position Forest Transformer

Handwritten Mathematical Expression Recognition (HMER) has wide applications in human-machine interaction scenarios, such as digitized education and automated offices. Recently, sequence-based models with encoder-decoder architectures have been commonly adopted to address this task by directly predicting LaTeX sequences of expression images. However, these methods only implicitly learn the syntax rules provided by LaTeX, which may fail to describe the position and hierarchical relationship between symbols due to complex structural relations and diverse handwriting styles. To overcome this challenge, we propose a position forest transformer (PosFormer) for HMER, which jointly optimizes two tasks: expression recognition and position recognition, to explicitly enable position-aware symbol feature representation learning. Specifically, we first design a position forest that models the mathematical expression as a forest structure and parses the relative position relationships between symbols. Without requiring extra annotations, each symbol is assigned a position identifier in the forest to denote its relative spatial position. Second, we propose an implicit attention correction module to accurately capture attention for HMER in the sequence-based decoder architecture. Extensive experiments validate the superiority of PosFormer, which consistently outperforms the state-of-the-art methods 2.03%/1.22%/2.00%, 1.83%, and 4.62% gains on the single-line CROHME 2014/2016/2019, multi-line M2E, and complex MNE datasets, respectively, with no additional latency or computational cost. Code is available at https://github.com/SJTU-DeepVisionLab/PosFormer.

  • 4 authors
·
Jul 10, 2024

Effective Invertible Arbitrary Image Rescaling

Great successes have been achieved using deep learning techniques for image super-resolution (SR) with fixed scales. To increase its real world applicability, numerous models have also been proposed to restore SR images with arbitrary scale factors, including asymmetric ones where images are resized to different scales along horizontal and vertical directions. Though most models are only optimized for the unidirectional upscaling task while assuming a predefined downscaling kernel for low-resolution (LR) inputs, recent models based on Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly. However, limited by the INN architecture, it is constrained to fixed integer scale factors and requires one model for each scale. Without increasing model complexity, a simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work. Using innovative components like position-aware scale encoding and preemptive channel splitting, the network is optimized to convert the non-invertible rescaling cycle to an effectively invertible process. It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs. It is also demonstrated to perform well on tests with asymmetric scales using the same network architecture.

  • 5 authors
·
Sep 26, 2022

EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer

Recent advancements in Unet-based diffusion models, such as ControlNet and IP-Adapter, have introduced effective spatial and subject control mechanisms. However, the DiT (Diffusion Transformer) architecture still struggles with efficient and flexible control. To tackle this issue, we propose EasyControl, a novel framework designed to unify condition-guided diffusion transformers with high efficiency and flexibility. Our framework is built on three key innovations. First, we introduce a lightweight Condition Injection LoRA Module. This module processes conditional signals in isolation, acting as a plug-and-play solution. It avoids modifying the base model weights, ensuring compatibility with customized models and enabling the flexible injection of diverse conditions. Notably, this module also supports harmonious and robust zero-shot multi-condition generalization, even when trained only on single-condition data. Second, we propose a Position-Aware Training Paradigm. This approach standardizes input conditions to fixed resolutions, allowing the generation of images with arbitrary aspect ratios and flexible resolutions. At the same time, it optimizes computational efficiency, making the framework more practical for real-world applications. Third, we develop a Causal Attention Mechanism combined with the KV Cache technique, adapted for conditional generation tasks. This innovation significantly reduces the latency of image synthesis, improving the overall efficiency of the framework. Through extensive experiments, we demonstrate that EasyControl achieves exceptional performance across various application scenarios. These innovations collectively make our framework highly efficient, flexible, and suitable for a wide range of tasks.

  • 5 authors
·
Mar 10 2

Trainable Dynamic Mask Sparse Attention

In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.

  • 7 authors
·
Aug 4 2

IC-Custom: Diverse Image Customization via In-Context Learning

Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom

  • 14 authors
·
Jul 2

Med-EASi: Finely Annotated Dataset and Models for Controllable Simplification of Medical Texts

Automatic medical text simplification can assist providers with patient-friendly communication and make medical texts more accessible, thereby improving health literacy. But curating a quality corpus for this task requires the supervision of medical experts. In this work, we present Med-EASi (textbf{Med}ical dataset for textbf{E}laborative and textbf{A}bstractive textbf{Si}mplification), a uniquely crowdsourced and finely annotated dataset for supervised simplification of short medical texts. Its expert-layman-AI collaborative annotations facilitate controllability over text simplification by marking four kinds of textual transformations: elaboration, replacement, deletion, and insertion. To learn medical text simplification, we fine-tune T5-large with four different styles of input-output combinations, leading to two control-free and two controllable versions of the model. We add two types of controllability into text simplification, by using a multi-angle training approach: position-aware, which uses in-place annotated inputs and outputs, and position-agnostic, where the model only knows the contents to be edited, but not their positions. Our results show that our fine-grained annotations improve learning compared to the unannotated baseline. Furthermore, position-aware control generates better simplification than the position-agnostic one. The data and code are available at https://github.com/Chandrayee/CTRL-SIMP.

  • 4 authors
·
Feb 17, 2023

Building a Safer Maritime Environment Through Multi-Path Long-Term Vessel Trajectory Forecasting

Maritime transportation is paramount in achieving global economic growth, entailing concurrent ecological obligations in sustainability and safeguarding endangered marine species, most notably preserving large whale populations. In this regard, the Automatic Identification System (AIS) data plays a significant role by offering real-time streaming data on vessel movement, allowing enhanced traffic monitoring. This study explores using AIS data to prevent vessel-to-whale collisions by forecasting long-term vessel trajectories from engineered AIS data sequences. For such a task, we have developed an encoder-decoder model architecture using Bidirectional Long Short-Term Memory Networks (Bi-LSTM) to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. We feed the model with probabilistic features engineered from historical AIS data that refer to each trajectory's potential route and destination. The model then predicts the vessel's trajectory, considering these additional features by leveraging convolutional layers for spatial feature learning and a position-aware attention mechanism that increases the importance of recent timesteps of a sequence during temporal feature learning. The probabilistic features have an F1 Score of approximately 85% and 75% for each feature type, respectively, demonstrating their effectiveness in augmenting information to the neural network. We test our model on the Gulf of St. Lawrence, a region known to be the habitat of North Atlantic Right Whales (NARW). Our model achieved a high R2 score of over 98% using various techniques and features. It stands out among other approaches as it can make complex decisions during turnings and path selection. Our study highlights the potential of data engineering and trajectory forecasting models for marine life species preservation.

  • 11 authors
·
Oct 29, 2023

Recognize Any Regions

Understanding the semantics of individual regions or patches within unconstrained images, such as in open-world object detection, represents a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient region recognition architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information extracted from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Through extensive experiments in the context of open-world object recognition, our RegionSpot demonstrates significant performance improvements over prior alternatives, while also providing substantial computational savings. For instance, training our model with 3 million data in a single day using 8 V100 GPUs. Our model outperforms GLIP by 6.5 % in mean average precision (mAP), with an even larger margin by 14.8 % for more challenging and rare categories.

  • 6 authors
·
Nov 2, 2023

EchoShot: Multi-Shot Portrait Video Generation

Video diffusion models substantially boost the productivity of artistic workflows with high-quality portrait video generative capacity. However, prevailing pipelines are primarily constrained to single-shot creation, while real-world applications urge for multiple shots with identity consistency and flexible content controllability. In this work, we propose EchoShot, a native and scalable multi-shot framework for portrait customization built upon a foundation video diffusion model. To start with, we propose shot-aware position embedding mechanisms within video diffusion transformer architecture to model inter-shot variations and establish intricate correspondence between multi-shot visual content and their textual descriptions. This simple yet effective design enables direct training on multi-shot video data without introducing additional computational overhead. To facilitate model training within multi-shot scenario, we construct PortraitGala, a large-scale and high-fidelity human-centric video dataset featuring cross-shot identity consistency and fine-grained captions such as facial attributes, outfits, and dynamic motions. To further enhance applicability, we extend EchoShot to perform reference image-based personalized multi-shot generation and long video synthesis with infinite shot counts. Extensive evaluations demonstrate that EchoShot achieves superior identity consistency as well as attribute-level controllability in multi-shot portrait video generation. Notably, the proposed framework demonstrates potential as a foundational paradigm for general multi-shot video modeling.

  • 8 authors
·
Jun 16

Sonic: Shifting Focus to Global Audio Perception in Portrait Animation

The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). Context-enhanced audio learning, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). Motion-decoupled controller, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, Time-aware position shift fusion, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.

  • 12 authors
·
Nov 25, 2024

Context-aware Rotary Position Embedding

Positional encoding is a vital component of Transformer architectures, enabling models to incorporate sequence order into self-attention mechanisms. Rotary Positional Embeddings (RoPE) have become a widely adopted solution due to their compatibility with relative position encoding and computational efficiency. However, RoPE relies on static, input-independent sinusoidal frequency patterns, limiting its ability to model context-sensitive relationships. In this work, we propose CARoPE (Context-Aware Rotary Positional Embedding), a novel generalization of RoPE that dynamically generates head-specific frequency patterns conditioned on token embeddings. This design introduces token- and context-sensitive positional representations while preserving RoPE efficiency and architectural simplicity. CARoPE computes input-dependent phase shifts using a bounded transformation of token embeddings and integrates them into the rotary mechanism across attention heads. We evaluate CARoPE on the FineWeb-Edu-10B dataset using GPT-2 variants trained on next-token prediction tasks. Experimental results show that CARoPE consistently outperforms RoPE and other common positional encoding baselines, achieving significantly lower perplexity, even at longer context lengths. Additionally, CARoPE enables faster training throughput without sacrificing model stability. These findings demonstrate that CARoPE offers a scalable, expressive, and efficient upgrade to existing positional encoding strategies in Transformer models.

  • 3 authors
·
Jul 30

A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization

Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.

  • 9 authors
·
Feb 18

ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting

Traffic forecasting represents a crucial problem within intelligent transportation systems. In recent research, Large Language Models (LLMs) have emerged as a promising method, but their intrinsic design, tailored primarily for sequential token processing, introduces notable challenges in effectively capturing spatial dependencies. Specifically, the inherent limitations of LLMs in modeling spatial relationships and their architectural incompatibility with graph-structured spatial data remain largely unaddressed. To overcome these limitations, we introduce ST-LINK, a novel framework that enhances the capability of Large Language Models to capture spatio-temporal dependencies. Its key components are Spatially-Enhanced Attention (SE-Attention) and the Memory Retrieval Feed-Forward Network (MRFFN). SE-Attention extends rotary position embeddings to integrate spatial correlations as direct rotational transformations within the attention mechanism. This approach maximizes spatial learning while preserving the LLM's inherent sequential processing structure. Meanwhile, MRFFN dynamically retrieves and utilizes key historical patterns to capture complex temporal dependencies and improve the stability of long-term forecasting. Comprehensive experiments on benchmark datasets demonstrate that ST-LINK surpasses conventional deep learning and LLM approaches, and effectively captures both regular traffic patterns and abrupt changes.

  • 4 authors
·
Sep 17 1

Dual Mutual Learning Network with Global-local Awareness for RGB-D Salient Object Detection

RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.

  • 5 authors
·
Jan 3

DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving

Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.

  • 5 authors
·
Jun 18, 2024 2

$A^2$Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting Vision-and-Language Ability of Foundation Models

We study the task of zero-shot vision-and-language navigation (ZS-VLN), a practical yet challenging problem in which an agent learns to navigate following a path described by language instructions without requiring any path-instruction annotation data. Normally, the instructions have complex grammatical structures and often contain various action descriptions (e.g., "proceed beyond", "depart from"). How to correctly understand and execute these action demands is a critical problem, and the absence of annotated data makes it even more challenging. Note that a well-educated human being can easily understand path instructions without the need for any special training. In this paper, we propose an action-aware zero-shot VLN method (A^2Nav) by exploiting the vision-and-language ability of foundation models. Specifically, the proposed method consists of an instruction parser and an action-aware navigation policy. The instruction parser utilizes the advanced reasoning ability of large language models (e.g., GPT-3) to decompose complex navigation instructions into a sequence of action-specific object navigation sub-tasks. Each sub-task requires the agent to localize the object and navigate to a specific goal position according to the associated action demand. To accomplish these sub-tasks, an action-aware navigation policy is learned from freely collected action-specific datasets that reveal distinct characteristics of each action demand. We use the learned navigation policy for executing sub-tasks sequentially to follow the navigation instruction. Extensive experiments show A^2Nav achieves promising ZS-VLN performance and even surpasses the supervised learning methods on R2R-Habitat and RxR-Habitat datasets.

  • 8 authors
·
Aug 15, 2023

OG-VLA: 3D-Aware Vision Language Action Model via Orthographic Image Generation

We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and multi-view RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA projects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/

  • 6 authors
·
Jun 1

AnchorAttention: Difference-Aware Sparse Attention with Stripe Granularity

Large Language Models (LLMs) with extended context lengths face significant computational challenges during the pre-filling phase, primarily due to the quadratic complexity of self-attention. Existing methods typically employ dynamic pattern matching and block-sparse low-level implementations. However, their reliance on local information for pattern identification fails to capture global contexts, and the coarse granularity of blocks leads to persistent internal sparsity, resulting in suboptimal accuracy and efficiency. To address these limitations, we propose AnchorAttention, a difference-aware, dynamic sparse attention mechanism that efficiently identifies critical attention regions at a finer stripe granularity while adapting to global contextual information, achieving superior speed and accuracy. AnchorAttention comprises three key components: (1) Pattern-based Anchor Computation, leveraging the commonalities present across all inputs to rapidly compute a set of near-maximum scores as the anchor; (2) Difference-aware Stripe Sparsity Identification, performing difference-aware comparisons with the anchor to quickly obtain discrete coordinates of significant regions in a stripe-like sparsity pattern; (3) Fine-grained Sparse Computation, replacing the traditional contiguous KV block loading approach with simultaneous discrete KV position loading to maximize sparsity rates while preserving full hardware computational potential. With its finer-grained sparsity strategy, AnchorAttention achieves higher sparsity rates at the same recall level, significantly reducing computation time. Compared to previous state-of-the-art methods, at a text length of 128k, it achieves a speedup of 1.44times while maintaining higher recall rates.

  • 6 authors
·
May 29

OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection

Accurate depth information is crucial for enhancing the performance of multi-view 3D object detection. Despite the success of some existing multi-view 3D detectors utilizing pixel-wise depth supervision, they overlook two significant phenomena: 1) the depth supervision obtained from LiDAR points is usually distributed on the surface of the object, which is not so friendly to existing DETR-based 3D detectors due to the lack of the depth of 3D object center; 2) for distant objects, fine-grained depth estimation of the whole object is more challenging. Therefore, we argue that the object-wise depth (or 3D center of the object) is essential for accurate detection. In this paper, we propose a new multi-view 3D object detector named OPEN, whose main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding. Specifically, we first employ an object-wise depth encoder, which takes the pixel-wise depth map as a prior, to accurately estimate the object-wise depth. Then, we utilize the proposed object-wise position embedding to encode the object-wise depth information into the transformer decoder, thereby producing 3D object-aware features for final detection. Extensive experiments verify the effectiveness of our proposed method. Furthermore, OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.

  • 9 authors
·
Jul 15, 2024

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

Makeup transfer is not only to extract the makeup style of the reference image, but also to render the makeup style to the semantic corresponding position of the target image. However, most existing methods focus on the former and ignore the latter, resulting in a failure to achieve desired results. To solve the above problems, we propose a unified Symmetric Semantic-Aware Transformer (SSAT) network, which incorporates semantic correspondence learning to realize makeup transfer and removal simultaneously. In SSAT, a novel Symmetric Semantic Corresponding Feature Transfer (SSCFT) module and a weakly supervised semantic loss are proposed to model and facilitate the establishment of accurate semantic correspondence. In the generation process, the extracted makeup features are spatially distorted by SSCFT to achieve semantic alignment with the target image, then the distorted makeup features are combined with unmodified makeup irrelevant features to produce the final result. Experiments show that our method obtains more visually accurate makeup transfer results, and user study in comparison with other state-of-the-art makeup transfer methods reflects the superiority of our method. Besides, we verify the robustness of the proposed method in the difference of expression and pose, object occlusion scenes, and extend it to video makeup transfer. Code will be available at https://gitee.com/sunzhaoyang0304/ssat-msp.

  • 3 authors
·
Dec 7, 2021

Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation

Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively.

  • 14 authors
·
May 24 2

RotateKV: Accurate and Robust 2-Bit KV Cache Quantization for LLMs via Outlier-Aware Adaptive Rotations

Key-Value (KV) cache facilitates efficient large language models (LLMs) inference by avoiding recomputation of past KVs. As the batch size and context length increase, the oversized KV caches become a significant memory bottleneck, highlighting the need for efficient compression. Existing KV quantization rely on fine-grained quantization or the retention of a significant portion of high bit-widths caches, both of which compromise compression ratio and often fail to maintain robustness at extremely low average bit-widths. In this work, we explore the potential of rotation technique for 2-bit KV quantization and propose RotateKV, which achieves accurate and robust performance through the following innovations: (i) Outlier-Aware Rotation, which utilizes channel-reordering to adapt the rotations to varying channel-wise outlier distributions without sacrificing the computational efficiency of the fast Walsh-Hadamard transform (FWHT); (ii) Pre-RoPE Grouped-Head Rotation, which mitigates the impact of rotary position embedding (RoPE) on proposed outlier-aware rotation and further smooths outliers across heads; (iii) Attention-Sink-Aware Quantization, which leverages the massive activations to precisely identify and protect attention sinks. RotateKV achieves less than 0.3 perplexity (PPL) degradation with 2-bit quantization on WikiText-2 using LLaMA-2-13B, maintains strong CoT reasoning and long-context capabilities, with less than 1.7\% degradation on GSM8K, outperforming existing methods even at lower average bit-widths. RotateKV also showcases a 3.97x reduction in peak memory usage, supports 5.75x larger batch sizes, and achieves a 2.32x speedup in decoding stage.

  • 7 authors
·
Jan 24

DiTraj: training-free trajectory control for video diffusion transformer

Diffusion Transformers (DiT)-based video generation models with 3D full attention exhibit strong generative capabilities. Trajectory control represents a user-friendly task in the field of controllable video generation. However, existing methods either require substantial training resources or are specifically designed for U-Net, do not take advantage of the superior performance of DiT. To address these issues, we propose DiTraj, a simple but effective training-free framework for trajectory control in text-to-video generation, tailored for DiT. Specifically, first, to inject the object's trajectory, we propose foreground-background separation guidance: we use the Large Language Model (LLM) to convert user-provided prompts into foreground and background prompts, which respectively guide the generation of foreground and background regions in the video. Then, we analyze 3D full attention and explore the tight correlation between inter-token attention scores and position embedding. Based on this, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens' position embedding, STD-RoPE eliminates their cross-frame spatial discrepancies, strengthening cross-frame attention among them and thus enhancing trajectory control. Additionally, we achieve 3D-aware trajectory control by regulating the density of position embedding. Extensive experiments demonstrate that our method outperforms previous methods in both video quality and trajectory controllability.

  • 9 authors
·
Sep 25

A Skull-Adaptive Framework for AI-Based 3D Transcranial Focused Ultrasound Simulation

Transcranial focused ultrasound (tFUS) is an emerging modality for non-invasive brain stimulation and therapeutic intervention, offering millimeter-scale spatial precision and the ability to target deep brain structures. However, the heterogeneous and anisotropic nature of the human skull introduces significant distortions to the propagating ultrasound wavefront, which require time-consuming patient-specific planning and corrections using numerical solvers for accurate targeting. To enable data-driven approaches in this domain, we introduce TFUScapes, the first large-scale, high-resolution dataset of tFUS simulations through anatomically realistic human skulls derived from T1-weighted MRI images. We have developed a scalable simulation engine pipeline using the k-Wave pseudo-spectral solver, where each simulation returns a steady-state pressure field generated by a focused ultrasound transducer placed at realistic scalp locations. In addition to the dataset, we present DeepTFUS, a deep learning model that estimates normalized pressure fields directly from input 3D CT volumes and transducer position. The model extends a U-Net backbone with transducer-aware conditioning, incorporating Fourier-encoded position embeddings and MLP layers to create global transducer embeddings. These embeddings are fused with U-Net encoder features via feature-wise modulation, dynamic convolutions, and cross-attention mechanisms. The model is trained using a combination of spatially weighted and gradient-sensitive loss functions, enabling it to approximate high-fidelity wavefields. The TFUScapes dataset is publicly released to accelerate research at the intersection of computational acoustics, neurotechnology, and deep learning. The project page is available at https://github.com/CAMMA-public/TFUScapes.

  • 6 authors
·
May 19

M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models

Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.

  • 8 authors
·
Oct 29, 2023

Toward Advancing License Plate Super-Resolution in Real-World Scenarios: A Dataset and Benchmark

Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic applications. However, existing studies have relied on private datasets and simplistic degradation models. To address this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple sequential LR and high-resolution (HR) images per vehicle -- five of each -- and two state-of-the-art models for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP) strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world, adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at: https://valfride.github.io/nascimento2024toward/

  • 6 authors
·
May 9

Segment as You Wish -- Free-Form Language-Based Segmentation for Medical Images

Medical imaging is crucial for diagnosing a patient's health condition, and accurate segmentation of these images is essential for isolating regions of interest to ensure precise diagnosis and treatment planning. Existing methods primarily rely on bounding boxes or point-based prompts, while few have explored text-related prompts, despite clinicians often describing their observations and instructions in natural language. To address this gap, we first propose a RAG-based free-form text prompt generator, that leverages the domain corpus to generate diverse and realistic descriptions. Then, we introduce FLanS, a novel medical image segmentation model that handles various free-form text prompts, including professional anatomy-informed queries, anatomy-agnostic position-driven queries, and anatomy-agnostic size-driven queries. Additionally, our model also incorporates a symmetry-aware canonicalization module to ensure consistent, accurate segmentations across varying scan orientations and reduce confusion between the anatomical position of an organ and its appearance in the scan. FLanS is trained on a large-scale dataset of over 100k medical images from 7 public datasets. Comprehensive experiments demonstrate the model's superior language understanding and segmentation precision, along with a deep comprehension of the relationship between them, outperforming SOTA baselines on both in-domain and out-of-domain datasets.

  • 7 authors
·
Oct 2, 2024

TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations

Multimodal Large Language Models (MLLMs) have significantly improved performance across various image-language applications. Recently, there has been a growing interest in adapting image pre-trained MLLMs for video-related tasks. However, most efforts concentrate on enhancing the vision encoder and projector components, while the core part, Large Language Models (LLMs), remains comparatively under-explored. In this paper, we propose two strategies to enhance the model's capability in video understanding tasks by improving inter-layer attention computation in LLMs. Specifically, the first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE, which introduces temporal position information to strengthen the MLLM's temporal modeling capabilities while preserving the relative position relationships of both visual and text tokens. The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask, a simple yet effective method that broadens visual token interactions within and across video frames while maintaining the causal inference mechanism. Based on these proposed methods, we adapt LLaVA for video understanding tasks, naming it Temporal-Considered LLaVA (TC-LLaVA). Our TC-LLaVA achieves new state-of-the-art performance across various video understanding benchmarks with only supervised fine-tuning (SFT) on video-related datasets.

  • 8 authors
·
Sep 4, 2024

GPSToken: Gaussian Parameterized Spatially-adaptive Tokenization for Image Representation and Generation

Effective and efficient tokenization plays an important role in image representation and generation. Conventional methods, constrained by uniform 2D/1D grid tokenization, are inflexible to represent regions with varying shapes and textures and at different locations, limiting their efficacy of feature representation. In this work, we propose GPSToken, a novel Gaussian Parameterized Spatially-adaptive Tokenization framework, to achieve non-uniform image tokenization by leveraging parametric 2D Gaussians to dynamically model the shape, position, and textures of different image regions. We first employ an entropy-driven algorithm to partition the image into texture-homogeneous regions of variable sizes. Then, we parameterize each region as a 2D Gaussian (mean for position, covariance for shape) coupled with texture features. A specialized transformer is trained to optimize the Gaussian parameters, enabling continuous adaptation of position/shape and content-aware feature extraction. During decoding, Gaussian parameterized tokens are reconstructed into 2D feature maps through a differentiable splatting-based renderer, bridging our adaptive tokenization with standard decoders for end-to-end training. GPSToken disentangles spatial layout (Gaussian parameters) from texture features to enable efficient two-stage generation: structural layout synthesis using lightweight networks, followed by structure-conditioned texture generation. Experiments demonstrate the state-of-the-art performance of GPSToken, which achieves rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks using 128 tokens, respectively. Codes and models of GPSToken can be found at https://github.com/xtudbxk/GPSToken{https://github.com/xtudbxk/GPSToken}.

  • 4 authors
·
Sep 1

DreamEdit: Subject-driven Image Editing

Subject-driven image generation aims at generating images containing customized subjects, which has recently drawn enormous attention from the research community. However, the previous works cannot precisely control the background and position of the target subject. In this work, we aspire to fill the void and propose two novel subject-driven sub-tasks, i.e., Subject Replacement and Subject Addition. The new tasks are challenging in multiple aspects: replacing a subject with a customized one can change its shape, texture, and color, while adding a target subject to a designated position in a provided scene necessitates a context-aware posture. To conquer these two novel tasks, we first manually curate a new dataset DreamEditBench containing 22 different types of subjects, and 440 source images with different difficulty levels. We plan to host DreamEditBench as a platform and hire trained evaluators for standard human evaluation. We also devise an innovative method DreamEditor to resolve these tasks by performing iterative generation, which enables a smooth adaptation to the customized subject. In this project, we conduct automatic and human evaluations to understand the performance of DreamEditor and baselines on DreamEditBench. For Subject Replacement, we found that the existing models are sensitive to the shape and color of the original subject. The model failure rate will dramatically increase when the source and target subjects are highly different. For Subject Addition, we found that the existing models cannot easily blend the customized subjects into the background smoothly, leading to noticeable artifacts in the generated image. We hope DreamEditBench can become a standard platform to enable future investigations toward building more controllable subject-driven image editing. Our project homepage is https://dreameditbenchteam.github.io/.

  • 4 authors
·
Jun 21, 2023

TimeSuite: Improving MLLMs for Long Video Understanding via Grounded Tuning

Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in short video understanding. However, understanding long-form videos still remains challenging for MLLMs. This paper proposes TimeSuite, a collection of new designs to adapt the existing short-form video MLLMs for long video understanding, including a simple yet efficient framework to process long video sequence, a high-quality video dataset for grounded tuning of MLLMs, and a carefully-designed instruction tuning task to explicitly incorporate the grounding supervision in the traditional QA format. Specifically, based on VideoChat, we propose our long-video MLLM, coined as VideoChat-T, by implementing a token shuffling to compress long video tokens and introducing Temporal Adaptive Position Encoding (TAPE) to enhance the temporal awareness of visual representation. Meanwhile, we introduce the TimePro, a comprehensive grounding-centric instruction tuning dataset composed of 9 tasks and 349k high-quality grounded annotations. Notably, we design a new instruction tuning task type, called Temporal Grounded Caption, to peform detailed video descriptions with the corresponding time stamps prediction. This explicit temporal location prediction will guide MLLM to correctly attend on the visual content when generating description, and thus reduce the hallucination risk caused by the LLMs. Experimental results demonstrate that our TimeSuite provides a successful solution to enhance the long video understanding capability of short-form MLLM, achieving improvement of 5.6% and 6.8% on the benchmarks of Egoschema and VideoMME, respectively. In addition, VideoChat-T exhibits robust zero-shot temporal grounding capabilities, significantly outperforming the existing state-of-the-art MLLMs. After fine-tuning, it performs on par with the traditional supervised expert models.

  • 13 authors
·
Oct 25, 2024

Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning

Visual Parameter-Efficient Fine-Tuning (PEFT) has become a powerful alternative for full fine-tuning so as to adapt pre-trained vision models to downstream tasks, which only tunes a small number of parameters while freezing the vast majority ones to ease storage burden and optimization difficulty. However, existing PEFT methods introduce trainable parameters to the same positions across different tasks depending solely on human heuristics and neglect the domain gaps. To this end, we study where to introduce and how to allocate trainable parameters by proposing a novel Sensitivity-aware visual Parameter-efficient fine-Tuning (SPT) scheme, which adaptively allocates trainable parameters to task-specific important positions given a desired tunable parameter budget. Specifically, our SPT first quickly identifies the sensitive parameters that require tuning for a given task in a data-dependent way. Next, our SPT further boosts the representational capability for the weight matrices whose number of sensitive parameters exceeds a pre-defined threshold by utilizing existing structured tuning methods, e.g., LoRA [23] or Adapter [22], to replace directly tuning the selected sensitive parameters (unstructured tuning) under the budget. Extensive experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods and largely boosts their performance, e.g., SPT improves Adapter with supervised pre-trained ViT-B/16 backbone by 4.2% and 1.4% mean Top-1 accuracy, reaching SOTA performance on FGVC and VTAB-1k benchmarks, respectively. Source code is at https://github.com/ziplab/SPT

  • 5 authors
·
Mar 15, 2023

Dynamic and Static Context-aware LSTM for Multi-agent Motion Prediction

Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (e.g. pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spatial interactions represented by the positions of a group of pedestrians, while ignoring their temporal coherence (i.e. dependencies between different long trajectories), or by understanding the complicated scene layout (e.g. scene segmentation) to ensure safe navigation. However, unlike previous work that isolated the spatial interaction, temporal coherence, and scene layout, this paper designs a new mechanism, i.e., Dynamic and Static Context-aware Motion Predictor (DSCMP), to integrates these rich information into the long-short-term-memory (LSTM). It has three appealing benefits. (1) DSCMP models the dynamic interactions between agents by learning both their spatial positions and temporal coherence, as well as understanding the contextual scene layout.(2) Different from previous LSTM models that predict motions by propagating hidden features frame by frame, limiting the capacity to learn correlations between long trajectories, we carefully design a differentiable queue mechanism in DSCMP, which is able to explicitly memorize and learn the correlations between long trajectories. (3) DSCMP captures the context of scene by inferring latent variable, which enables multimodal predictions with meaningful semantic scene layout. Extensive experiments show that DSCMP outperforms state-of-the-art methods by large margins, such as 9.05\% and 7.62\% relative improvements on the ETH-UCY and SDD datasets respectively.

  • 4 authors
·
Aug 3, 2020

VLA-4D: Embedding 4D Awareness into Vision-Language-Action Models for SpatioTemporally Coherent Robotic Manipulation

Vision-language-action (VLA) models show potential for general robotic tasks, but remain challenging in spatiotemporally coherent manipulation, which requires fine-grained representations. Typically, existing methods embed 3D positions into visual representations to enhance the spatial precision of actions. However, these methods struggle to achieve temporally coherent control over action execution. In this work, we propose VLA-4D, a general VLA model with 4D awareness for spatiotemporally coherent robotic manipulation. Our model is guided by two key designs: 1) 4D-aware visual representation. We extract visual features, embed 1D time into 3D positions for 4D embeddings, and fuse them into a unified visual representation via a cross-attention mechanism. 2) Spatiotemporal action representation. We extend conventional spatial action representations with temporal information to enable the spatiotemporal planning, and align the multimodal representations into the LLM for spatiotemporal action prediction. Within this unified framework, the designed visual and action representations jointly make robotic manipulation spatially-smooth and temporally-coherent. In addition, we extend the VLA dataset with temporal action annotations for fine-tuning our model. Extensive experiments have been conducted to verify the superiority of our method across different tasks of robotic manipulation.

  • 3 authors
·
Nov 21 2

X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning

Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.

  • 3 authors
·
Oct 21

GraphCoT-VLA: A 3D Spatial-Aware Reasoning Vision-Language-Action Model for Robotic Manipulation with Ambiguous Instructions

Vision-language-action models have emerged as a crucial paradigm in robotic manipulation. However, existing VLA models exhibit notable limitations in handling ambiguous language instructions and unknown environmental states. Furthermore, their perception is largely constrained to static two-dimensional observations, lacking the capability to model three-dimensional interactions between the robot and its environment. To address these challenges, this paper proposes GraphCoT-VLA, an efficient end-to-end model. To enhance the model's ability to interpret ambiguous instructions and improve task planning, we design a structured Chain-of-Thought reasoning module that integrates high-level task understanding and planning, failed task feedback, and low-level imaginative reasoning about future object positions and robot actions. Additionally, we construct a real-time updatable 3D Pose-Object graph, which captures the spatial configuration of robot joints and the topological relationships between objects in 3D space, enabling the model to better understand and manipulate their interactions. We further integrates a dropout hybrid reasoning strategy to achieve efficient control outputs. Experimental results across multiple real-world robotic tasks demonstrate that GraphCoT-VLA significantly outperforms existing methods in terms of task success rate and response speed, exhibiting strong generalization and robustness in open environments and under uncertain instructions.

  • 6 authors
·
Aug 11

GeoTexDensifier: Geometry-Texture-Aware Densification for High-Quality Photorealistic 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has recently attracted wide attentions in various areas such as 3D navigation, Virtual Reality (VR) and 3D simulation, due to its photorealistic and efficient rendering performance. High-quality reconstrution of 3DGS relies on sufficient splats and a reasonable distribution of these splats to fit real geometric surface and texture details, which turns out to be a challenging problem. We present GeoTexDensifier, a novel geometry-texture-aware densification strategy to reconstruct high-quality Gaussian splats which better comply with the geometric structure and texture richness of the scene. Specifically, our GeoTexDensifier framework carries out an auxiliary texture-aware densification method to produce a denser distribution of splats in fully textured areas, while keeping sparsity in low-texture regions to maintain the quality of Gaussian point cloud. Meanwhile, a geometry-aware splitting strategy takes depth and normal priors to guide the splitting sampling and filter out the noisy splats whose initial positions are far from the actual geometric surfaces they aim to fit, under a Validation of Depth Ratio Change checking. With the help of relative monocular depth prior, such geometry-aware validation can effectively reduce the influence of scattered Gaussians to the final rendering quality, especially in regions with weak textures or without sufficient training views. The texture-aware densification and geometry-aware splitting strategies are fully combined to obtain a set of high-quality Gaussian splats. We experiment our GeoTexDensifier framework on various datasets and compare our Novel View Synthesis results to other state-of-the-art 3DGS approaches, with detailed quantitative and qualitative evaluations to demonstrate the effectiveness of our method in producing more photorealistic 3DGS models.

  • 7 authors
·
Dec 21, 2024

DropPos: Pre-Training Vision Transformers by Reconstructing Dropped Positions

As it is empirically observed that Vision Transformers (ViTs) are quite insensitive to the order of input tokens, the need for an appropriate self-supervised pretext task that enhances the location awareness of ViTs is becoming evident. To address this, we present DropPos, a novel pretext task designed to reconstruct Dropped Positions. The formulation of DropPos is simple: we first drop a large random subset of positional embeddings and then the model classifies the actual position for each non-overlapping patch among all possible positions solely based on their visual appearance. To avoid trivial solutions, we increase the difficulty of this task by keeping only a subset of patches visible. Additionally, considering there may be different patches with similar visual appearances, we propose position smoothing and attentive reconstruction strategies to relax this classification problem, since it is not necessary to reconstruct their exact positions in these cases. Empirical evaluations of DropPos show strong capabilities. DropPos outperforms supervised pre-training and achieves competitive results compared with state-of-the-art self-supervised alternatives on a wide range of downstream benchmarks. This suggests that explicitly encouraging spatial reasoning abilities, as DropPos does, indeed contributes to the improved location awareness of ViTs. The code is publicly available at https://github.com/Haochen-Wang409/DropPos.

  • 6 authors
·
Sep 7, 2023