new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks

Learning curve extrapolation aims to predict model performance in later epochs of training, based on the performance in earlier epochs. In this work, we argue that, while the inherent uncertainty in the extrapolation of learning curves warrants a Bayesian approach, existing methods are (i) overly restrictive, and/or (ii) computationally expensive. We describe the first application of prior-data fitted neural networks (PFNs) in this context. A PFN is a transformer, pre-trained on data generated from a prior, to perform approximate Bayesian inference in a single forward pass. We propose LC-PFN, a PFN trained to extrapolate 10 million artificial right-censored learning curves generated from a parametric prior proposed in prior art using MCMC. We demonstrate that LC-PFN can approximate the posterior predictive distribution more accurately than MCMC, while being over 10 000 times faster. We also show that the same LC-PFN achieves competitive performance extrapolating a total of 20 000 real learning curves from four learning curve benchmarks (LCBench, NAS-Bench-201, Taskset, and PD1) that stem from training a wide range of model architectures (MLPs, CNNs, RNNs, and Transformers) on 53 different datasets with varying input modalities (tabular, image, text, and protein data). Finally, we investigate its potential in the context of model selection and find that a simple LC-PFN based predictive early stopping criterion obtains 2 - 6x speed-ups on 45 of these datasets, at virtually no overhead.

  • 4 authors
·
Oct 31, 2023

Martingale Posterior Neural Processes

A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.

  • 5 authors
·
Apr 19, 2023

Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation

While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.

  • 4 authors
·
Feb 4

All You Need is a Good Functional Prior for Bayesian Deep Learning

The Bayesian treatment of neural networks dictates that a prior distribution is specified over their weight and bias parameters. This poses a challenge because modern neural networks are characterized by a large number of parameters, and the choice of these priors has an uncontrolled effect on the induced functional prior, which is the distribution of the functions obtained by sampling the parameters from their prior distribution. We argue that this is a hugely limiting aspect of Bayesian deep learning, and this work tackles this limitation in a practical and effective way. Our proposal is to reason in terms of functional priors, which are easier to elicit, and to "tune" the priors of neural network parameters in a way that they reflect such functional priors. Gaussian processes offer a rigorous framework to define prior distributions over functions, and we propose a novel and robust framework to match their prior with the functional prior of neural networks based on the minimization of their Wasserstein distance. We provide vast experimental evidence that coupling these priors with scalable Markov chain Monte Carlo sampling offers systematically large performance improvements over alternative choices of priors and state-of-the-art approximate Bayesian deep learning approaches. We consider this work a considerable step in the direction of making the long-standing challenge of carrying out a fully Bayesian treatment of neural networks, including convolutional neural networks, a concrete possibility.

  • 4 authors
·
Nov 25, 2020

Transformers Can Do Bayesian Inference

Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.

  • 5 authors
·
Dec 20, 2021

Scale Mixtures of Neural Network Gaussian Processes

Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.

  • 4 authors
·
Jul 3, 2021

Batch Predictive Inference

Constructing prediction sets with coverage guarantees for unobserved outcomes is a core problem in modern statistics. Methods for predictive inference have been developed for a wide range of settings, but usually only consider test data points one at a time. Here we study the problem of distribution-free predictive inference for a batch of multiple test points, aiming to construct prediction sets for functions -- such as the mean or median -- of any number of unobserved test datapoints. This setting includes constructing simultaneous prediction sets with a high probability of coverage, and selecting datapoints satisfying a specified condition while controlling the number of false claims. For the general task of predictive inference on a function of a batch of test points, we introduce a methodology called batch predictive inference (batch PI), and provide a distribution-free coverage guarantee under exchangeability of the calibration and test data. Batch PI requires the quantiles of a rank ordering function defined on certain subsets of ranks. While computing these quantiles is NP-hard in general, we show that it can be done efficiently in many cases of interest, most notably for batch score functions with a compositional structure -- which includes examples of interest such as the mean -- via a dynamic programming algorithm that we develop. Batch PI has advantages over naive approaches (such as partitioning the calibration data or directly extending conformal prediction) in many settings, as it can deliver informative prediction sets even using small calibration sample sizes. We illustrate that our procedures provide informative inference across the use cases mentioned above, through experiments on both simulated data and a drug-target interaction dataset.

  • 3 authors
·
Sep 20, 2024

OptDist: Learning Optimal Distribution for Customer Lifetime Value Prediction

Customer Lifetime Value (CLTV) prediction is a critical task in business applications. Accurately predicting CLTV is challenging in real-world business scenarios, as the distribution of CLTV is complex and mutable. Firstly, there is a large number of users without any consumption consisting of a long-tailed part that is too complex to fit. Secondly, the small set of high-value users spent orders of magnitude more than a typical user leading to a wide range of the CLTV distribution which is hard to capture in a single distribution. Existing approaches for CLTV estimation either assume a prior probability distribution and fit a single group of distribution-related parameters for all samples, or directly learn from the posterior distribution with manually predefined buckets in a heuristic manner. However, all these methods fail to handle complex and mutable distributions. In this paper, we propose a novel optimal distribution selection model OptDist for CLTV prediction, which utilizes an adaptive optimal sub-distribution selection mechanism to improve the accuracy of complex distribution modeling. Specifically, OptDist trains several candidate sub-distribution networks in the distribution learning module (DLM) for modeling the probability distribution of CLTV. Then, a distribution selection module (DSM) is proposed to select the sub-distribution for each sample, thus making the selection automatically and adaptively. Besides, we design an alignment mechanism that connects both modules, which effectively guides the optimization. We conduct extensive experiments on both two public and one private dataset to verify that OptDist outperforms state-of-the-art baselines. Furthermore, OptDist has been deployed on a large-scale financial platform for customer acquisition marketing campaigns and the online experiments also demonstrate the effectiveness of OptDist.

  • 7 authors
·
Aug 16, 2024

Preserving Statistical Validity in Adaptive Data Analysis

A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.

  • 6 authors
·
Nov 10, 2014

Deep Probability Estimation

Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.

  • 11 authors
·
Nov 20, 2021

A likelihood approach to nonparametric estimation of a singular distribution using deep generative models

We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.

  • 4 authors
·
May 9, 2021

Predictive Multiplicity in Probabilistic Classification

Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.

  • 3 authors
·
Jun 2, 2022

A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

  • 2 authors
·
Nov 4, 2018

On Sequential Bayesian Inference for Continual Learning

Sequential Bayesian inference can be used for continual learning to prevent catastrophic forgetting of past tasks and provide an informative prior when learning new tasks. We revisit sequential Bayesian inference and test whether having access to the true posterior is guaranteed to prevent catastrophic forgetting in Bayesian neural networks. To do this we perform sequential Bayesian inference using Hamiltonian Monte Carlo. We propagate the posterior as a prior for new tasks by fitting a density estimator on Hamiltonian Monte Carlo samples. We find that this approach fails to prevent catastrophic forgetting demonstrating the difficulty in performing sequential Bayesian inference in neural networks. From there we study simple analytical examples of sequential Bayesian inference and CL and highlight the issue of model misspecification which can lead to sub-optimal continual learning performance despite exact inference. Furthermore, we discuss how task data imbalances can cause forgetting. From these limitations, we argue that we need probabilistic models of the continual learning generative process rather than relying on sequential Bayesian inference over Bayesian neural network weights. In this vein, we also propose a simple baseline called Prototypical Bayesian Continual Learning, which is competitive with state-of-the-art Bayesian continual learning methods on class incremental continual learning vision benchmarks.

  • 5 authors
·
Jan 4, 2023

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

  • 2 authors
·
Jun 16, 2023

A Tutorial on Bayesian Optimization

Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.

  • 1 authors
·
Jul 8, 2018

Domain constraints improve risk prediction when outcome data is missing

Machine learning models are often trained to predict the outcome resulting from a human decision. For example, if a doctor decides to test a patient for disease, will the patient test positive? A challenge is that historical decision-making determines whether the outcome is observed: we only observe test outcomes for patients doctors historically tested. Untested patients, for whom outcomes are unobserved, may differ from tested patients along observed and unobserved dimensions. We propose a Bayesian model class which captures this setting. The purpose of the model is to accurately estimate risk for both tested and untested patients. Estimating this model is challenging due to the wide range of possibilities for untested patients. To address this, we propose two domain constraints which are plausible in health settings: a prevalence constraint, where the overall disease prevalence is known, and an expertise constraint, where the human decision-maker deviates from purely risk-based decision-making only along a constrained feature set. We show theoretically and on synthetic data that domain constraints improve parameter inference. We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses, its inferred testing policy captures known public health policies, and it can identify suboptimalities in test allocation. Though our case study is in healthcare, our analysis reveals a general class of domain constraints which can improve model estimation in many settings.

  • 3 authors
·
Dec 6, 2023

Predicting Rare Events by Shrinking Towards Proportional Odds

Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.

  • 2 authors
·
May 29, 2023

Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates

Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.

  • 3 authors
·
Nov 30, 2022

Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach

Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.

  • 5 authors
·
Jun 4

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second

We present TabPFN, a trained Transformer that can do supervised classification for small tabular datasets in less than a second, needs no hyperparameter tuning and is competitive with state-of-the-art classification methods. TabPFN performs in-context learning (ICL), it learns to make predictions using sequences of labeled examples (x, f(x)) given in the input, without requiring further parameter updates. TabPFN is fully entailed in the weights of our network, which accepts training and test samples as a set-valued input and yields predictions for the entire test set in a single forward pass. TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once, to approximate Bayesian inference on synthetic datasets drawn from our prior. This prior incorporates ideas from causal reasoning: It entails a large space of structural causal models with a preference for simple structures. On the 18 datasets in the OpenML-CC18 suite that contain up to 1 000 training data points, up to 100 purely numerical features without missing values, and up to 10 classes, we show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to 230times speedup. This increases to a 5 700times speedup when using a GPU. We also validate these results on an additional 67 small numerical datasets from OpenML. We provide all our code, the trained TabPFN, an interactive browser demo and a Colab notebook at https://github.com/automl/TabPFN.

  • 4 authors
·
Jul 5, 2022

The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well

A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.

  • 3 authors
·
Jun 9

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

  • 5 authors
·
Mar 21, 2022

AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction

Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.

  • 6 authors
·
Nov 22, 2022

MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.

  • 1 authors
·
May 19, 2021

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

  • 5 authors
·
Feb 26, 2021

A Study of Bayesian Neural Network Surrogates for Bayesian Optimization

Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.

  • 3 authors
·
May 31, 2023

Towards Better Understanding of In-Context Learning Ability from In-Context Uncertainty Quantification

Predicting simple function classes has been widely used as a testbed for developing theory and understanding of the trained Transformer's in-context learning (ICL) ability. In this paper, we revisit the training of Transformers on linear regression tasks, and different from all the existing literature, we consider a bi-objective prediction task of predicting both the conditional expectation E[Y|X] and the conditional variance Var(Y|X). This additional uncertainty quantification objective provides a handle to (i) better design out-of-distribution experiments to distinguish ICL from in-weight learning (IWL) and (ii) make a better separation between the algorithms with and without using the prior information of the training distribution. Theoretically, we show that the trained Transformer reaches near Bayes-optimum, suggesting the usage of the information of the training distribution. Our method can be extended to other cases. Specifically, with the Transformer's context window S, we prove a generalization bound of mathcal{O}(min{S, T/(n T)}) on n tasks with sequences of length T, providing sharper analysis compared to previous results of mathcal{O}(1/n). Empirically, we illustrate that while the trained Transformer behaves as the Bayes-optimal solution as a natural consequence of supervised training in distribution, it does not necessarily perform a Bayesian inference when facing task shifts, in contrast to the equivalence between these two proposed in many existing literature. We also demonstrate the trained Transformer's ICL ability over covariates shift and prompt-length shift and interpret them as a generalization over a meta distribution.

  • 4 authors
·
May 23, 2024

PIGEON: Predicting Image Geolocations

Planet-scale image geolocalization remains a challenging problem due to the diversity of images originating from anywhere in the world. Although approaches based on vision transformers have made significant progress in geolocalization accuracy, success in prior literature is constrained to narrow distributions of images of landmarks, and performance has not generalized to unseen places. We present a new geolocalization system that combines semantic geocell creation, multi-task contrastive pretraining, and a novel loss function. Additionally, our work is the first to perform retrieval over location clusters for guess refinements. We train two models for evaluations on street-level data and general-purpose image geolocalization; the first model, PIGEON, is trained on data from the game of Geoguessr and is capable of placing over 40% of its guesses within 25 kilometers of the target location globally. We also develop a bot and deploy PIGEON in a blind experiment against humans, ranking in the top 0.01% of players. We further challenge one of the world's foremost professional Geoguessr players to a series of six matches with millions of viewers, winning all six games. Our second model, PIGEOTTO, differs in that it is trained on a dataset of images from Flickr and Wikipedia, achieving state-of-the-art results on a wide range of image geolocalization benchmarks, outperforming the previous SOTA by up to 7.7 percentage points on the city accuracy level and up to 38.8 percentage points on the country level. Our findings suggest that PIGEOTTO is the first image geolocalization model that effectively generalizes to unseen places and that our approach can pave the way for highly accurate, planet-scale image geolocalization systems. Our code is available on GitHub.

  • 4 authors
·
Jul 11, 2023 1

Variational Autoencoders for Feature Exploration and Malignancy Prediction of Lung Lesions

Lung cancer is responsible for 21% of cancer deaths in the UK and five-year survival rates are heavily influenced by the stage the cancer was identified at. Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans. However, this evidence has not translated into clinical practice with one barrier being a lack of interpretable models. This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions. Proposed models were trained on lesions extracted from 3D CT scans in the LIDC-IDRI public dataset. Latent vector representations of 2D slices produced by the VAEs were explored through clustering to justify their quality and used in an MLP classifier model for lung cancer diagnosis, the best model achieved state-of-the-art metrics of AUC 0.98 and 93.1% accuracy. Cluster analysis shows the VAE latent space separates the dataset of malignant and benign lesions based on meaningful feature components including tumour size, shape, patient and malignancy class. We also include a comparative analysis of the standard Gaussian VAE (GVAE) and the more recent Dirichlet VAE (DirVAE), which replaces the prior with a Dirichlet distribution to encourage a more explainable latent space with disentangled feature representation. Finally, we demonstrate the potential for latent space traversals corresponding to clinically meaningful feature changes.

  • 4 authors
·
Nov 27, 2023

OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport

Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.

  • 5 authors
·
Jun 25

The Consciousness Prior

A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

  • 1 authors
·
Sep 25, 2017

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.

  • 4 authors
·
Mar 29, 2022

Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective

The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.

  • 5 authors
·
Feb 24 2

DEUP: Direct Epistemic Uncertainty Prediction

Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.

  • 8 authors
·
Feb 16, 2021

Mol-LLM: Multimodal Generalist Molecular LLM with Improved Graph Utilization

Recent advances in large language models (LLMs) have led to models that tackle diverse molecular tasks, such as chemical reaction prediction and molecular property prediction. Large-scale molecular instruction-tuning datasets have enabled sequence-only (e.g., SMILES or SELFIES) generalist molecular LLMs, and researchers are now exploring multimodal approaches that incorporate molecular structural information for further gains. However, a genuinely multimodal, generalist LLM that covers a broad spectrum of molecular tasks has yet to be fully investigated. We observe that naive next token prediction training ignores graph-structural information, limiting an LLM's ability to exploit molecular graphs. To address this, we propose (i) Molecular structure Preference Optimization (MolPO), which facilitates graph usage by optimizing preferences between pairs of correct and perturbed molecular structures, and (ii) an advanced graph encoder with a tailored pre-training strategy to improve the effect of graph utilization by MolPO. Building on these contributions, we introduce Mol-LLM, the first multimodal generalist model that (a) handles a broad spectrum of molecular tasks among molecular LLMs, (b) explicitly leverages molecular-structure information, and (c) takes advantage of extensive instruction tuning. Mol-LLM attains state-of-the-art or comparable results across the most comprehensive molecular-LLM benchmark-even on out-of-distribution datasets for reaction and property prediction, where it surpasses prior generalist molecular LLMs by a large margin.

  • 9 authors
·
Feb 4

Similarity-Distance-Magnitude Universal Verification

We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting SDM activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer SDM activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from SDM calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct SDM networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.

  • 1 authors
·
Feb 27

CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding

Predictive Coding (PC) is a theoretical framework in cognitive science suggesting that the human brain processes cognition through spatiotemporal prediction of the visual world. Existing studies have developed spatiotemporal prediction neural networks based on the PC theory, emulating its two core mechanisms: Correcting predictions from residuals and hierarchical learning. However, these models do not show the enhancement of prediction skills on real-world forecasting tasks and ignore the Precision Weighting mechanism of PC theory. The precision weighting mechanism posits that the brain allocates more attention to signals with lower precision, contributing to the cognitive ability of human brains. This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM), which demonstrate the connection between diffusion probabilistic models and PC theory. CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models. We experimentally show that the precision weights effectively estimate the data predictability. We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and ERA surface wind datasets. Our results demonstrate that CogDPM outperforms both existing domain-specific operational models and general deep prediction models by providing more proficient forecasting.

  • 5 authors
·
May 3, 2024

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

  • 5 authors
·
Jul 1, 2021

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts

While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.

  • 9 authors
·
Mar 4 2

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

  • 2 authors
·
Jan 3, 2024

Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs

Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.

  • 4 authors
·
Feb 13, 2024

RAVEN: RAnking and Validation of ExoplaNets

We present RAVEN, a newly developed vetting and validation pipeline for TESS exoplanet candidates. The pipeline employs a Bayesian framework to derive the posterior probability of a candidate being a planet against a set of False Positive (FP) scenarios, through the use of a Gradient Boosted Decision Tree and a Gaussian Process classifier, trained on comprehensive synthetic training sets of simulated planets and 8 astrophysical FP scenarios injected into TESS lightcurves. These training sets allow large scale candidate vetting and performance verification against individual FP scenarios. A Non-Simulated FP training set consisting of real TESS candidates caused primarily by stellar variability and systematic noise is also included. The machine learning derived probabilities are combined with scenario specific prior probabilities, including the candidates' positional probabilities, to compute the final posterior probabilities. Candidates with a planetary posterior probability greater than 99% against each FP scenario and whose implied planetary radius is less than 8R_{oplus} are considered to be statistically validated by the pipeline. In this first version, the pipeline has been developed for candidates with a lightcurve released from the TESS Science Processing Operations Centre, an orbital period between 0.5 and 16 days and a transit depth greater than 300ppm. The pipeline obtained area-under-curve (AUC) scores > 97% on all FP scenarios and > 99% on all but one. Testing on an independent external sample of 1361 pre-classified TOIs, the pipeline achieved an overall accuracy of 91%, demonstrating its effectiveness for automated ranking of TESS candidates. For a probability threshold of 0.9 the pipeline reached a precision of 97% with a recall score of 66% on these TOIs. The RAVEN pipeline is publicly released as a cloud-hosted app, making it easily accessible to the community.

  • 8 authors
·
Sep 22

Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes

Temporal Point Processes (TPP) are probabilistic generative frameworks. They model discrete event sequences localized in continuous time. Generally, real-life events reveal descriptive information, known as marks. Marked TPPs model time and marks of the event together for practical relevance. Conditioned on past events, marked TPPs aim to learn the joint distribution of the time and the mark of the next event. For simplicity, conditionally independent TPP models assume time and marks are independent given event history. They factorize the conditional joint distribution of time and mark into the product of individual conditional distributions. This structural limitation in the design of TPP models hurt the predictive performance on entangled time and mark interactions. In this work, we model the conditional inter-dependence of time and mark to overcome the limitations of conditionally independent models. We construct a multivariate TPP conditioning the time distribution on the current event mark in addition to past events. Besides the conventional intensity-based models for conditional joint distribution, we also draw on flexible intensity-free TPP models from the literature. The proposed TPP models outperform conditionally independent and dependent models in standard prediction tasks. Our experimentation on various datasets with multiple evaluation metrics highlights the merit of the proposed approach.

  • 4 authors
·
Oct 27, 2022

Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling

We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.

  • 3 authors
·
Apr 30, 2021

An Efficient Tester-Learner for Halfspaces

We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.

  • 4 authors
·
Feb 28, 2023