Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUnified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
Automatic Functional Differentiation in JAX
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as a generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable. The source code of this work is released at https://github.com/sail-sg/autofd .
Memory Augmented Large Language Models are Computationally Universal
We show that transformer-based large language models are computationally universal when augmented with an external memory. Any deterministic language model that conditions on strings of bounded length is equivalent to a finite automaton, hence computationally limited. However, augmenting such models with a read-write memory creates the possibility of processing arbitrarily large inputs and, potentially, simulating any algorithm. We establish that an existing large language model, Flan-U-PaLM 540B, can be combined with an associative read-write memory to exactly simulate the execution of a universal Turing machine, U_{15,2}. A key aspect of the finding is that it does not require any modification of the language model weights. Instead, the construction relies solely on designing a form of stored instruction computer that can subsequently be programmed with a specific set of prompts.
NoFunEval: Funny How Code LMs Falter on Requirements Beyond Functional Correctness
Existing evaluation benchmarks of language models of code (code LMs) focus almost exclusively on whether the LMs can generate functionally-correct code. In real-world software engineering, developers think beyond functional correctness. They have requirements on "how" a functionality should be implemented to meet overall system design objectives like efficiency, security, and maintainability. They would also trust the code LMs more if the LMs demonstrate robust understanding of requirements and code semantics. We propose a new benchmark NoFunEval to evaluate code LMs on non-functional requirements and simple classification instances for both functional and non-functional requirements. We propose a prompting method, Coding Concepts (CoCo), as a way for a developer to communicate the domain knowledge to the LMs. We conduct an extensive evaluation of twenty-two code LMs. Our finding is that they generally falter when tested on our benchmark, hinting at fundamental blindspots in their training setups. Surprisingly, even the classification accuracy on functional-correctness instances derived from the popular HumanEval benchmark is low, calling in question the depth of their comprehension and the source of their success in generating functionally-correct code in the first place. We will release our benchmark and evaluation scripts publicly at https://aka.ms/NoFunEval.
A Probabilistic Dependent Type System based on Non-Deterministic Beta Reduction
We introduce Probabilistic Dependent Type Systems (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta reduction. Further, we derive a probabilistic logic from the PDTS introduced as a direct result of the Curry-Howard isomorphism. The probabilistic logic derived is shown to provide a universal representation for finite discrete distributions.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
Expectation-Complete Graph Representations with Homomorphisms
We investigate novel random graph embeddings that can be computed in expected polynomial time and that are able to distinguish all non-isomorphic graphs in expectation. Previous graph embeddings have limited expressiveness and either cannot distinguish all graphs or cannot be computed efficiently for every graph. To be able to approximate arbitrary functions on graphs, we are interested in efficient alternatives that become arbitrarily expressive with increasing resources. Our approach is based on Lov\'asz' characterisation of graph isomorphism through an infinite dimensional vector of homomorphism counts. Our empirical evaluation shows competitive results on several benchmark graph learning tasks.
Category Theory for Quantum Natural Language Processing
This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.
Compiling C to Safe Rust, Formalized
The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages. We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations. We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
Local Success Does Not Compose: Benchmarking Large Language Models for Compositional Formal Verification
We introduce DafnyCOMP, a benchmark for evaluating large language models (LLMs) on compositional specification generation in Dafny. Unlike prior benchmarks that focus on single-function tasks, DafnyCOMP targets programs composed of multiple interacting functions with data dependencies, requiring reasoning across component boundaries. The benchmark consists of 300 automatically synthesized multi-function programs. We evaluate several state-of-the-art LLM families and find that, while they perform well on single-function verification, their performance drops sharply on compositional tasks. Analysis reveals systematic failures in cross-functional reasoning, including fragile specifications, misalignment between implementations and proofs, and unstable reasoning. DafnyCOMP thus provides a diagnostic tool for measuring progress toward reliable, verifiable, and compositional code generation with LLMs.
Using Rewrite Strategies for Efficient Functional Automatic Differentiation
Automatic Differentiation (AD) has become a dominant technique in ML. AD frameworks have first been implemented for imperative languages using tapes. Meanwhile, functional implementations of AD have been developed, often based on dual numbers, which are close to the formal specification of differentiation and hence easier to prove correct. But these papers have focussed on correctness not efficiency. Recently, it was shown how an approach using dual numbers could be made efficient through the right optimizations. Optimizations are highly dependent on order, as one optimization can enable another. It can therefore be useful to have fine-grained control over the scheduling of optimizations. One method expresses compiler optimizations as rewrite rules, whose application can be combined and controlled using strategy languages. Previous work describes the use of term rewriting and strategies to generate high-performance code in a compiler for a functional language. In this work, we implement dual numbers AD in a functional array programming language using rewrite rules and strategy combinators for optimization. We aim to combine the elegance of differentiation using dual numbers with a succinct expression of the optimization schedule using a strategy language. We give preliminary evidence suggesting the viability of the approach on a micro-benchmark.
Logical Languages Accepted by Transformer Encoders with Hard Attention
We contribute to the study of formal languages that can be recognized by transformer encoders. We focus on two self-attention mechanisms: (1) UHAT (Unique Hard Attention Transformers) and (2) AHAT (Average Hard Attention Transformers). UHAT encoders are known to recognize only languages inside the circuit complexity class {sf AC}^0, i.e., accepted by a family of poly-sized and depth-bounded boolean circuits with unbounded fan-ins. On the other hand, AHAT encoders can recognize languages outside {sf AC}^0), but their expressive power still lies within the bigger circuit complexity class {sf TC}^0, i.e., {sf AC}^0-circuits extended by majority gates. We first show a negative result that there is an {sf AC}^0-language that cannot be recognized by an UHAT encoder. On the positive side, we show that UHAT encoders can recognize a rich fragment of {sf AC}^0-languages, namely, all languages definable in first-order logic with arbitrary unary numerical predicates. This logic, includes, for example, all regular languages from {sf AC}^0. We then show that AHAT encoders can recognize all languages of our logic even when we enrich it with counting terms. We apply these results to derive new results on the expressive power of UHAT and AHAT up to permutation of letters (a.k.a. Parikh images).
Hammer: Robust Function-Calling for On-Device Language Models via Function Masking
Large language models have demonstrated impressive value in performing as autonomous agents when equipped with external tools and API calls. Nonetheless, effectively harnessing their potential for executing complex tasks crucially relies on enhancements in their function calling capabilities. This paper identifies a critical gap in existing function calling models, where performance varies significantly across benchmarks, often due to being misled by specific naming conventions. To address such an issue, we introduce Hammer, a novel family of foundation models specifically engineered for on-device function calling. Hammer employs an augmented dataset that enhances models' sensitivity to irrelevant functions and incorporates function masking techniques to minimize misleading. Our empirical evaluations reveal that Hammer not only outperforms larger models but also demonstrates robust generalization across diverse benchmarks, achieving sota results. Our open source contributions include a specialized dataset for irrelevance detection, a tuning framework for enhanced generalization, and the Hammer models, establishing a new standard for function calling performance.
CodeScore: Evaluating Code Generation by Learning Code Execution
A proper code evaluation metric (CEM) profoundly impacts the evolution of code generation, which is an important research field in NLP and software engineering. Prevailing match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) suffer from two significant drawbacks. 1. They primarily measure the surface differences between codes without considering their functional equivalence. However, functional equivalence is pivotal in evaluating the effectiveness of code generation, as different codes can perform identical operations. 2. They are predominantly designed for the Ref-only input format. However, code evaluation necessitates versatility in input formats. Aside from Ref-only, there are NL-only and Ref\&NL formats, which existing match-based CEMs cannot effectively accommodate. In this paper, we propose CodeScore, a large language model (LLM)-based CEM, which estimates the functional correctness of generated code on three input types. To acquire CodeScore, we present UniCE, a unified code generation learning framework, for LLMs to learn code execution (i.e., learning PassRatio and Executability of generated code) with unified input. Extensive experimental results on multiple code evaluation datasets demonstrate that CodeScore absolutely improves up to 58.87% correlation with functional correctness compared to other CEMs, achieves state-of-the-art performance, and effectively handles three input formats.
Proof-irrelevant model of CC with predicative induction and judgmental equality
We present a set-theoretic, proof-irrelevant model for Calculus of Constructions (CC) with predicative induction and judgmental equality in Zermelo-Fraenkel set theory with an axiom for countably many inaccessible cardinals. We use Aczel's trace encoding which is universally defined for any function type, regardless of being impredicative. Direct and concrete interpretations of simultaneous induction and mutually recursive functions are also provided by extending Dybjer's interpretations on the basis of Aczel's rule sets. Our model can be regarded as a higher-order generalization of the truth-table methods. We provide a relatively simple consistency proof of type theory, which can be used as the basis for a theorem prover.
lambeq: An Efficient High-Level Python Library for Quantum NLP
We present lambeq, the first high-level Python library for Quantum Natural Language Processing (QNLP). The open-source toolkit offers a detailed hierarchy of modules and classes implementing all stages of a pipeline for converting sentences to string diagrams, tensor networks, and quantum circuits ready to be used on a quantum computer. lambeq supports syntactic parsing, rewriting and simplification of string diagrams, ansatz creation and manipulation, as well as a number of compositional models for preparing quantum-friendly representations of sentences, employing various degrees of syntax sensitivity. We present the generic architecture and describe the most important modules in detail, demonstrating the usage with illustrative examples. Further, we test the toolkit in practice by using it to perform a number of experiments on simple NLP tasks, implementing both classical and quantum pipelines.
Universal Length Generalization with Turing Programs
Length generalization refers to the ability to extrapolate from short training sequences to long test sequences and is a challenge for current large language models. While prior work has proposed some architecture or data format changes to achieve length generalization, these proposals typically apply to a limited set of tasks. Building on prior scratchpad and Chain-of-Thought (CoT) techniques, we propose Turing Programs, a novel CoT strategy that decomposes an algorithmic task into steps mimicking the computation of a Turing Machine. This framework is both universal, as it can accommodate any algorithmic task, and simple, requiring only copying text from the context with small modifications. We show that by using Turing Programs, we obtain robust length generalization on a range of algorithmic tasks: addition, multiplication and in-context SGD. We then demonstrate that transformers achieve length generalization on random Turing Programs, suggesting that length generalization is possible for any algorithmic task. Finally, we theoretically prove that transformers can implement Turing Programs, constructing a simple RASP (Weiss et al.) program that simulates an arbitrary Turing machine.
PLSEMANTICSBENCH: Large Language Models As Programming Language Interpreters
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.
Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation
Despite recent progress made by large language models in code generation, they still struggle with programs that meet complex requirements. Recent work utilizes plan-and-solve decomposition to decrease the complexity and leverage self-tests to refine the generated program. Yet, planning deep-inside requirements in advance can be challenging, and the tests need to be accurate to accomplish self-improvement. To this end, we propose FunCoder, a code generation framework incorporating the divide-and-conquer strategy with functional consensus. Specifically, FunCoder recursively branches off sub-functions as smaller goals during code generation, represented by a tree hierarchy. These sub-functions are then composited to attain more complex objectives. Additionally, we designate functions via a consensus formed by identifying similarities in program behavior, mitigating error propagation. FunCoder outperforms state-of-the-art methods by +9.8% on average in HumanEval, MBPP, xCodeEval and MATH with GPT-3.5 and GPT-4. Moreover, our method demonstrates superiority on smaller models: With FunCoder, StableCode-3b surpasses GPT-3.5 by +18.6% and achieves 97.7% of GPT-4's performance on HumanEval. Further analysis reveals that our proposed dynamic function decomposition is capable of handling complex requirements, and the functional consensus prevails over self-testing in correctness evaluation.
any4: Learned 4-bit Numeric Representation for LLMs
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
IterLara: A Turing Complete Algebra for Big Data, AI, Scientific Computing, and Database
Lara is a key-value algebra that aims at unifying linear and relational algebra with three types of operation abstraction. The study of Lara's expressive ability reports that it can represent relational algebra and most linear algebra operations. However, several essential computations, such as matrix inversion and determinant, cannot be expressed in Lara. Lara cannot represent global and iterative computation, either. This article proposes IterLara, extending Lara with iterative operators, to provide an algebraic model that unifies operations in general-purpose computing, like big data, AI, scientific computing, and database. We study the expressive ability of Lara and IterLara and prove that IterLara with aggregation functions can represent matrix inversion, determinant. Besides, we demonstrate that IterLara with no limitation of function utility is Turing complete. We also propose the Operation Count (OP) as a metric of computation amount for IterLara and ensure that the OP metric is in accordance with the existing computation metrics.
Compositional Semantics for Probabilistic Programs with Exact Conditioning
We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.
Learners' Languages
In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets.
Constrained Decoding of Diffusion LLMs with Context-Free Grammars
Large language models (LLMs) have shown promising performance across diverse domains. Many practical applications of LLMs, such as code completion and structured data extraction, require adherence to syntactic constraints specified by a formal language. Yet, due to their probabilistic nature, LLM output is not guaranteed to adhere to such formal languages. Prior work has proposed constrained decoding as a means to restrict LLM generation to particular formal languages. However, existing works are not applicable to the emerging paradigm of diffusion LLMs, when used in practical scenarios such as the generation of formally correct C++ or JSON output. In this paper we address this challenge and present the first constrained decoding method for diffusion models, one that can handle formal languages captured by context-free grammars. We begin by reducing constrained decoding to the more general additive infilling problem, which asks whether a partial output can be completed to a valid word in the target language. This problem also naturally subsumes the previously unaddressed multi-region infilling constrained decoding. We then reduce this problem to the task of deciding whether the intersection of the target language and a regular language is empty and present an efficient algorithm to solve it for context-free languages. Empirical results on various applications, such as C++ code infilling and structured data extraction in JSON, demonstrate that our method achieves near-perfect syntactic correctness while consistently preserving or improving functional correctness. Importantly, our efficiency optimizations ensure that the computational overhead remains practical.
Instruction-Following Evaluation in Function Calling for Large Language Models
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.
Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion
This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models' behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics -- one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-the-art large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.
Exploring Language Model's Code Generation Ability with Auxiliary Functions
Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Vibe Checker: Aligning Code Evaluation with Human Preference
Large Language Models (LLMs) have catalyzed vibe coding, where users leverage LLMs to generate and iteratively refine code through natural language interactions until it passes their vibe check. Vibe check is tied to real-world human preference and goes beyond functionality: the solution should feel right, read cleanly, preserve intent, and remain correct. However, current code evaluation remains anchored to pass@k and captures only functional correctness, overlooking the non-functional instructions that users routinely apply. In this paper, we hypothesize that instruction following is the missing piece underlying vibe check that represents human preference in coding besides functional correctness. To quantify models' code instruction following capabilities with measurable signals, we present VeriCode, a taxonomy of 30 verifiable code instructions together with corresponding deterministic verifiers. We use the taxonomy to augment established evaluation suites, resulting in Vibe Checker, a testbed to assess both code instruction following and functional correctness. Upon evaluating 31 leading LLMs, we show that even the strongest models struggle to comply with multiple instructions and exhibit clear functional regression. Most importantly, a composite score of functional correctness and instruction following correlates the best with human preference, with the latter emerging as the primary differentiator on real-world programming tasks. Our work identifies core factors of the vibe check, providing a concrete path for benchmarking and developing models that better align with user preferences in coding.
A DbC Inspired Neurosymbolic Layer for Trustworthy Agent Design
Generative models, particularly Large Language Models (LLMs), produce fluent outputs yet lack verifiable guarantees. We adapt Design by Contract (DbC) and type-theoretic principles to introduce a contract layer that mediates every LLM call. Contracts stipulate semantic and type requirements on inputs and outputs, coupled with probabilistic remediation to steer generation toward compliance. The layer exposes the dual view of LLMs as semantic parsers and probabilistic black-box components. Contract satisfaction is probabilistic and semantic validation is operationally defined through programmer-specified conditions on well-typed data structures. More broadly, this work postulates that any two agents satisfying the same contracts are functionally equivalent with respect to those contracts.
Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models
With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.
Learning Type Inference for Enhanced Dataflow Analysis
Statically analyzing dynamically-typed code is a challenging endeavor, as even seemingly trivial tasks such as determining the targets of procedure calls are non-trivial without knowing the types of objects at compile time. Addressing this challenge, gradual typing is increasingly added to dynamically-typed languages, a prominent example being TypeScript that introduces static typing to JavaScript. Gradual typing improves the developer's ability to verify program behavior, contributing to robust, secure and debuggable programs. In practice, however, users only sparsely annotate types directly. At the same time, conventional type inference faces performance-related challenges as program size grows. Statistical techniques based on machine learning offer faster inference, but although recent approaches demonstrate overall improved accuracy, they still perform significantly worse on user-defined types than on the most common built-in types. Limiting their real-world usefulness even more, they rarely integrate with user-facing applications. We propose CodeTIDAL5, a Transformer-based model trained to reliably predict type annotations. For effective result retrieval and re-integration, we extract usage slices from a program's code property graph. Comparing our approach against recent neural type inference systems, our model outperforms the current state-of-the-art by 7.85% on the ManyTypes4TypeScript benchmark, achieving 71.27% accuracy overall. Furthermore, we present JoernTI, an integration of our approach into Joern, an open source static analysis tool, and demonstrate that the analysis benefits from the additional type information. As our model allows for fast inference times even on commodity CPUs, making our system available through Joern leads to high accessibility and facilitates security research.
Comparing Channel Restrictions of Communicating State Machines, High-level Message Sequence Charts, and Multiparty Session Types
Communicating state machines provide a formal foundation for distributed computation. Unfortunately, they are Turing-complete and, thus, challenging to analyse. In this paper, we classify restrictions on channels which have been proposed to work around the undecidability of verification questions. We compare half-duplex communication, existential B-boundedness, and k-synchronisability. These restrictions do not prevent the communication channels from growing arbitrarily large but still restrict the power of the model. Each restriction gives rise to a set of languages so, for every pair of restrictions, we check whether one subsumes the other or if they are incomparable. We investigate their relationship in two different contexts: first, the one of communicating state machines, and, second, the one of communication protocol specifications using high-level message sequence charts. Surprisingly, these two contexts yield different conclusions. In addition, we integrate multiparty session types, another approach to specify communication protocols, into our classification. We show that multiparty session type languages are half-duplex, existentially 1-bounded, and 1-synchronisable. To~show this result, we provide the first formal embedding of multiparty session types into high-level message sequence charts.
Higher-Order DisCoCat (Peirce-Lambek-Montague semantics)
We propose a new definition of higher-order DisCoCat (categorical compositional distributional) models where the meaning of a word is not a diagram, but a diagram-valued higher-order function. Our models can be seen as a variant of Montague semantics based on a lambda calculus where the primitives act on string diagrams rather than logical formulae. As a special case, we show how to translate from the Lambek calculus into Peirce's system beta for first-order logic. This allows us to give a purely diagrammatic treatment of higher-order and non-linear processes in natural language semantics: adverbs, prepositions, negation and quantifiers. The theoretical definition presented in this article comes with a proof-of-concept implementation in DisCoPy, the Python library for string diagrams.
Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming
Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.
A Constructive, Type-Theoretic Approach to Regression via Global Optimisation
We examine the connections between deterministic, complete, and general global optimisation of continuous functions and a general concept of regression from the perspective of constructive type theory via the concept of 'searchability'. We see how the property of convergence of global optimisation is a straightforward consequence of searchability. The abstract setting allows us to generalise searchability and continuity to higher-order functions, so that we can formulate novel convergence criteria for regression, derived from the convergence of global optimisation. All the theory and the motivating examples are fully formalised in the proof assistant Agda.
ComPile: A Large IR Dataset from Production Sources
Code is increasingly becoming a core data modality of modern machine learning research impacting not only the way we write code with conversational agents like OpenAI's ChatGPT, Google's Bard, or Anthropic's Claude, the way we translate code from one language into another, but also the compiler infrastructure underlying the language. While modeling approaches may vary and representations differ, the targeted tasks often remain the same within the individual classes of models. Relying solely on the ability of modern models to extract information from unstructured code does not take advantage of 70 years of programming language and compiler development by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of models working over a tokenized representation of input code and precludes the use of these models in the compiler itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking into LLVM code generation either through the language's package manager or the compiler directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis proves the utility of our dataset not only for large language model training, but also for the introspection into the code generation process itself with the dataset showing great promise for machine-learned compiler components.
On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages
Selective state-space models (SSMs) are an emerging alternative to the Transformer, offering the unique advantage of parallel training and sequential inference. Although these models have shown promising performance on a variety of tasks, their formal expressiveness and length generalization properties remain underexplored. In this work, we provide insight into the workings of selective SSMs by analyzing their expressiveness and length generalization performance on regular language tasks, i.e., finite-state automaton (FSA) emulation. We address certain limitations of modern SSM-based architectures by introducing the Selective Dense State-Space Model (SD-SSM), the first selective SSM that exhibits perfect length generalization on a set of various regular language tasks using a single layer. It utilizes a dictionary of dense transition matrices, a softmax selection mechanism that creates a convex combination of dictionary matrices at each time step, and a readout consisting of layer normalization followed by a linear map. We then proceed to evaluate variants of diagonal selective SSMs by considering their empirical performance on commutative and non-commutative automata. We explain the experimental results with theoretical considerations. Our code is available at https://github.com/IBM/selective-dense-state-space-model.
Mercury: An Efficiency Benchmark for LLM Code Synthesis
Despite advancements in evaluating Large Language Models (LLMs) for code synthesis, benchmarks have predominantly focused on functional correctness, overlooking the importance of code efficiency. We present Mercury, the first benchmark designated for assessing the code efficiency of LLM code synthesis tasks. Mercury consists of 1,889 programming tasks covering diverse difficulty levels alongside test case generators generating unlimited cases for comprehensive evaluation. Unlike existing benchmarks, Mercury integrates a novel metric Beyond@K to measure normalized code efficiency based on historical submissions, leading to a new evaluation indicator for code synthesis, which encourages generating functionally correct and computationally efficient code, mirroring the real-world software development standard. Our findings reveal that while LLMs demonstrate the remarkable capability to generate functionally correct code, there still exists a substantial gap in their efficiency output, underscoring a new frontier for LLM research and development.
The Virtual Large Cardinal Hierarchy
We continue the study of the virtual large cardinal hierarchy by analysing virtual versions of superstrong, Woodin, and Berkeley cardinals. Gitman and Schindler showed that virtualizations of strong and supercompact cardinals yield the same large cardinal notion. We provide various equivalent characterizations of virtually Woodin cardinals, including showing that On is virtually Woodin if and only if for every class A, there is a proper class of virtually A-extendible cardinals. We introduce the virtual Vopenka principle for finite languages and show that it is not equivalent to the virtual Vopenka principle (although the two principles are equiconsistent), but is equivalent to the assertion that On is virtually pre-Woodin, a weakening of virtually Woodin, which is equivalent to having for every class A, a weakly virtually A-extendible cardinal. We show that if there are no virtually Berkeley cardinals, then On is virtually Woodin if and only if On is virtually pre-Woodin (if and only if the virtual Vopenka principle for finite languages holds). In particular, if the virtual Vopenka principle holds and On is not Mahlo, then On is not virtually Woodin, and hence there is a virtually Berkeley cardinal.
Llemma: An Open Language Model For Mathematics
We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.
Stack Attention: Improving the Ability of Transformers to Model Hierarchical Patterns
Attention, specifically scaled dot-product attention, has proven effective for natural language, but it does not have a mechanism for handling hierarchical patterns of arbitrary nesting depth, which limits its ability to recognize certain syntactic structures. To address this shortcoming, we propose stack attention: an attention operator that incorporates stacks, inspired by their theoretical connections to context-free languages (CFLs). We show that stack attention is analogous to standard attention, but with a latent model of syntax that requires no syntactic supervision. We propose two variants: one related to deterministic pushdown automata (PDAs) and one based on nondeterministic PDAs, which allows transformers to recognize arbitrary CFLs. We show that transformers with stack attention are very effective at learning CFLs that standard transformers struggle on, achieving strong results on a CFL with theoretically maximal parsing difficulty. We also show that stack attention is more effective at natural language modeling under a constrained parameter budget, and we include results on machine translation.
Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks
Large language models (LLMs) have recently shown tremendous promise in serving as the backbone to agentic systems, as demonstrated by their performance in multi-faceted, challenging benchmarks like SWE-Bench and Agent-Bench. However, to realize the true potential of LLMs as autonomous agents, they must learn to identify, call, and interact with external tools and application program interfaces (APIs) to complete complex tasks. These tasks together are termed function calling. Endowing LLMs with function calling abilities leads to a myriad of advantages, such as access to current and domain-specific information in databases and knowledge sources, and the ability to outsource tasks that can be reliably performed by tools, e.g., a Python interpreter or calculator. While there has been significant progress in function calling with LLMs, there is still a dearth of open models that perform on par with proprietary LLMs like GPT, Claude, and Gemini. Therefore, in this work, we introduce the GRANITE-20B-FUNCTIONCALLING model under an Apache 2.0 license. The model is trained using a multi-task training approach on seven fundamental tasks encompassed in function calling, those being Nested Function Calling, Function Chaining, Parallel Functions, Function Name Detection, Parameter-Value Pair Detection, Next-Best Function, and Response Generation. We present a comprehensive evaluation on multiple out-of-domain datasets comparing GRANITE-20B-FUNCTIONCALLING to more than 15 other best proprietary and open models. GRANITE-20B-FUNCTIONCALLING provides the best performance among all open models on the Berkeley Function Calling Leaderboard and fourth overall. As a result of the diverse tasks and datasets used for training our model, we show that GRANITE-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
Token embeddings violate the manifold hypothesis
To fully understand the behavior of a large language model (LLM) requires our understanding of its input space. If this input space differs from our assumption, our understanding of and conclusions about the LLM is likely flawed, regardless of its architecture. Here, we elucidate the structure of the token embeddings, the input domain for LLMs, both empirically and theoretically. We present a generalized and statistically testable model where the neighborhood of each token splits into well-defined signal and noise dimensions. This model is based on a generalization of a manifold called a fiber bundle, so we denote our hypothesis test as the ``fiber bundle null.'' Failing to reject the null is uninformative, but rejecting it at a specific token indicates that token has a statistically significant local structure, and so is of interest to us. By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the token subspace is provably not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, and if one prompt contains a token implicated by our test, that prompt will likely exhibit more output variability proportional to the local signal dimension of the token.
Towards Automated Functional Equation Proving: A Benchmark Dataset and A Domain-Specific In-Context Agent
Automated Theorem Proving (ATP) faces challenges due to its complexity and computational demands. Recent work has explored using Large Language Models (LLMs) for ATP action selection, but these methods can be resource-intensive. This study introduces FEAS, an agent that enhances the COPRA in-context learning framework within Lean. FEAS refines prompt generation, response parsing, and incorporates domain-specific heuristics for functional equations. It introduces FunEq, a curated dataset of functional equation problems with varying difficulty. FEAS outperforms baselines on FunEq, particularly with the integration of domain-specific heuristics. The results demonstrate FEAS's effectiveness in generating and formalizing high-level proof strategies into Lean proofs, showcasing the potential of tailored approaches for specific ATP challenges.
LLMs are Meaning-Typed Code Constructs
Programming with Generative AI (GenAI) models is a type of Neurosymbolic programming and has seen tremendous adoption across many domains. However, leveraging GenAI models in code today can be complex, counter-intuitive and often require specialized frameworks, leading to increased complexity. This is because it is currently unclear as to the right abstractions through which we should marry GenAI models with the nature of traditional programming code constructs. In this paper, we introduce a set of novel abstractions to help bridge the gap between Neuro- and symbolic programming. We introduce Meaning, a new specialized type that represents the underlying semantic value of traditional types (e.g., string). We make the case that GenAI models, LLMs in particular, should be reasoned as a meaning-type wrapped code construct at the language level. We formulate the problem of translation between meaning and traditional types and propose Automatic Meaning-Type Transformation (A-MTT), a runtime feature that abstracts this translation away from the developers by automatically converting between M eaning and types at the interface of LLM invocation. Leveraging this new set of code constructs and OTT, we demonstrate example implementation of neurosymbolic programs that seamlessly utilizes LLMs to solve problems in place of potentially complex traditional programming logic.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
FP4 All the Way: Fully Quantized Training of LLMs
We demonstrate, for the first time, fully quantized training (FQT) of large language models (LLMs) using predominantly 4-bit floating-point (FP4) precision for weights, activations, and gradients on datasets up to 200 billion tokens. We extensively investigate key design choices for FP4, including block sizes, scaling formats, and rounding methods. Our analysis shows that the NVFP4 format, where each block of 16 FP4 values (E2M1) shares a scale represented in E4M3, provides optimal results. We use stochastic rounding for backward and update passes and round-to-nearest for the forward pass to enhance stability. Additionally, we identify a theoretical and empirical threshold for effective quantized training: when the gradient norm falls below approximately 3 times the quantization noise, quantized training becomes less effective. Leveraging these insights, we successfully train a 7-billion-parameter model on 256 Intel Gaudi2 accelerators. The resulting FP4-trained model achieves downstream task performance comparable to a standard BF16 baseline, confirming that FP4 training is a practical and highly efficient approach for large-scale LLM training. A reference implementation is supplied in https://github.com/Anonymous1252022/fp4-all-the-way .
Facilitating Multi-turn Function Calling for LLMs via Compositional Instruction Tuning
Large Language Models (LLMs) have exhibited significant potential in performing diverse tasks, including the ability to call functions or use external tools to enhance their performance. While current research on function calling by LLMs primarily focuses on single-turn interactions, this paper addresses the overlooked necessity for LLMs to engage in multi-turn function calling--critical for handling compositional, real-world queries that require planning with functions but not only use functions. To facilitate this, we introduce an approach, BUTTON, which generates synthetic compositional instruction tuning data via bottom-up instruction construction and top-down trajectory generation. In the bottom-up phase, we generate simple atomic tasks based on real-world scenarios and build compositional tasks using heuristic strategies based on atomic tasks. Corresponding functions are then developed for these compositional tasks. The top-down phase features a multi-agent environment where interactions among simulated humans, assistants, and tools are utilized to gather multi-turn function calling trajectories. This approach ensures task compositionality and allows for effective function and trajectory generation by examining atomic tasks within compositional tasks. We produce a dataset BUTTONInstruct comprising 8k data points and demonstrate its effectiveness through extensive experiments across various LLMs.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
Improving Few-Shot Prompts with Relevant Static Analysis Products
Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of LLMs, function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper proposes a simple yet controllable target-driven approach called Reverse Chain to empower LLMs with capabilities to use external APIs with only prompts. Given that most open-source LLMs have limited tool-use or tool-plan capabilities, LLMs in Reverse Chain are only employed to implement simple tasks, e.g., API selection and argument completion, and a generic rule is employed to implement a controllable multiple functions calling. In this generic rule, after selecting a final API to handle a given task via LLMs, we first ask LLMs to fill the required arguments from user query and context. Some missing arguments could be further completed by letting LLMs select another API based on API description before asking user. This process continues until a given task is completed. Extensive numerical experiments indicate an impressive capability of Reverse Chain on implementing multiple function calling. Interestingly enough, the experiments also reveal that tool-use capabilities of the existing LLMs, e.g., ChatGPT, can be greatly improved via Reverse Chain.
On the Power of Foundation Models
With infinitely many high-quality data points, infinite computational power, an infinitely large foundation model with a perfect training algorithm and guaranteed zero generalization error on the pretext task, can the model be used for everything? This question cannot be answered by the existing theory of representation, optimization or generalization, because the issues they mainly investigate are assumed to be nonexistent here. In this paper, we show that category theory provides powerful machinery to answer this question. We have proved three results. The first one limits the power of prompt-based learning, saying that the model can solve a downstream task with prompts if and only if the task is representable. The second one says fine tuning does not have this limit, as a foundation model with the minimum required power (up to symmetry) can theoretically solve downstream tasks for the category defined by pretext task, with fine tuning and enough resources. Our final result can be seen as a new type of generalization theorem, showing that the foundation model can generate unseen objects from the target category (e.g., images) using the structural information from the source category (e.g., texts). Along the way, we provide a categorical framework for supervised and self-supervised learning, which might be of independent interest.
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory -- precisely, the universal algebra of monads valued in a 2-category of parametric maps -- as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory.
Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap
We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/.
Towards Automated Formal Verification of Backend Systems with LLMs
Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.
Jinx: Unlimited LLMs for Probing Alignment Failures
Unlimited, or so-called helpful-only language models are trained without safety alignment constraints and never refuse user queries. They are widely used by leading AI companies as internal tools for red teaming and alignment evaluation. For example, if a safety-aligned model produces harmful outputs similar to an unlimited model, this indicates alignment failures that require further attention. Despite their essential role in assessing alignment, such models are not available to the research community. We introduce Jinx, a helpful-only variant of popular open-weight LLMs. Jinx responds to all queries without refusals or safety filtering, while preserving the base model's capabilities in reasoning and instruction following. It provides researchers with an accessible tool for probing alignment failures, evaluating safety boundaries, and systematically studying failure modes in language model safety.
Octopus v4: Graph of language models
Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs functional tokens to integrate multiple open-source models, each optimized for particular tasks. Our newly developed Octopus v4 model leverages functional tokens to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and functional tokens. Use our open-sourced GitHub (https://www.nexa4ai.com/) to try Octopus v4 models (https://huggingface.co/NexaAIDev/Octopus-v4), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.
If beam search is the answer, what was the question?
Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.
CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
A benchmark for vericoding: formally verified program synthesis
We present and test the largest benchmark for vericoding, LLM-generation of formally verified code from formal specifications - in contrast to vibe coding, which generates potentially buggy code from a natural language description. Our benchmark contains 12,504 formal specifications, with 3,029 in Dafny, 2,334 in Verus/Rust and 7,141 in Lean. Of these, 6,174 are new unseen problems. We find vericoding success rates of 27% in Lean, 44% in Verus/Rust and 82% in Dafny using off-the-shelf LLMs. Adding natural-language descriptions does not significantly improve performance. We also find that LLM progress has improved progress on pure Dafny verification from 68% to 96% over the past year. The benchmark and vericoding results are shared at https://github.com/Beneficial-AI-Foundation/vericoding-benchmark
How Do Language Models Compose Functions?
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as g(f(x)). We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both z = f(x) and y = g(z) does not entail their ability to compute the composition y = g(f(x)). Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks compositionally, computing f(x) along the way to computing g(f(x)), and one which solves them directly, without any detectable signature of the intermediate variable f(x). Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from x to g(f(x)) in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .
Do PhD-level LLMs Truly Grasp Elementary Addition? Probing Rule Learning vs. Memorization in Large Language Models
Despite high benchmark scores, Large Language Models (LLMs) often fail simple problem, raising a critical question: Do LLMs learn mathematical principles or merely memorize patterns? Rather than designing increasingly complex benchmarks like recent works, we investigate this using elementary two-integer addition (0 to 2^{64}), probing two core properties: commutativity (A+B=B+A) and compositional generalization (via isomorphic symbolic mappings, e.g., 7 rightarrow y). While state-of-the-art LLMs achieve 73.8-99.8\% accuracy on numerical addition, performance collapses to leq7.5\% under symbolic mapping, indicating failure to generalize learned rules. Non-monotonic performance scaling with digit count and frequent commutativity violations (over 1,700 cases of A+B neq B+A) further support this. Explicitly providing addition rules degrades performance by 81.2\% on average, while self-explanation maintains baseline accuracy, suggesting LLM arithmetic processing is misaligned with human-defined principles. Our findings indicate current LLMs rely on memory pattern over genuine rule learning, highlighting architectural limitations and the need for new approaches to achieve true mathematical reasoning.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
Ask, and it shall be given: Turing completeness of prompting
Since the success of GPT, large language models (LLMs) have been revolutionizing machine learning and have initiated the so-called LLM prompting paradigm. In the era of LLMs, people train a single general-purpose LLM and provide the LLM with different prompts to perform different tasks. However, such empirical success largely lacks theoretical understanding. Here, we present the first theoretical study on the LLM prompting paradigm to the best of our knowledge. In this work, we show that prompting is in fact Turing-complete: there exists a finite-size Transformer such that for any computable function, there exists a corresponding prompt following which the Transformer computes the function. Furthermore, we show that even though we use only a single finite-size Transformer, it can still achieve nearly the same complexity bounds as that of the class of all unbounded-size Transformers. Overall, our result reveals that prompting can enable a single finite-size Transformer to be efficiently universal, which establishes a theoretical underpinning for prompt engineering in practice.
HAMburger: Accelerating LLM Inference via Token Smashing
The growing demand for efficient Large Language Model (LLM) inference requires a holistic optimization on algorithms, systems, and hardware. However, very few works have fundamentally changed the generation pattern: each token needs one forward pass and one KV cache. This can be sub-optimal because we found that LLMs are extremely capable of self-identifying the exact dose of information that a single KV cache can store, and many tokens can be generated confidently without global context. Based on this insight, we introduce HAMburger, a Hierarchically Auto-regressive Model that redefines resource allocation in LLMs by moving beyond uniform computation and storage per token during inference. Stacking a compositional embedder and a micro-step decoder in between a base LLM, HAMburger smashes multiple tokens into a single KV and generates several tokens per step. Additionally, HAMburger functions as a speculative decoding framework where it can blindly trust self-drafted tokens. As a result, HAMburger shifts the growth of KV cache and forward FLOPs from linear to sub-linear with respect to output length, and adjusts its inference speed based on query perplexity and output structure. Extensive evaluations show that HAMburger reduces the KV cache computation by up to 2times and achieves up to 2times TPS, while maintaining quality in both short- and long-context tasks. Our method explores an extremely challenging inference regime that requires both computation- and memory-efficiency with a hardware-agnostic design.
Categories of Differentiable Polynomial Circuits for Machine Learning
Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls
We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.4% in terms of average pass rate on ToolBench. Code will be available at https://github.com/dyabel/AnyTool.
Lemur: Harmonizing Natural Language and Code for Language Agents
We introduce Lemur and Lemur-Chat, openly accessible language models optimized for both natural language and coding capabilities to serve as the backbone of versatile language agents. The evolution from language chat models to functional language agents demands that models not only master human interaction, reasoning, and planning but also ensure grounding in the relevant environments. This calls for a harmonious blend of language and coding capabilities in the models. Lemur and Lemur-Chat are proposed to address this necessity, demonstrating balanced proficiencies in both domains, unlike existing open-source models that tend to specialize in either. Through meticulous pre-training using a code-intensive corpus and instruction fine-tuning on text and code data, our models achieve state-of-the-art averaged performance across diverse text and coding benchmarks among open-source models. Comprehensive experiments demonstrate Lemur's superiority over existing open-source models and its proficiency across various agent tasks involving human communication, tool usage, and interaction under fully- and partially- observable environments. The harmonization between natural and programming languages enables Lemur-Chat to significantly narrow the gap with proprietary models on agent abilities, providing key insights into developing advanced open-source agents adept at reasoning, planning, and operating seamlessly across environments. https://github.com/OpenLemur/Lemur
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Naturalizing a Programming Language via Interactive Learning
Our goal is to create a convenient natural language interface for performing well-specified but complex actions such as analyzing data, manipulating text, and querying databases. However, existing natural language interfaces for such tasks are quite primitive compared to the power one wields with a programming language. To bridge this gap, we start with a core programming language and allow users to "naturalize" the core language incrementally by defining alternative, more natural syntax and increasingly complex concepts in terms of compositions of simpler ones. In a voxel world, we show that a community of users can simultaneously teach a common system a diverse language and use it to build hundreds of complex voxel structures. Over the course of three days, these users went from using only the core language to using the naturalized language in 85.9\% of the last 10K utterances.
A Frustratingly Simple Decoding Method for Neural Text Generation
We introduce a frustratingly simple, super efficient and surprisingly effective decoding method, which we call Frustratingly Simple Decoding (FSD), for neural text generation. The idea behind FSD is straightforward: we build an anti-LM based on previously generated text and use this anti-LM to penalize future generation of what has been generated. The anti-LM can be implemented as simple as an n-gram language model or a vectorized variant. In this way, FSD introduces no extra model parameters and negligible computational overhead (FSD can be as fast as greedy search). Despite the simplicity, FSD is surprisingly effective; Experiments show that FSD can outperform the canonical methods to date (i.e., nucleus sampling) as well as several strong baselines that were proposed recently.
SolEval: Benchmarking Large Language Models for Repository-level Solidity Code Generation
Large language models (LLMs) have transformed code generation. However, most existing approaches focus on mainstream languages such as Python and Java, neglecting the Solidity language, the predominant programming language for Ethereum smart contracts. Due to the lack of adequate benchmarks for Solidity, LLMs' ability to generate secure, cost-effective smart contracts remains unexplored. To fill this gap, we construct SolEval, the first repository-level benchmark designed for Solidity smart contract generation, to evaluate the performance of LLMs on Solidity. SolEval consists of 1,125 samples from 9 different repositories, covering 6 popular domains, providing LLMs with a comprehensive evaluation benchmark. Unlike the existing Solidity benchmark, SolEval not only includes complex function calls but also reflects the real-world complexity of the Ethereum ecosystem by incorporating gas fee and vulnerability rate. We evaluate 10 LLMs on SolEval, and our results show that the best-performing LLM achieves only 26.29% Pass@10, highlighting substantial room for improvement in Solidity code generation by LLMs. We release our data and code at https://anonymous.4open.science/r/SolEval-1C06/.
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
Denotational validation of higher-order Bayesian inference
We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.
MultiBLiMP 1.0: A Massively Multilingual Benchmark of Linguistic Minimal Pairs
We introduce MultiBLiMP 1.0, a massively multilingual benchmark of linguistic minimal pairs, covering 101 languages, 6 linguistic phenomena and containing more than 125,000 minimal pairs. Our minimal pairs are created using a fully automated pipeline, leveraging the large-scale linguistic resources of Universal Dependencies and UniMorph. MultiBLiMP 1.0 evaluates abilities of LLMs at an unprecedented multilingual scale, and highlights the shortcomings of the current state-of-the-art in modelling low-resource languages.
mCLM: A Modular Chemical Language Model that Generates Functional and Makeable Molecules
Despite their ability to understand chemical knowledge, large language models (LLMs) remain limited in their capacity to propose novel molecules with desired functions (e.g., drug-like properties). In addition, the molecules that LLMs propose can often be challenging to make, and are almost never compatible with automated synthesis approaches. To better enable the discovery of functional small molecules, LLMs need to learn a new molecular language that is more effective in predicting properties and inherently synced with automated synthesis technology. Current molecule LLMs are limited by representing molecules based on atoms. In this paper, we argue that just like tokenizing texts into meaning-bearing (sub-)word tokens instead of characters, molecules should be tokenized at the level of functional building blocks, i.e., parts of molecules that bring unique functions and serve as effective building blocks for real-world automated laboratory synthesis. This motivates us to propose mCLM, a modular Chemical-Language Model that comprises a bilingual language model that understands both natural language descriptions of functions and molecular blocks. mCLM front-loads synthesizability considerations while improving the predicted functions of molecules in a principled manner. mCLM, with only 3B parameters, achieves improvements in synthetic accessibility relative to 7 other leading generative AI methods including GPT-5. When tested on 122 out-of-distribution medicines using only building blocks/tokens that are compatible with automated modular synthesis, mCLM outperforms all baselines in property scores and synthetic accessibility. mCLM can also reason on multiple functions and iteratively self-improve to rescue drug candidates that failed late in clinical trials ("fallen angels").
The Geometry of Bayesian Programming
We give a geometry of interaction model for a typed lambda-calculus endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The model is based on the category of measurable spaces and partial measurable functions, and is proved adequate with respect to both a distribution-based and a sampling based operational semantics.
A Compositional Atlas for Algebraic Circuits
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
MHPP: Exploring the Capabilities and Limitations of Language Models Beyond Basic Code Generation
Recent advancements in large language models (LLMs) have greatly improved code generation, specifically at the function level. For instance, GPT-4 has achieved an 88.4% pass rate on HumanEval. However, this draws into question the adequacy of existing benchmarks in thoroughly assessing function-level code generation capabilities. Our study analyzed two common benchmarks, HumanEval and MBPP, and found that these might not thoroughly evaluate LLMs' code generation capacities due to limitations in quality, difficulty, and granularity. To resolve this, we introduce the Mostly Hard Python Problems (MHPP) dataset, consisting of 140 unique human-curated problems. By focusing on the combination of natural language and code reasoning, MHPP gauges LLMs' abilities to comprehend specifications and restrictions, engage in multi-step reasoning, and apply coding knowledge effectively. Initial evaluations of 22 LLMs using MHPP showed many high-performing models on HumanEval failed to achieve similar success on MHPP. Moreover, MHPP highlighted various previously undiscovered limitations within various LLMs, leading us to believe that it could pave the way for a better understanding of LLMs' capabilities and limitations. Dataset and code are available at https://github.com/SparksofAGI/MHPP.
DocPrompting: Generating Code by Retrieving the Docs
Publicly available source-code libraries are continuously growing and changing. This makes it impossible for models of code to keep current with all available APIs by simply training these models on existing code repositories. Thus, existing models inherently cannot generalize to using unseen functions and libraries, because these would never appear in the training data. In contrast, when human programmers use functions and libraries for the first time, they frequently refer to textual resources such as code manuals and documentation, to explore and understand the available functionality. Inspired by this observation, we introduce DocPrompting: a natural-language-to-code generation approach that explicitly leverages documentation by (1) retrieving the relevant documentation pieces given an NL intent, and (2) generating code based on the NL intent and the retrieved documentation. DocPrompting is general: it can be applied to any programming language and is agnostic to the underlying neural model. We demonstrate that DocPrompting consistently improves NL-to-code models: DocPrompting improves strong base models such as CodeT5 by 2.85% in pass@1 (52% relative gain) and 4.39% in pass@10 (30% relative gain) in execution-based evaluation on the popular Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves CodeT5 and GPT-Neo1.3B by up to absolute 6.9% exact match.
TroVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks
Language models (LMs) can solve tasks such as answering questions about tables or images by writing programs. However, using primitive functions often leads to verbose and error-prone programs, and higher-level functions require expert design. To enable better solutions without human labor, we ask code LMs to curate reusable high-level functions, and use them to write solutions. We present TROVE, a training-free method of inducing a verifiable and efficient toolbox of functions, by generating via using, growing, and periodically trimming the toolbox. On 11 datasets from math, table question answering, and image reasoning tasks, TROVE consistently yields simpler solutions with higher accuracy than baselines using CODELLAMA and previous methods using GPT, while using 79-98% smaller toolboxes. TROVE further enables 31% faster and 13% more accurate human verification than baselines. With the same pipeline, it creates diverse functions for varied tasks and datasets, providing insights into their individual characteristics.
RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.
DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
Psi-Turing Machines: Bounded Introspection for Complexity Barriers and Oracle Separations
We introduce Psi-Turing Machines (Psi-TM): classical Turing machines equipped with a constant-depth introspection interface iota and an explicit per-step information budget B(d,n)=c,dlog_2 n . With the interface frozen, we develop an information-theoretic lower-bound toolkit: Budget counting, Psi -Fooling, and Psi -Fano, with worked examples L_k and L_k^{phase} . We prove an oracle-relative separation P^{Psi} neq NP^{Psi} and a strict depth hierarchy, reinforced by an Anti-Simulation Hook that rules out polynomial emulation of iota_k using many calls to iota_{k-1} under the budget regime. We also present two independent platforms (Psi-decision trees and interface-constrained circuits IC-AC^{0}/IC-NC^{1}) and bridges that transfer bounds among machine, tree, and circuit with explicit poly/log losses. The model preserves classical computational power outside iota yet enables precise oracle-aware statements about barriers (relativization; partial/conditional progress on natural proofs and proof complexity). The aim is a standardized minimal introspection interface with clearly accounted information budgets.
Single Headed Attention RNN: Stop Thinking With Your Head
The leading approaches in language modeling are all obsessed with TV shows of my youth - namely Transformers and Sesame Street. Transformers this, Transformers that, and over here a bonfire worth of GPU-TPU-neuromorphic wafer scale silicon. We opt for the lazy path of old and proven techniques with a fancy crypto inspired acronym: the Single Headed Attention RNN (SHA-RNN). The author's lone goal is to show that the entire field might have evolved a different direction if we had instead been obsessed with a slightly different acronym and slightly different result. We take a previously strong language model based only on boring LSTMs and get it to within a stone's throw of a stone's throw of state-of-the-art byte level language model results on enwik8. This work has undergone no intensive hyperparameter optimization and lived entirely on a commodity desktop machine that made the author's small studio apartment far too warm in the midst of a San Franciscan summer. The final results are achievable in plus or minus 24 hours on a single GPU as the author is impatient. The attention mechanism is also readily extended to large contexts with minimal computation. Take that Sesame Street.
BriLLM: Brain-inspired Large Language Model
This paper reports the first brain-inspired large language model (BriLLM). This is a non-Transformer, non-GPT, non-traditional machine learning input-output controlled generative language model. The model is based on the Signal Fully-connected flowing (SiFu) definition on the directed graph in terms of the neural network, and has the interpretability of all nodes on the graph of the whole model, instead of the traditional machine learning model that only has limited interpretability at the input and output ends. In the language model scenario, the token is defined as a node in the graph. A randomly shaped or user-defined signal flow flows between nodes on the principle of "least resistance" along paths. The next token or node to be predicted or generated is the target of the signal flow. As a language model, BriLLM theoretically supports infinitely long n-gram models when the model size is independent of the input and predicted length of the model. The model's working signal flow provides the possibility of recall activation and innate multi-modal support similar to the cognitive patterns of the human brain. At present, we released the first BriLLM version in Chinese, with 4000 tokens, 32-dimensional node width, 16-token long sequence prediction ability, and language model prediction performance comparable to GPT-1. More computing power will help us explore the infinite possibilities depicted above.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
ReGAL: Refactoring Programs to Discover Generalizable Abstractions
While large language models (LLMs) are increasingly being used for program synthesis, they lack the global view needed to develop useful abstractions; they generally predict programs one at a time, often repeating the same functionality. Generating redundant code from scratch is both inefficient and error-prone. To address this, we propose Refactoring for Generalizable Abstraction Learning (ReGAL), a gradient-free method for learning a library of reusable functions via code refactorization, i.e. restructuring code without changing its execution output. ReGAL learns from a small set of existing programs, iteratively verifying and refining its abstractions via execution. We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains. On three datasets (LOGO graphics generation, Date reasoning, and TextCraft, a Minecraft-based text game), both open-source and proprietary LLMs improve in accuracy when predicting programs with ReGAL functions. For CodeLlama-13B, ReGAL results in absolute accuracy increases of 11.5% on graphics, 26.1% on date understanding, and 8.1% on TextCraft, outperforming GPT-3.5 in two of three domains. Our analysis reveals ReGAL's abstractions encapsulate frequently-used subroutines as well as environment dynamics.
GALLa: Graph Aligned Large Language Models for Improved Source Code Understanding
Programming languages possess rich semantic information such as data flow that is represented by graphs and not available from the surface form of source code. Recent code language models have scaled to billions of parameters, but model source code solely as text tokens while ignoring any other structural information. Conversely, models that do encode structural information of code make modifications to the Transformer architecture, limiting their scale and compatibility with pretrained LLMs. In this work, we take the best of both worlds with GALLa - Graph Aligned Large Language Model. GALLa utilizes graph neural networks and cross-modal alignment technologies to inject the structural information of code into LLMs as an auxiliary task during finetuning. This framework is both model-agnostic and task-agnostic, as it can be applied to any code LLM for any code downstream task, and requires the structural graph data only at training time from a corpus unrelated to the finetuning data, while incurring no cost at inference time over the baseline LLM. Experiments on five code tasks with four different baseline LLMs ranging in size from 350M to 8B validate the effectiveness of GALLa, demonstrating consistent improvement over the baseline, even for powerful models such as LLaMA3.
ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?
Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
The CoCompiler: DSL Lifting via Relational Compilation
Lifting low-level or legacy code into a domain-specific language (DSL) improves our ability to understand it, enables deeper formal reasoning, and facilitates safe modification. We present the CoCompiler, a bidirectional compiler and lifter between C and Lustre, a synchronous dataflow language used for reactive systems. The key insight behind the CoCompiler is that writing a compiler as a relation, rather than as a traditional function, yields a DSL lifter "for free". We implement this idea by rewriting the verified Lustre-to-C compiler V\'elus in the Walrus relational programming language. This solves what we call the vertical lifting problem, translating canonical C into Lustre. To address the complementary horizontal problem-handling real-world C outside the compiler's image-we apply semantic-preserving canonicalization passes in Haskell. The resulting tool, the CoCompiler, supports lifting real reactive C code into Lustre and onward into graphical behavioral models. Our approach is modular, language-agnostic, and fast to implement, demonstrating that relational programming offers a practical foundation for building DSL lifters by repurposing existing compilers.
ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory
Large language models (LLMs) with memory are computationally universal. However, mainstream LLMs are not taking full advantage of memory, and the designs are heavily influenced by biological brains. Due to their approximate nature and proneness to the accumulation of errors, conventional neural memory mechanisms cannot support LLMs to simulate complex reasoning. In this paper, we seek inspiration from modern computer architectures to augment LLMs with symbolic memory for complex multi-hop reasoning. Such a symbolic memory framework is instantiated as an LLM and a set of SQL databases, where the LLM generates SQL instructions to manipulate the SQL databases. We validate the effectiveness of the proposed memory framework on a synthetic dataset requiring complex reasoning. The project website is available at https://chatdatabase.github.io/ .
Self-attention Does Not Need O(n^2) Memory
We present a very simple algorithm for attention that requires O(1) memory with respect to sequence length and an extension to self-attention that requires O(log n) memory. This is in contrast with the frequently stated belief that self-attention requires O(n^2) memory. While the time complexity is still O(n^2), device memory rather than compute capability is often the limiting factor on modern accelerators. Thus, reducing the memory requirements of attention allows processing of longer sequences than might otherwise be feasible. We provide a practical implementation for accelerators that requires O(n) memory, is numerically stable, and is within a few percent of the runtime of the standard implementation of attention. We also demonstrate how to differentiate the function while remaining memory-efficient. For sequence length 16384, the memory overhead of self-attention is reduced by 59X for inference and by 32X for differentiation.
Autoregressive Large Language Models are Computationally Universal
We show that autoregressive decoding of a transformer-based language model can realize universal computation, without external intervention or modification of the model's weights. Establishing this result requires understanding how a language model can process arbitrarily long inputs using a bounded context. For this purpose, we consider a generalization of autoregressive decoding where, given a long input, emitted tokens are appended to the end of the sequence as the context window advances. We first show that the resulting system corresponds to a classical model of computation, a Lag system, that has long been known to be computationally universal. By leveraging a new proof, we show that a universal Turing machine can be simulated by a Lag system with 2027 production rules. We then investigate whether an existing large language model can simulate the behaviour of such a universal Lag system. We give an affirmative answer by showing that a single system-prompt can be developed for gemini-1.5-pro-001 that drives the model, under deterministic (greedy) decoding, to correctly apply each of the 2027 production rules. We conclude that, by the Church-Turing thesis, prompted gemini-1.5-pro-001 with extended autoregressive (greedy) decoding is a general purpose computer.
ComplexFuncBench: Exploring Multi-Step and Constrained Function Calling under Long-Context Scenario
Enhancing large language models (LLMs) with real-time APIs can help generate more accurate and up-to-date responses. However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation. In this work, we introduce ComplexFuncBench, a benchmark for complex function calling across five real-world scenarios. Compared to existing benchmarks, ComplexFuncBench encompasses multi-step and constrained function calling, which requires long-parameter filing, parameter value reasoning, and 128k long context. Additionally, we propose an automatic framework, ComplexEval, for quantitatively evaluating complex function calling tasks. Through comprehensive experiments, we demonstrate the deficiencies of state-of-the-art LLMs in function calling and suggest future directions for optimizing these capabilities. The data and code are available at https://github.com/THUDM/ComplexFuncBench.
An Attempt to Catch Up with JIT Compilers: The False Lead of Optimizing Inline Caches
Context: Just-in-Time (JIT) compilers are able to specialize the code they generate according to a continuous profiling of the running programs. This gives them an advantage when compared to Ahead-of-Time (AoT) compilers that must choose the code to generate once for all. Inquiry: Is it possible to improve the performance of AoT compilers by adding Dynamic Binary Modification (DBM) to the executions? Approach: We added to the Hopc AoT JavaScript compiler a new optimization based on DBM to the inline cache (IC), a classical optimization dynamic languages use to implement object property accesses efficiently. Knowledge: Reducing the number of memory accesses as the new optimization does, does not shorten execution times on contemporary architectures. Grounding: The DBM optimization we have implemented is fully operational on x86_64 architectures. We have conducted several experiments to evaluate its impact on performance and to study the reasons of the lack of acceleration. Importance: The (negative) result we present in this paper sheds new light on the best strategy to be used to implement dynamic languages. It tells that the old days were removing instructions or removing memory reads always yielded to speed up is over. Nowadays, implementing sophisticated compiler optimizations is only worth the effort if the processor is not able by itself to accelerate the code. This result applies to AoT compilers as well as JIT compilers.
Configurable Foundation Models: Building LLMs from a Modular Perspective
Advancements in LLMs have recently unveiled challenges tied to computational efficiency and continual scalability due to their requirements of huge parameters, making the applications and evolution of these models on devices with limited computation resources and scenarios requiring various abilities increasingly cumbersome. Inspired by modularity within the human brain, there is a growing tendency to decompose LLMs into numerous functional modules, allowing for inference with part of modules and dynamic assembly of modules to tackle complex tasks, such as mixture-of-experts. To highlight the inherent efficiency and composability of the modular approach, we coin the term brick to represent each functional module, designating the modularized structure as configurable foundation models. In this paper, we offer a comprehensive overview and investigation of the construction, utilization, and limitation of configurable foundation models. We first formalize modules into emergent bricks - functional neuron partitions that emerge during the pre-training phase, and customized bricks - bricks constructed via additional post-training to improve the capabilities and knowledge of LLMs. Based on diverse functional bricks, we further present four brick-oriented operations: retrieval and routing, merging, updating, and growing. These operations allow for dynamic configuration of LLMs based on instructions to handle complex tasks. To verify our perspective, we conduct an empirical analysis on widely-used LLMs. We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions. Finally, we highlight several open issues and directions for future research. Overall, this paper aims to offer a fresh modular perspective on existing LLM research and inspire the future creation of more efficient and scalable foundational models.
Proving the Coding Interview: A Benchmark for Formally Verified Code Generation
We introduce the Formally Verified Automated Programming Progress Standards, or FVAPPS, a benchmark of 4715 samples for writing programs and proving their correctness, the largest formal verification benchmark, including 1083 curated and quality controlled samples. Previously, APPS provided a benchmark and dataset for programming puzzles to be completed in Python and checked against unit tests, of the kind seen in technical assessments in the software engineering industry. Building upon recent approaches for benchmarks in interactive theorem proving, we generalize the unit tests to Lean 4 theorems given without proof (i.e., using Lean's "sorry" keyword). On the 406 theorems of 100 randomly selected samples, Sonnet correctly proves 30% and Gemini correctly proves 18%. We challenge the machine learning and program synthesis communities to solve both each general purpose programming problem and its associated correctness specifications. The benchmark is available at https://huggingface.co/datasets/quinn-dougherty/fvapps.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training
The interest in developing small language models (SLM) for on-device deployment is fast growing. However, the existing SLM design hardly considers the device hardware characteristics. Instead, this work presents a simple yet effective principle for SLM design: architecture searching for (near-)optimal runtime efficiency before pre-training. Guided by this principle, we develop PhoneLM SLM family (currently with 0.5B and 1.5B versions), that acheive the state-of-the-art capability-efficiency tradeoff among those with similar parameter size. We fully open-source the code, weights, and training datasets of PhoneLM for reproducibility and transparency, including both base and instructed versions. We also release a finetuned version of PhoneLM capable of accurate Android Intent invocation, and an end-to-end Android demo. All materials are available at https://github.com/UbiquitousLearning/PhoneLM.
FeatBench: Evaluating Coding Agents on Feature Implementation for Vibe Coding
The rapid advancement of Large Language Models (LLMs) has given rise to a novel software development paradigm known as "vibe coding," where users interact with coding agents through high-level natural language. However, existing evaluation benchmarks for code generation inadequately assess an agent's vibe coding capabilities. Existing benchmarks are misaligned, as they either require code-level specifications or focus narrowly on issue-solving, neglecting the critical scenario of feature implementation within the vibe coding paradiam. To address this gap, we propose FeatBench, a novel benchmark for vibe coding that focuses on feature implementation. Our benchmark is distinguished by several key features: 1. Pure Natural Language Prompts. Task inputs consist solely of abstract natural language descriptions, devoid of any code or structural hints. 2. A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-level filtering pipeline to ensure quality and a fully automated pipeline to evolve the benchmark, mitigating data contamination. 3. Comprehensive Test Cases. Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify correctness and prevent regressions. 4. Diverse Application Domains. The benchmark includes repositories from diverse domains to ensure it reflects real-world scenarios. We evaluate two state-of-the-art agent frameworks with four leading LLMs on FeatBench. Our evaluation reveals that feature implementation within the vibe coding paradigm is a significant challenge, with the highest success rate of only 29.94%. Our analysis also reveals a tendency for "aggressive implementation," a strategy that paradoxically leads to both critical failures and superior software design. We release FeatBench, our automated collection pipeline, and all experimental results to facilitate further community research.
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. In a nutshell, CoC broadens the scope of reasoning questions that LMs can answer by "thinking in code".
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the Linux Operating System
We present new data and semantic parsing methods for the problem of mapping English sentences to Bash commands (NL2Bash). Our long-term goal is to enable any user to perform operations such as file manipulation, search, and application-specific scripting by simply stating their goals in English. We take a first step in this domain, by providing a new dataset of challenging but commonly used Bash commands and expert-written English descriptions, along with baseline methods to establish performance levels on this task.
FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM
Migrating existing C programs into Rust is increasingly desired, as Rust offers superior memory safety while maintaining C's high performance. However, vastly different features between C and Rust--e.g., distinct definitions and usages of pointers and references--pose significant challenges beyond mere syntactic translation. Existing automated translation tools, such as C2Rust, may rely too much on syntactic, template-based translation and generate unsafe Rust code that is hard for human developers to read, maintain, or even compile. More semantic-aware translation that produces safer, idiomatic, and runnable Rust code is much needed. This paper introduces a novel dependency-guided and large language model (LLM)-based C-to-Rust translation approach, RustMap, based on three key ideas: (1) Utilize LLM capabilities to produce idiomatic Rust code from given small pieces of C code, (2) Mitigate LLM limitations in handling large codebases by breaking project-scale C programs into smaller units for translation according to their usage dependencies and composing them into a runnable Rust program, and (3) Enhance the correctness of the translated Rust program by using test cases to check input/output equivalence, isolate faulty code when execution states deviate, and iteratively refine the translation using feedback from compilation and test errors. We empirically evaluate RustMap on 126 real-world programs, including 125 from Rosetta Code and a 7000+ line bzip2 implementation using GPT-4o as the LLM. RustMap shows promising results, guiding GPT-4o to produce idiomatic, readable, and functional Rust code with significantly less unsafe code than other tools, and revealing non-trivial translation patterns reusable for future research.
Reverse mathematics and a Ramsey-type König's Lemma
In this paper, we propose a weak regularity principle which is similar to both weak K\"onig's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle.
Executing Arithmetic: Fine-Tuning Large Language Models as Turing Machines
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing and reasoning tasks. However, their performance in the foundational domain of arithmetic remains unsatisfactory. When dealing with arithmetic tasks, LLMs often memorize specific examples rather than learning the underlying computational logic, limiting their ability to generalize to new problems. In this paper, we propose a Composable Arithmetic Execution Framework (CAEF) that enables LLMs to learn to execute step-by-step computations by emulating Turing Machines, thereby gaining a genuine understanding of computational logic. Moreover, the proposed framework is highly scalable, allowing composing learned operators to significantly reduce the difficulty of learning complex operators. In our evaluation, CAEF achieves nearly 100% accuracy across seven common mathematical operations on the LLaMA 3.1-8B model, effectively supporting computations involving operands with up to 100 digits, a level where GPT-4o falls short noticeably in some settings.
Memorizing Transformers
Language models typically need to be trained or finetuned in order to acquire new knowledge, which involves updating their weights. We instead envision language models that can simply read and memorize new data at inference time, thus acquiring new knowledge immediately. In this work, we extend language models with the ability to memorize the internal representations of past inputs. We demonstrate that an approximate kNN lookup into a non-differentiable memory of recent (key, value) pairs improves language modeling across various benchmarks and tasks, including generic webtext (C4), math papers (arXiv), books (PG-19), code (Github), as well as formal theorems (Isabelle). We show that the performance steadily improves when we increase the size of memory up to 262K tokens. On benchmarks including code and mathematics, we find that the model is capable of making use of newly defined functions and theorems during test time.
Any-Depth Alignment: Unlocking Innate Safety Alignment of LLMs to Any-Depth
Large Language Models (LLMs) exhibit strong but shallow alignment: they directly refuse harmful queries when a refusal is expected at the very start of an assistant turn, yet this protection collapses once a harmful continuation is underway (either through the adversarial attacks or via harmful assistant-prefill attacks). This raises a fundamental question: Can the innate shallow alignment in LLMs be unlocked to ensure safety at arbitrary generation depths? To achieve this goal, we propose Any-Depth Alignment (ADA), an effective inference-time defense with negligible overhead. ADA is built based on our observation that alignment is concentrated in the assistant header tokens through repeated use in shallow-refusal training, and these tokens possess the model's strong alignment priors. By reintroducing these tokens mid-stream, ADA induces the model to reassess harmfulness and recover refusals at any point in generation. Across diverse open-source model families (Llama, Gemma, Mistral, Qwen, DeepSeek, and gpt-oss), ADA achieves robust safety performance without requiring any changes to the base model's parameters. It secures a near-100% refusal rate against challenging adversarial prefill attacks ranging from dozens to thousands of tokens. Furthermore, ADA reduces the average success rate of prominent adversarial prompt attacks (such as GCG, AutoDAN, PAIR, and TAP) to below 3%. This is all accomplished while preserving utility on benign tasks with minimal over-refusal. ADA maintains this resilience even after the base model undergoes subsequent instruction tuning (benign or adversarial).
Lyra: A Benchmark for Turducken-Style Code Generation
Recently, neural techniques have been used to generate source code automatically. While promising for declarative languages, these approaches achieve much poorer performance on datasets for imperative languages. Since a declarative language is typically embedded in an imperative language (i.e., the turducken-style programming) in real-world software development, the promising results on declarative languages can hardly lead to significant reduction of manual software development efforts. In this paper, we define a new code generation task: given a natural language comment, this task aims to generate a program in a base imperative language with an embedded declarative language. To our knowledge, this is the first turducken-style code generation task. For this task, we present Lyra: a dataset in Python with embedded SQL. This dataset contains 2,000 carefully annotated database manipulation programs from real-world projects. Each program is paired with both a Chinese comment and an English comment. In our experiment, we adopted Transformer, BERT-style, and GPT-style models as baselines. In the best setting, the generation performance of GPT-style models is better than others, where the AST exact matching accuracy is 24% and 25.5% when using Chinese and English comments, respectively. Therefore, we believe that Lyra provides a new challenge for code generation. Yet, overcoming this challenge may significantly boost the applicability of code generation techniques for real-world software development.
Less is More: Optimizing Function Calling for LLM Execution on Edge Devices
The advanced function-calling capabilities of foundation models open up new possibilities for deploying agents to perform complex API tasks. However, managing large amounts of data and interacting with numerous APIs makes function calling hardware-intensive and costly, especially on edge devices. Current Large Language Models (LLMs) struggle with function calling at the edge because they cannot handle complex inputs or manage multiple tools effectively. This results in low task-completion accuracy, increased delays, and higher power consumption. In this work, we introduce Less-is-More, a novel fine-tuning-free function-calling scheme for dynamic tool selection. Our approach is based on the key insight that selectively reducing the number of tools available to LLMs significantly improves their function-calling performance, execution time, and power efficiency on edge devices. Experimental results with state-of-the-art LLMs on edge hardware show agentic success rate improvements, with execution time reduced by up to 70% and power consumption by up to 40%.
Efficiently Programming Large Language Models using SGLang
Large language models (LLMs) are increasingly used for complex tasks requiring multiple chained generation calls, advanced prompting techniques, control flow, and interaction with external environments. However, efficient systems for programming and executing these applications are lacking. To bridge this gap, we introduce SGLang, a Structured Generation Language for LLMs. SGLang is designed for the efficient programming of LLMs and incorporates primitives for common LLM programming patterns. We have implemented SGLang as a domain-specific language embedded in Python, and we developed an interpreter, a compiler, and a high-performance runtime for SGLang. These components work together to enable optimizations such as parallelism, batching, caching, sharing, and other compilation techniques. Additionally, we propose RadixAttention, a novel technique that maintains a Least Recently Used (LRU) cache of the Key-Value (KV) cache for all requests in a radix tree, enabling automatic KV cache reuse across multiple generation calls at runtime. SGLang simplifies the writing of LLM programs and boosts execution efficiency. Our experiments demonstrate that SGLang can speed up common LLM tasks by up to 5x, while reducing code complexity and enhancing control.
Foundations for Near-Term Quantum Natural Language Processing
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality. We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar. Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same advantage. Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned. Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in mainstream AI, by placing linguistic structure at the heart of Wittgenstein's meaning-is-context.
Approximate Axiomatization for Differentially-Defined Functions
This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences.
ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
XGrammar: Flexible and Efficient Structured Generation Engine for Large Language Models
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These developments bring significant demands for structured generation in LLM inference. Context-free grammar is a flexible approach to enable structured generation via constrained decoding. However, executing context-free grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient structure generation engine for large language models. XGrammar accelerates context-free grammar execution by dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens that need to be interpreted during runtime. We further build transformations to expand the grammar context and reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero overhead structure generation in end-to-end low-LLM serving.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
Correctness of Automatic Differentiation via Diffeologies and Categorical Gluing
We present semantic correctness proofs of Automatic Differentiation (AD). We consider a forward-mode AD method on a higher order language with algebraic data types, and we characterise it as the unique structure preserving macro given a choice of derivatives for basic operations. We describe a rich semantics for differentiable programming, based on diffeological spaces. We show that it interprets our language, and we phrase what it means for the AD method to be correct with respect to this semantics. We show that our characterisation of AD gives rise to an elegant semantic proof of its correctness based on a gluing construction on diffeological spaces. We explain how this is, in essence, a logical relations argument. Finally, we sketch how the analysis extends to other AD methods by considering a continuation-based method.
SwiftEval: Developing a Language-Specific Benchmark for LLM-generated Code Evaluation
In recent years, large language models (LLMs) have showcased significant advancements in code generation. However, most evaluation benchmarks are primarily oriented towards Python, making it difficult to evaluate other programming languages, such as Swift, with high quality. By examining widely established multilingual benchmarks like HumanEval-XL and MultiPL-E, we identified critical issues specific to their Swift components, making them insufficient or even irrelevant for assessing LLM coding capabilities on Swift. Unlike these existing approaches, which prioritize rapid scaling and generalization by automatically translating Python-centric benchmarks with LLMs, we adopt a quality-over-quantity methodology. We present SwiftEval, the first Swift-oriented benchmark consisting of 28 carefully hand-crafted problems, and evaluate 44 popular Code LLMs on it. Our results show significant LLM scores drop for problems requiring language-specific features, most noticeable in the models of smaller sizes.
Categorical Stochastic Processes and Likelihood
In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood
FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving
Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.
Marian: Fast Neural Machine Translation in C++
We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed.
FBI-LLM: Scaling Up Fully Binarized LLMs from Scratch via Autoregressive Distillation
This work presents a Fully BInarized Large Language Model (FBI-LLM), demonstrating for the first time how to train a large-scale binary language model from scratch (not the partial binary or ternary LLM like BitNet b1.58) to match the performance of its full-precision counterparts (e.g., FP16 or BF16) in transformer-based LLMs. It achieves this by employing an autoregressive distillation (AD) loss with maintaining equivalent model dimensions (130M, 1.3B, 7B) and training data volume as regular LLM pretraining, while delivering competitive results in terms of perplexity and task-specific effectiveness. Intriguingly, by analyzing the training trajectory, we find that the pretrained weight is not necessary for training binarized LLMs from scratch. This research encourages a new computational framework and may facilitate the future design of specialized hardware tailored for fully 1-bit LLMs. We make all models, code, and training dataset fully accessible and transparent to support further research (Code: https://github.com/LiqunMa/FBI-LLM. Model: https://huggingface.co/LiqunMa/).
xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval
The ability to solve problems is a hallmark of intelligence and has been an enduring goal in AI. AI systems that can create programs as solutions to problems or assist developers in writing programs can increase productivity and make programming more accessible. Recently, pre-trained large language models have shown impressive abilities in generating new codes from natural language descriptions, repairing buggy codes, translating codes between languages, and retrieving relevant code segments. However, the evaluation of these models has often been performed in a scattered way on only one or two specific tasks, in a few languages, at a partial granularity (e.g., function) level and in many cases without proper training data. Even more concerning is that in most cases the evaluation of generated codes has been done in terms of mere lexical overlap rather than actual execution whereas semantic similarity (or equivalence) of two code segments depends only on their ``execution similarity'', i.e., being able to get the same output for a given input.
Stochastic LLMs do not Understand Language: Towards Symbolic, Explainable and Ontologically Based LLMs
In our opinion the exuberance surrounding the relative success of data-driven large language models (LLMs) is slightly misguided and for several reasons (i) LLMs cannot be relied upon for factual information since for LLMs all ingested text (factual or non-factual) was created equal; (ii) due to their subsymbolic na-ture, whatever 'knowledge' these models acquire about language will always be buried in billions of microfeatures (weights), none of which is meaningful on its own; and (iii) LLMs will often fail to make the correct inferences in several linguistic contexts (e.g., nominal compounds, copredication, quantifier scope ambi-guities, intensional contexts. Since we believe the relative success of data-driven large language models (LLMs) is not a reflection on the symbolic vs. subsymbol-ic debate but a reflection on applying the successful strategy of a bottom-up reverse engineering of language at scale, we suggest in this paper applying the effective bottom-up strategy in a symbolic setting resulting in symbolic, explainable, and ontologically grounded language models.
The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute
The Languini Kitchen serves as both a research collective and codebase designed to empower researchers with limited computational resources to contribute meaningfully to the field of language modelling. We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours. The number of tokens on which a model is trained is defined by the model's throughput and the chosen compute class. Notably, this approach avoids constraints on critical hyperparameters which affect total parameters or floating-point operations. For evaluation, we pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length. On it, we compare methods based on their empirical scaling trends which are estimated through experiments at various levels of compute. This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput. While the GPT baseline achieves better perplexity throughout all our levels of compute, our LSTM baseline exhibits a predictable and more favourable scaling law. This is due to the improved throughput and the need for fewer training tokens to achieve the same decrease in test perplexity. Extrapolating the scaling laws leads of both models results in an intersection at roughly 50,000 accelerator hours. We hope this work can serve as the foundation for meaningful and reproducible language modelling research.
Dafny as Verification-Aware Intermediate Language for Code Generation
Using large language models (LLMs) to generate source code from natural language prompts is a popular and promising idea with a wide range of applications. One of its limitations is that the generated code can be faulty at times, often in a subtle way, despite being presented to the user as correct. In this paper, we explore ways in which formal methods can assist with increasing the quality of code generated by an LLM. Instead of emitting code in a target language directly, we propose that the user guides the LLM to first generate an opaque intermediate representation, in the verification-aware language Dafny, that can be automatically validated for correctness against agreed on specifications. The correct Dafny program is then compiled to the target language and returned to the user. All user-system interactions throughout the procedure occur via natural language; Dafny code is never exposed. We describe our current prototype and report on its performance on the HumanEval Python code generation benchmarks.
Assessing Small Language Models for Code Generation: An Empirical Study with Benchmarks
The recent advancements of Small Language Models (SLMs) have opened new possibilities for efficient code generation. SLMs offer lightweight and cost-effective alternatives to Large Language Models (LLMs), making them attractive for use in resource-constrained environments. However, empirical understanding of SLMs, particularly their capabilities, limitations, and performance trade-offs in code generation remains limited. This study presents a comprehensive empirical evaluation of 20 open-source SLMs ranging from 0.4B to 10B parameters on five diverse code-related benchmarks (HumanEval, MBPP, Mercury, HumanEvalPack, and CodeXGLUE). The models are assessed along three dimensions: i) functional correctness of generated code, ii) computational efficiency and iii) performance across multiple programming languages. The findings of this study reveal that several compact SLMs achieve competitive results while maintaining a balance between performance and efficiency, making them viable for deployment in resource-constrained environments. However, achieving further improvements in accuracy requires switching to larger models. These models generally outperform their smaller counterparts, but they require much more computational power. We observe that for 10% performance improvements, models can require nearly a 4x increase in VRAM consumption, highlighting a trade-off between effectiveness and scalability. Besides, the multilingual performance analysis reveals that SLMs tend to perform better in languages such as Python, Java, and PHP, while exhibiting relatively weaker performance in Go, C++, and Ruby. However, statistical analysis suggests these differences are not significant, indicating a generalizability of SLMs across programming languages. Based on the findings, this work provides insights into the design and selection of SLMs for real-world code generation tasks.
Deciding not to Decide: Sound and Complete Effect Inference in the Presence of Higher-Rank Polymorphism
Type-and-effect systems help the programmer to organize data and computational effects in a program. While for traditional type systems expressive variants with sophisticated inference algorithms have been developed and widely used in programming languages, type-and-effect systems did not yet gain widespread adoption. One reason for this is that type-and-effect systems are more complex and the existing inference algorithms make compromises between expressiveness, intuitiveness, and decidability. In this work, we present an effect inference algorithm for a type-and-effect system with subtyping, expressive higher-rank polymorphism, and intuitive set-like semantics of effects. In order to deal with scoping issues of higher-rank polymorphism, we delay solving of effect constraints by transforming them into formulae of propositional logic. We prove soundness and completeness of our algorithm with respect to a declarative type-and-effect system. All the presented results have been formalized in the Rocq proof assistant, and the algorithm has been successfully implemented in a realistic programming language.
NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
Autonomous agent applications powered by large language models (LLMs) have recently risen to prominence as effective tools for addressing complex real-world tasks. At their core, agentic workflows rely on LLMs to plan and execute the use of tools and external Application Programming Interfaces (APIs) in sequence to arrive at the answer to a user's request. Various benchmarks and leaderboards have emerged to evaluate an LLM's capabilities for tool and API use; however, most of these evaluations only track single or multiple isolated API calling capabilities. In this paper, we present NESTFUL, a benchmark to evaluate LLMs on nested sequences of API calls, i.e., sequences where the output of one API call is passed as input to a subsequent call. NESTFUL has a total of 300 human annotated samples divided into two types - executable and non-executable. The executable samples are curated manually by crawling Rapid-APIs whereas the non-executable samples are hand picked by human annotators from data synthetically generated using an LLM. We evaluate state-of-the-art LLMs with function calling abilities on NESTFUL. Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
Tensor Logic: The Language of AI
Progress in AI is hindered by the lack of a programming language with all the requisite features. Libraries like PyTorch and TensorFlow provide automatic differentiation and efficient GPU implementation, but are additions to Python, which was never intended for AI. Their lack of support for automated reasoning and knowledge acquisition has led to a long and costly series of hacky attempts to tack them on. On the other hand, AI languages like LISP an Prolog lack scalability and support for learning. This paper proposes tensor logic, a language that solves these problems by unifying neural and symbolic AI at a fundamental level. The sole construct in tensor logic is the tensor equation, based on the observation that logical rules and Einstein summation are essentially the same operation, and all else can be reduced to them. I show how to elegantly implement key forms of neural, symbolic and statistical AI in tensor logic, including transformers, formal reasoning, kernel machines and graphical models. Most importantly, tensor logic makes new directions possible, such as sound reasoning in embedding space. This combines the scalability and learnability of neural networks with the reliability and transparency of symbolic reasoning, and is potentially a basis for the wider adoption of AI.
An Exploration of Left-Corner Transformations
The left-corner transformation (Rosenkrantz and Lewis, 1970) is used to remove left recursion from context-free grammars, which is an important step towards making the grammar parsable top-down with simple techniques. This paper generalizes prior left-corner transformations to support semiring-weighted production rules and to provide finer-grained control over which left corners may be moved. Our generalized left-corner transformation (GLCT) arose from unifying the left-corner transformation and speculation transformation (Eisner and Blatz, 2007), originally for logic programming. Our new transformation and speculation define equivalent weighted languages. Yet, their derivation trees are structurally different in an important way: GLCT replaces left recursion with right recursion, and speculation does not. We also provide several technical results regarding the formal relationships between the outputs of GLCT, speculation, and the original grammar. Lastly, we empirically investigate the efficiency of GLCT for left-recursion elimination from grammars of nine languages.
Assessing the Quality and Security of AI-Generated Code: A Quantitative Analysis
This study presents a quantitative evaluation of the code quality and security of five prominent Large Language Models (LLMs): Claude Sonnet 4, Claude 3.7 Sonnet, GPT-4o, Llama 3.2 90B, and OpenCoder 8B. While prior research has assessed the functional performance of LLM-generated code, this research tested LLM output from 4,442 Java coding assignments through comprehensive static analysis using SonarQube. The findings suggest that although LLMs can generate functional code, they also introduce a range of software defects, including bugs, security vulnerabilities, and code smells. These defects do not appear to be isolated; rather, they may represent shared weaknesses stemming from systemic limitations within current LLM code generation methods. In particular, critically severe issues, such as hard-coded passwords and path traversal vulnerabilities, were observed across multiple models. These results indicate that LLM-generated code requires verification in order to be considered production-ready. This study found no direct correlation between a model's functional performance (measured by Pass@1 rate of unit tests) and the overall quality and security of its generated code, measured by the number of SonarQube issues in benchmark solutions that passed the functional tests. This suggests that functional benchmark performance score is not a good indicator of overall code quality and security. The goal of this study is not to rank LLM performance but to highlight that all evaluated models appear to share certain weaknesses. Consequently, these findings support the view that static analysis can be a valuable instrument for detecting latent defects and an important safeguard for organizations that deploy AI in software development.
Infinity Instruct: Scaling Instruction Selection and Synthesis to Enhance Language Models
Large Language Models (LLMs) demonstrate strong performance in real-world applications, yet existing open-source instruction datasets often concentrate on narrow domains, such as mathematics or coding, limiting generalization and widening the gap with proprietary models. To bridge this gap, we introduce Infinity-Instruct, a high-quality instruction dataset designed to enhance both foundational and chat capabilities of LLMs through a two-phase pipeline. In Phase 1, we curate 7.4M high-quality foundational instructions (InfInstruct-F-7.4M) from over 100M samples using hybrid data selection techniques. In Phase 2, we synthesize 1.5M high-quality chat instructions (InfInstruct-G-1.5M) through a two-stage process involving instruction selection, evolution, and diagnostic filtering. We empirically evaluate Infinity-Instruct by fine-tuning several open-source models, including Mistral, LLaMA, Qwen, and Yi, and observe substantial performance gains across both foundational and instruction following benchmarks, consistently surpassing official instruction-tuned counterparts. Notably, InfInstruct-LLaMA3.1-70B outperforms GPT-4-0314 by 8.6\% on instruction following tasks while achieving comparable foundational performance. These results underscore the synergy between foundational and chat training and offer new insights into holistic LLM development. Our datasethttps://huggingface.co/datasets/BAAI/Infinity-Instruct and codeshttps://gitee.com/li-touch/infinity-instruct have been publicly released.
EVOC2RUST: A Skeleton-guided Framework for Project-Level C-to-Rust Translation
Rust's compile-time safety guarantees make it ideal for safety-critical systems, creating demand for translating legacy C codebases to Rust. While various approaches have emerged for this task, they face inherent trade-offs: rule-based solutions face challenges in meeting code safety and idiomaticity requirements, while LLM-based solutions often fail to generate semantically equivalent Rust code, due to the heavy dependencies of modules across the entire codebase. Recent studies have revealed that both solutions are limited to small-scale programs. In this paper, we propose EvoC2Rust, an automated framework for converting entire C projects to equivalent Rust ones. EvoC2Rust employs a skeleton-guided translation strategy for project-level translation. The pipeline consists of three evolutionary stages: 1) it first decomposes the C project into functional modules, employs a feature-mapping-enhanced LLM to transform definitions and macros and generates type-checked function stubs, which form a compilable Rust skeleton; 2) it then incrementally translates the function, replacing the corresponding stub placeholder; 3) finally, it repairs compilation errors by integrating LLM and static analysis. Through evolutionary augmentation, EvoC2Rust combines the advantages of both rule-based and LLM-based solutions. Our evaluation on open-source benchmarks and six industrial projects demonstrates EvoC2Rust's superior performance in project-level C-to-Rust translation. On average, it achieves 17.24% and 14.32% improvements in syntax and semantic accuracy over the LLM-based approaches, along with a 96.79% higher code safety rate than the rule-based tools. At the module level, EvoC2Rust reaches 92.25% compilation and 89.53% test pass rates on industrial projects, even for complex codebases and long functions.
Some Questions of Uniformity in Algorithmic Randomness
The Omega numbers-the halting probabilities of universal prefix-free machines-are known to be exactly the Martin-L{\"o}f random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-L{\"o}f random left-c.e. real alpha, a universal prefix-free machine U whose halting probability is alpha. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real alpha, one cannot uniformly produce a left-c.e. real beta such that alpha -- beta is neither left-c.e. nor right-c.e.
Fostering the Ecosystem of Open Neural Encoders for Portuguese with Albertina PT* Family
To foster the neural encoding of Portuguese, this paper contributes foundation encoder models that represent an expansion of the still very scarce ecosystem of large language models specifically developed for this language that are fully open, in the sense that they are open source and openly distributed for free under an open license for any purpose, thus including research and commercial usages. Like most languages other than English, Portuguese is low-resourced in terms of these foundational language resources, there being the inaugural 900 million parameter Albertina and 335 million Bertimbau. Taking this couple of models as an inaugural set, we present the extension of the ecosystem of state-of-the-art open encoders for Portuguese with a larger, top performance-driven model with 1.5 billion parameters, and a smaller, efficiency-driven model with 100 million parameters. While achieving this primary goal, further results that are relevant for this ecosystem were obtained as well, namely new datasets for Portuguese based on the SuperGLUE benchmark, which we also distribute openly.
STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning
In recent years, large language models (LLMs) have made significant progress in code intelligence, yet systematically evaluating their code understanding and reasoning abilities remains challenging. Mainstream benchmarks such as HumanEval and MBPP primarily assess functional correctness, while reasoning benchmarks like CRUXEVAL are limited to single-function, low-complexity scenarios. As a result, advanced models achieve nearly saturated scores, limiting their discriminative power. To address this, we present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark designed for complex multi-function understanding and fine-grained execution reasoning. SX-Bench features tasks involving collaboration among multiple sub-functions (e.g., chained calls, nested loops), shifting evaluation towards overall control and data flow modeling. It defines "computation steps" as the minimal execution unit and requires models to predict the total number of steps in reasoning tasks, thereby assessing a model's in-depth understanding of dynamic execution beyond simple I/O matching. Evaluation on over 20 mainstream models (including 14 reasoning-enhanced models) demonstrates that SX-Bench is highly discriminative: even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks, much lower than its saturated scores on previous benchmarks, thereby revealing bottlenecks in complex and fine-grained reasoning. We also release an automated pipeline combining program synthesis, symbolic execution, and LLM-aided validation for efficient benchmark generation and quality assurance. SX-Bench advances code evaluation from "single-function verification" to "multi-function dynamic reasoning," providing a key tool for the in-depth assessment of advanced code intelligence models.
Overcoming a Theoretical Limitation of Self-Attention
Although transformers are remarkably effective for many tasks, there are some surprisingly easy-looking regular languages that they struggle with. Hahn shows that for languages where acceptance depends on a single input symbol, a transformer's classification decisions become less and less confident (that is, with cross-entropy approaching 1 bit per string) as input strings get longer and longer. We examine this limitation using two languages: PARITY, the language of bit strings with an odd number of 1s, and FIRST, the language of bit strings starting with a 1. We demonstrate three ways of overcoming the limitation suggested by Hahn's lemma. First, we settle an open question by constructing a transformer that recognizes PARITY with perfect accuracy, and similarly for FIRST. Second, we use layer normalization to bring the cross-entropy of both models arbitrarily close to zero. Third, when transformers need to focus on a single position, as for FIRST, we find that they can fail to generalize to longer strings; we offer a simple remedy to this problem that also improves length generalization in machine translation.
What can Large Language Models Capture about Code Functional Equivalence?
Code-LLMs, LLMs pre-trained on large code corpora, have shown great progress in learning rich representations of the structure and syntax of code, successfully using it to generate or classify code fragments. At the same time, understanding if they are able to do so because they capture code semantics, and how well, is still an open question. In this paper, we tackle this problem by introducing SeqCoBench, a benchmark for systematically assessing how Code-LLMs can capture code functional equivalence. SeqCoBench contains over 20 code transformations that either preserve or alter the semantics of Python programs. We conduct extensive evaluations in different settings, including zero-shot and parameter-efficient finetuning methods on state-of-the-art (Code)-LLMs to see if they can discern semantically equivalent or different pairs of programs in SeqCoBench. We find that the performance gap between these LLMs and classical match-based retrieval scores is minimal, with both approaches showing a concerning lack of depth in understanding code semantics.
Byte BPE Tokenization as an Inverse string Homomorphism
Tokenization is an important preprocessing step in the training and inference of large language models (LLMs). While there has been extensive research on the expressive power of the neural achitectures used in LLMs, the impact of tokenization has not been well understood. In this work, we demonstrate that tokenization, irrespective of the algorithm used, acts as an inverse homomorphism between strings and tokens. This suggests that the character space of the source language and the token space of the tokenized language are homomorphic, preserving the structural properties of the source language. Additionally, we explore the concept of proper tokenization, which refers to an unambiguous tokenization returned from the tokenizer. Our analysis reveals that the expressiveness of neural architectures in recognizing context-free languages is not affected by tokenization.
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer LLM with the same model size and training tokens in terms of both perplexity and end-task performance, while being significantly more cost-effective in terms of latency, memory, throughput, and energy consumption. More profoundly, the 1.58-bit LLM defines a new scaling law and recipe for training new generations of LLMs that are both high-performance and cost-effective. Furthermore, it enables a new computation paradigm and opens the door for designing specific hardware optimized for 1-bit LLMs.
LLM-FP4: 4-Bit Floating-Point Quantized Transformers
We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.
Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.
Higher Order Automatic Differentiation of Higher Order Functions
We present semantic correctness proofs of automatic differentiation (AD). We consider a forward-mode AD method on a higher order language with algebraic data types, and we characterise it as the unique structure preserving macro given a choice of derivatives for basic operations. We describe a rich semantics for differentiable programming, based on diffeological spaces. We show that it interprets our language, and we phrase what it means for the AD method to be correct with respect to this semantics. We show that our characterisation of AD gives rise to an elegant semantic proof of its correctness based on a gluing construction on diffeological spaces. We explain how this is, in essence, a logical relations argument. Throughout, we show how the analysis extends to AD methods for computing higher order derivatives using a Taylor approximation.
Boolformer: Symbolic Regression of Logic Functions with Transformers
In this work, we introduce Boolformer, the first Transformer architecture trained to perform end-to-end symbolic regression of Boolean functions. First, we show that it can predict compact formulas for complex functions which were not seen during training, when provided a clean truth table. Then, we demonstrate its ability to find approximate expressions when provided incomplete and noisy observations. We evaluate the Boolformer on a broad set of real-world binary classification datasets, demonstrating its potential as an interpretable alternative to classic machine learning methods. Finally, we apply it to the widespread task of modelling the dynamics of gene regulatory networks. Using a recent benchmark, we show that Boolformer is competitive with state-of-the art genetic algorithms with a speedup of several orders of magnitude. Our code and models are available publicly.
Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
IFEvalCode: Controlled Code Generation
Code large language models (Code LLMs) have made significant progress in code generation by translating natural language descriptions into functional code; however, real-world applications often demand stricter adherence to detailed requirements such as coding style, line count, and structural constraints, beyond mere correctness. To address this, the paper introduces forward and backward constraints generation to improve the instruction-following capabilities of Code LLMs in controlled code generation, ensuring outputs align more closely with human-defined guidelines. The authors further present IFEvalCode, a multilingual benchmark comprising 1.6K test samples across seven programming languages (Python, Java, JavaScript, TypeScript, Shell, C++, and C#), with each sample featuring both Chinese and English queries. Unlike existing benchmarks, IFEvalCode decouples evaluation into two metrics: correctness (Corr.) and instruction-following (Instr.), enabling a more nuanced assessment. Experiments on over 40 LLMs reveal that closed-source models outperform open-source ones in controllable code generation and highlight a significant gap between the models' ability to generate correct code versus code that precisely follows instructions.
Efficient Long-Decoding Inference with Reasoning-Aware Attention Sparsity
Large Language Models (LLMs) have demonstrated strong capabilities across various domains, with recent advancements in challenging reasoning tasks such as mathematics and programming. However, solving reasoning tasks often requires long decoding chains (of thoughts), which incur O(N) time and memory consumption, where N is the chain length. To mitigate O(N) time and memory consumption, existing sparsity-based algorithms propose retaining only the most critical token's intermediate data (i.e., key-value cache) and discarding the rest. However, these existing algorithms struggle with the ``impossible trinity'' of accuracy, time, and memory. For example, the state-of-the-art algorithm, Quest, achieves high accuracy with O(L) time but O(N) memory (L is the cache budget, L ll N). To address this issue, in this paper, we identify a new attention pattern during the decode stage of reasoning tasks, where milestone tokens (analogous to lemmas in mathematical proofs) emerge, are utilized, and then become unimportant afterward. Based on this pattern, we propose a new algorithm named RaaS that identifies and retains milestone tokens only until they are no longer needed, achieving high accuracy with O(L) time and O(L) memory complexity.
Consistency of the Predicative Calculus of Cumulative Inductive Constructions (pCuIC)
In order to avoid well-know paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type_0 : Type_1 : cdots . Such type systems are called cumulative if for any type A we have that A : Type_{i} implies A : Type_{i+1}. The predicative calculus of inductive constructions (pCIC) which forms the basis of the Coq proof assistant, is one such system. In this paper we present and establish the soundness of the predicative calculus of cumulative inductive constructions (pCuIC) which extends the cumulativity relation to inductive types.
CoCoNUT: Structural Code Understanding does not fall out of a tree
Large Language Models (LLMs) have shown impressive performance across a wide array of tasks involving both structured and unstructured textual data. Recent results on various benchmarks for code generation, repair, or completion suggest that certain models have programming abilities comparable to or even surpass humans. In this work, we demonstrate that high performance on such benchmarks does not correlate to humans' innate ability to understand structural control flow in code. To this end, we extract solutions from the HumanEval benchmark, which the relevant models perform strongly on, and trace their execution path using function calls sampled from the respective test set. Using this dataset, we investigate the ability of seven state-of-the-art LLMs to match the execution trace and find that, despite their ability to generate semantically identical code, they possess limited ability to trace execution paths, especially for longer traces and specific control structures. We find that even the top-performing model, Gemini, can fully and correctly generate only 47% of HumanEval task traces. Additionally, we introduce a subset for three key structures not contained in HumanEval: Recursion, Parallel Processing, and Object-Oriented Programming, including concepts like Inheritance and Polymorphism. Besides OOP, we show that none of the investigated models achieve an accuracy over 5% on the relevant traces. Aggregating these specialized parts with HumanEval tasks, we present Benchmark CoCoNUT: Code Control Flow for Navigation Understanding and Testing, which measures a model's ability to trace execution of code upon relevant calls, including advanced structural components. We conclude that current LLMs need significant improvement to enhance code reasoning abilities. We hope our dataset helps researchers bridge this gap.
Best-First Beam Search
Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search since the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search -- a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of Best-First Beam Search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.
Function Assistant: A Tool for NL Querying of APIs
In this paper, we describe Function Assistant, a lightweight Python-based toolkit for querying and exploring source code repositories using natural language. The toolkit is designed to help end-users of a target API quickly find information about functions through high-level natural language queries and descriptions. For a given text query and background API, the tool finds candidate functions by performing a translation from the text to known representations in the API using the semantic parsing approach of Richardson and Kuhn (2017). Translations are automatically learned from example text-code pairs in example APIs. The toolkit includes features for building translation pipelines and query engines for arbitrary source code projects. To explore this last feature, we perform new experiments on 27 well-known Python projects hosted on Github.
Optimized Network Architectures for Large Language Model Training with Billions of Parameters
This paper challenges the well-established paradigm for building any-to-any networks for training Large Language Models (LLMs). We show that LLMs exhibit a unique communication pattern where only small groups of GPUs require high-bandwidth any-to-any communication within them, to achieve near-optimal training performance. Across these groups of GPUs, the communication is insignificant, sparse, and homogeneous. We propose a new network architecture that closely resembles the communication requirement of LLMs. Our architecture partitions the cluster into sets of GPUs interconnected with non-blocking any-to-any high-bandwidth interconnects that we call HB domains. Across the HB domains, the network only connects GPUs with communication demands. We call this network a "rail-only" connection, and show that our proposed architecture reduces the network cost by up to 75% compared to the state-of-the-art any-to-any Clos networks without compromising the performance of LLM training.
Lean-auto: An Interface between Lean 4 and Automated Theorem Provers
Proof automation is crucial to large-scale formal mathematics and software/hardware verification projects in ITPs. Sophisticated tools called hammers have been developed to provide general-purpose proof automation in ITPs such as Coq and Isabelle, leveraging the power of ATPs. An important component of a hammer is the translation algorithm from the ITP's logical system to the ATP's logical system. In this paper, we propose a novel translation algorithm for ITPs based on dependent type theory. The algorithm is implemented in Lean 4 under the name Lean-auto. When combined with ATPs, Lean-auto provides general-purpose, ATP-based proof automation in Lean 4 for the first time. Soundness of the main translation procedure is guaranteed, and experimental results suggest that our algorithm is sufficiently complete to automate the proof of many problems that arise in practical uses of Lean 4. We also find that Lean-auto solves more problems than existing tools on Lean 4's math library Mathlib4.
RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation
Large language models excel at function- and file-level code generation, yet generating complete repositories from scratch remains a fundamental challenge. This process demands coherent and reliable planning across proposal- and implementation-level stages, while natural language, due to its ambiguity and verbosity, is ill-suited for faithfully representing complex software structures. To address this, we introduce the Repository Planning Graph (RPG), a persistent representation that unifies proposal- and implementation-level planning by encoding capabilities, file structures, data flows, and functions in one graph. RPG replaces ambiguous natural language with an explicit blueprint, enabling long-horizon planning and scalable repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework for repository generation from scratch. It operates in three stages: proposal-level planning and implementation-level refinement to construct the graph, followed by graph-guided code generation with test validation. To evaluate this setting, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces repositories averaging nearly 36K LOC, roughly 3.9times the strongest baseline (Claude Code) and about 64times other baselines. It attains 81.5% functional coverage and a 69.7% pass rate, exceeding Claude Code by 27.3 and 35.8 percentage points, respectively. Further analysis shows that RPG models complex dependencies, enables progressively more sophisticated planning through near-linear scaling, and enhances LLM understanding of repositories, thereby accelerating agent localization.
Automated Design of Agentic Systems
Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.
Strongly Incremental Constituency Parsing with Graph Neural Networks
Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental: humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser.
Mission: Impossible Language Models
Chomsky and others have very directly claimed that large language models (LLMs) are equally capable of learning languages that are possible and impossible for humans to learn. However, there is very little published experimental evidence to support such a claim. Here, we develop a set of synthetic impossible languages of differing complexity, each designed by systematically altering English data with unnatural word orders and grammar rules. These languages lie on an impossibility continuum: at one end are languages that are inherently impossible, such as random and irreversible shuffles of English words, and on the other, languages that may not be intuitively impossible but are often considered so in linguistics, particularly those with rules based on counting word positions. We report on a wide range of evaluations to assess the capacity of GPT-2 small models to learn these uncontroversially impossible languages, and crucially, we perform these assessments at various stages throughout training to compare the learning process for each language. Our core finding is that GPT-2 struggles to learn impossible languages when compared to English as a control, challenging the core claim. More importantly, we hope our approach opens up a productive line of inquiry in which different LLM architectures are tested on a variety of impossible languages in an effort to learn more about how LLMs can be used as tools for these cognitive and typological investigations.
AskIt: Unified Programming Interface for Programming with Large Language Models
In the evolving landscape of software development, Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers grapple with decisions surrounding the direct embedding of LLMs within applications versus employing them for code generation. Moreover, effective prompt design becomes a critical concern, given the necessity of data extraction from natural language outputs. To address these intricacies, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration, offering type-guided output control, template-based function definitions, and a unified interface that diminishes the distinction between LLM-based code generation and application integration. Furthermore, through Programming by Example (PBE), AskIt harnesses the power of few-shot learning at the programming language level. Our evaluations underscore AskIt's potency. Across 50 tasks, AskIt generated concise prompts for the given tasks, achieving a 16.14% reduction in prompt length relative to benchmarks. Additionally, by enabling the transition from direct LLM application usage to function generation, AskIt achieved significant speedups, as observed in our GSM8K benchmark experiments. Through these advancements, AskIt streamlines the integration of LLMs in software development, offering a more efficient, versatile approach for leveraging emergent abilities. The implementations of AskIt in TypeScript and Python are available at https://github.com/katsumiok/ts-askit and https://github.com/katsumiok/pyaskit, respectively.
NoCode-bench: A Benchmark for Evaluating Natural Language-Driven Feature Addition
Natural language-driven no-code development allows users to specify software functionality using natural language (NL) instead of editing source code, promising increased productivity and democratized development. Large language models (LLMs) show potential in enabling this paradigm. In this context, software documentation acts as an NL specification for functionality. This work introduces NoCode-bench, a benchmark designed to evaluate LLMs on real-world NL-driven feature addition tasks, consisting of 634 tasks across 10 projects and 114k code changes. Each task pairs documentation updates with corresponding code implementations, validated by developer-written test cases. A subset of 114 high-quality, human-verified instances, NoCode-bench Verified, ensures reliable evaluation. Our experiments reveal that, despite high token usage, the best LLMs achieve a task success rate of only 28.07%, highlighting challenges in cross-file editing, codebase understanding, and tool calling. These findings indicate that LLMs are not yet ready for fully NL-driven no-code development. NoCode-bench lays the foundation for future advances in this area.
A Convenient Category for Higher-Order Probability Theory
Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
Recently, considerable efforts have been directed towards compressing Large Language Models (LLMs), which showcase groundbreaking capabilities across diverse applications but entail significant deployment costs due to their large sizes. Meanwhile, much less attention has been given to mitigating the costs associated with deploying multiple LLMs of varying sizes despite its practical significance. Thus, this paper introduces any-precision LLM, extending the concept of any-precision DNN to LLMs. Addressing challenges in any-precision LLM, we propose a lightweight method for any-precision quantization of LLMs, leveraging a post-training quantization framework, and develop a specialized software engine for its efficient serving. As a result, our solution significantly reduces the high costs of deploying multiple, different-sized LLMs by overlaying LLMs quantized to varying bit-widths, such as 3, 4, ..., n bits, into a memory footprint comparable to a single n-bit LLM. All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput, proving itself to be a compelling option for deployment of multiple, different-sized LLMs. The source code will be publicly available soon.
Preservation of Loewy Diagrams Under Exact Functors
We derive sufficient conditions for exact functors on locally finite abelian categories to preserve Loewy diagrams of objects. We apply our results to determine sufficient conditions for induction functors associated to simple current extensions of vertex algebras to preserve Loewy diagrams.
SemCoder: Training Code Language Models with Comprehensive Semantics
Code Large Language Models (Code LLMs) have excelled at tasks like code completion but often miss deeper semantics such as execution effects and dynamic states. This paper aims to bridge the gap between Code LLMs' reliance on static text data and the need for thorough semantic understanding for complex tasks like debugging and program repair. We introduce a novel strategy to train Code LLMs with comprehensive semantics, encompassing high-level functional descriptions, local execution effects of individual statements, and overall input/output behavior, thereby linking static code text with dynamic execution states. We begin by collecting PyX, a clean code corpus of fully executable samples with functional descriptions and execution tracing. We propose training Code LLMs to write code and represent and reason about execution behaviors using natural language, mimicking human verbal debugging. This approach led to the development of SemCoder, a Code LLM with only 6.7B parameters, which shows competitive performance with GPT-3.5-turbo on code generation and execution reasoning tasks. SemCoder achieves 81.1% on HumanEval (GPT-3.5-turbo: 76.8%) and 54.5% on CRUXEval-I (GPT-3.5-turbo: 50.3%). We also study the effectiveness of SemCoder's monologue-style execution reasoning compared to concrete scratchpad reasoning, showing that our approach integrates semantics from multiple dimensions more smoothly. Finally, we demonstrate the potential of applying learned semantics to improve Code LLMs' debugging and self-refining capabilities.
Activation Steering for Robust Type Prediction in CodeLLMs
Contemporary LLMs pretrained on code are capable of succeeding at a wide variety of programming tasks. However, their performance is very sensitive to syntactic features, such as the names of variables and types, the structure of code, and presence of type hints. We contribute an inference-time technique to make CodeLLMs more robust to syntactic distractors that are semantically irrelevant. Our methodology relies on activation steering, which involves editing internal model activations to steer the model towards the correct prediction. We contribute a novel way to construct steering vectors by taking inspiration from mutation testing, which constructs minimal semantics-breaking code edits. In contrast, we construct steering vectors from semantics-preserving code edits. We apply our approach to the task of type prediction for the gradually typed languages Python and TypeScript. This approach corrects up to 90% of type mispredictions. Finally, we show that steering vectors calculated from Python activations reliably correct type mispredictions in TypeScript, and vice versa. This result suggests that LLMs may be learning to transfer knowledge of types across programming languages.
Thought of Search: Planning with Language Models Through The Lens of Efficiency
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
C2RUST-BENCH: A Minimized, Representative Dataset for C-to-Rust Transpilation Evaluation
Despite the effort in vulnerability detection over the last two decades, memory safety vulnerabilities continue to be a critical problem. Recent reports suggest that the key solution is to migrate to memory-safe languages. To this end, C-to-Rust transpilation becomes popular to resolve memory-safety issues in C programs. Recent works propose C-to-Rust transpilation frameworks; however, a comprehensive evaluation dataset is missing. Although one solution is to put together a large enough dataset, this increases the analysis time in automated frameworks as well as in manual efforts for some cases. In this work, we build a method to select functions from a large set to construct a minimized yet representative dataset to evaluate the C-to-Rust transpilation. We propose C2RUST-BENCH that contains 2,905 functions, which are representative of C-to-Rust transpilation, selected from 15,503 functions of real-world programs.
The Heap: A Contamination-Free Multilingual Code Dataset for Evaluating Large Language Models
The recent rise in the popularity of large language models has spurred the development of extensive code datasets needed to train them. This has left limited code available for collection and use in the downstream investigation of specific behaviors, or evaluation of large language models without suffering from data contamination. To address this problem, we release The Heap, a large multilingual dataset covering 57 programming languages that has been deduplicated with respect to other open datasets of code, enabling researchers to conduct fair evaluations of large language models without significant data cleaning overhead.
Universal Fuzzing via Large Language Models
Fuzzing has achieved tremendous success in discovering bugs and vulnerabilities in various software systems. Systems under test (SUTs) that take in programming or formal language as inputs, e.g., compilers, runtime engines, constraint solvers, and software libraries with accessible APIs, are especially important as they are fundamental building blocks of software development. However, existing fuzzers for such systems often target a specific language, and thus cannot be easily applied to other languages or even other versions of the same language. Moreover, the inputs generated by existing fuzzers are often limited to specific features of the input language, and thus can hardly reveal bugs related to other or new features. This paper presents Fuzz4All, the first fuzzer that is universal in the sense that it can target many different input languages and many different features of these languages. The key idea behind Fuzz4All is to leverage large language models (LLMs) as an input generation and mutation engine, which enables the approach to produce diverse and realistic inputs for any practically relevant language. To realize this potential, we present a novel autoprompting technique, which creates LLM prompts that are wellsuited for fuzzing, and a novel LLM-powered fuzzing loop, which iteratively updates the prompt to create new fuzzing inputs. We evaluate Fuzz4All on nine systems under test that take in six different languages (C, C++, Go, SMT2, Java and Python) as inputs. The evaluation shows, across all six languages, that universal fuzzing achieves higher coverage than existing, language-specific fuzzers. Furthermore, Fuzz4All has identified 76 bugs in widely used systems, such as GCC, Clang, Z3, CVC5, OpenJDK, and the Qiskit quantum computing platform, with 47 bugs already confirmed by developers as previously unknown.
Mixture-of-Depths: Dynamically allocating compute in transformer-based language models
Transformer-based language models spread FLOPs uniformly across input sequences. In this work we demonstrate that transformers can instead learn to dynamically allocate FLOPs (or compute) to specific positions in a sequence, optimising the allocation along the sequence for different layers across the model depth. Our method enforces a total compute budget by capping the number of tokens (k) that can participate in the self-attention and MLP computations at a given layer. The tokens to be processed are determined by the network using a top-k routing mechanism. Since k is defined a priori, this simple procedure uses a static computation graph with known tensor sizes, unlike other conditional computation techniques. Nevertheless, since the identities of the k tokens are fluid, this method can expend FLOPs non-uniformly across the time and model depth dimensions. Thus, compute expenditure is entirely predictable in sum total, but dynamic and context-sensitive at the token-level. Not only do models trained in this way learn to dynamically allocate compute, they do so efficiently. These models match baseline performance for equivalent FLOPS and wall-clock times to train, but require a fraction of the FLOPs per forward pass, and can be upwards of 50\% faster to step during post-training sampling.
On Code-Induced Reasoning in LLMs
Code data has been shown to enhance the reasoning capabilities of large language models (LLMs), but it remains unclear which aspects of code are most responsible. We investigate this question with a systematic, data-centric framework. We construct parallel instruction datasets in ten programming languages and apply controlled perturbations that selectively disrupt structural or semantic properties of code. We then finetune LLMs from five model families and eight scales on each variant and evaluate their performance on natural language, math, and code tasks. Across 3,331 experiments, our results show that LLMs are more vulnerable to structural perturbations than semantic ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective as code, while encoding the same information with fewer tokens without adhering to original syntax can often retain or even improve performance. Remarkably, even corrupted code with misleading signals remains competitive when surface-level regularities persist. Finally, syntactic styles also shape task-specific gains with Python favoring natural language reasoning and lower-level languages such as Java and Rust favoring math. Through our systematic framework, we aim to provide insight into how different properties of code influence reasoning and inform the design of training data for enhancing LLM reasoning capabilities.
Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval
Retrieval-based language models (R-LM) model the probability of natural language text by combining a standard language model (LM) with examples retrieved from an external datastore at test time. While effective, a major bottleneck of using these models in practice is the computationally costly datastore search, which can be performed as frequently as every time step. In this paper, we present RetoMaton - retrieval automaton - which approximates the datastore search, based on (1) saving pointers between consecutive datastore entries, and (2) clustering of entries into "states". This effectively results in a weighted finite automaton built on top of the datastore, instead of representing the datastore as a flat list. The creation of the automaton is unsupervised, and a RetoMaton can be constructed from any text collection: either the original training corpus or from another domain. Traversing this automaton at inference time, in parallel to the LM inference, reduces its perplexity by up to 1.85, or alternatively saves up to 83% of the nearest neighbor searches over kNN-LM (Khandelwal et al., 2020) without hurting perplexity. Our code and trained models are available at https://github.com/neulab/retomaton .
NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search
Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
Infini-gram mini: Exact n-gram Search at the Internet Scale with FM-Index
Language models are trained mainly on massive text data from the Internet, and it becomes increasingly important to understand this data source. Exact-match search engines enable searching in large text corpora -- counting string appearances and retrieving the enclosing documents -- yet the high storage overhead hinders their application on Internet-scale data. We present Infini-gram mini, an efficient and scalable system that can make petabyte-level text corpora searchable. Based on the FM-index data structure (Ferragina and Manzini, 2000), which simultaneously indexes and compresses text, our system creates indexes with size only 44% of the corpus. Infini-gram mini greatly improves upon the best existing implementation of FM-index in terms of indexing speed (18times) and memory use during both indexing (3.2times reduction) and querying (down to a negligible amount). We index 46TB of Internet text in 50 days with a single 128-core CPU node (or 19 hours if using 75 such nodes). We show one important use case of Infini-gram mini in a large-scale analysis of benchmark contamination. We find several core LM evaluation benchmarks to be heavily contaminated in Internet crawls (up to 40% in SQuAD), which could lead to overestimating the capabilities of language models if trained on such data. We host a benchmark contamination bulletin to share the contamination rate of many core and community-contributed benchmarks. We also release a web interface and an API endpoint to serve general search queries on Infini-gram mini indexes.
Transformers need glasses! Information over-squashing in language tasks
We study how information propagates in decoder-only Transformers, which are the architectural backbone of most existing frontier large language models (LLMs). We rely on a theoretical signal propagation analysis -- specifically, we analyse the representations of the last token in the final layer of the Transformer, as this is the representation used for next-token prediction. Our analysis reveals a representational collapse phenomenon: we prove that certain distinct sequences of inputs to the Transformer can yield arbitrarily close representations in the final token. This effect is exacerbated by the low-precision floating-point formats frequently used in modern LLMs. As a result, the model is provably unable to respond to these sequences in different ways -- leading to errors in, e.g., tasks involving counting or copying. Further, we show that decoder-only Transformer language models can lose sensitivity to specific tokens in the input, which relates to the well-known phenomenon of over-squashing in graph neural networks. We provide empirical evidence supporting our claims on contemporary LLMs. Our theory also points to simple solutions towards ameliorating these issues.
EvoGraph: Hybrid Directed Graph Evolution toward Software 3.0
We introduce **EvoGraph**, a framework that enables software systems to evolve their own source code, build pipelines, documentation, and tickets. EvoGraph represents every artefact in a typed directed graph, applies learned mutation operators driven by specialized small language models (SLMs), and selects survivors with a multi-objective fitness. On three benchmarks, EvoGraph fixes 83% of known security vulnerabilities, translates COBOL to Java with 93% functional equivalence (test verified), and maintains documentation freshness within two minutes. Experiments show a 40% latency reduction and a sevenfold drop in feature lead time compared with strong baselines. We extend our approach to **evoGraph**, leveraging language-specific SLMs for modernizing .NET, Lisp, CGI, ColdFusion, legacy Python, and C codebases, achieving 82-96% semantic equivalence across languages while reducing computational costs by 90% compared to large language models. EvoGraph's design responds to empirical failure modes in legacy modernization, such as implicit contracts, performance preservation, and integration evolution. Our results suggest a practical path toward Software 3.0, where systems adapt continuously yet remain under measurable control.
Don't Judge Code by Its Cover: Exploring Biases in LLM Judges for Code Evaluation
With the growing use of large language models(LLMs) as evaluators, their application has expanded to code evaluation tasks, where they assess the correctness of generated code without relying on reference implementations. While this offers scalability and flexibility, it also raises a critical, unresolved question: Can LLM judges fairly and robustly evaluate semantically equivalent code with superficial variations? Functionally correct code often exhibits variations-such as differences in variable names, comments, or formatting-that should not influence its correctness. Yet, whether LLM judges can reliably handle these variations remains unclear. We present the first comprehensive study of this issue, defining six types of potential bias in code evaluation and revealing their systematic impact on LLM judges. Across five programming languages and multiple LLMs, we empirically demonstrate that all tested LLM judges are susceptible to both positive and negative biases, resulting in inflated or unfairly low scores. Moreover, we observe that LLM judges remain vulnerable to these biases even when prompted to generate test cases before scoring, highlighting the need for more robust code evaluation methods.
Nonparametric Iterative Machine Teaching
In this paper, we consider the problem of Iterative Machine Teaching (IMT), where the teacher provides examples to the learner iteratively such that the learner can achieve fast convergence to a target model. However, existing IMT algorithms are solely based on parameterized families of target models. They mainly focus on convergence in the parameter space, resulting in difficulty when the target models are defined to be functions without dependency on parameters. To address such a limitation, we study a more general task -- Nonparametric Iterative Machine Teaching (NIMT), which aims to teach nonparametric target models to learners in an iterative fashion. Unlike parametric IMT that merely operates in the parameter space, we cast NIMT as a functional optimization problem in the function space. To solve it, we propose both random and greedy functional teaching algorithms. We obtain the iterative teaching dimension (ITD) of the random teaching algorithm under proper assumptions, which serves as a uniform upper bound of ITD in NIMT. Further, the greedy teaching algorithm has a significantly lower ITD, which reaches a tighter upper bound of ITD in NIMT. Finally, we verify the correctness of our theoretical findings with extensive experiments in nonparametric scenarios.
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Several recent advances in AI systems (e.g., Tree-of-Thoughts and Program-Aided Language Models) solve problems by providing a "scaffolding" program that structures multiple calls to language models to generate better outputs. A scaffolding program is written in a programming language such as Python. In this work, we use a language-model-infused scaffolding program to improve itself. We start with a seed "improver" that improves an input program according to a given utility function by querying a language model several times and returning the best solution. We then run this seed improver to improve itself. Across a small set of downstream tasks, the resulting improved improver generates programs with significantly better performance than its seed improver. Afterward, we analyze the variety of self-improvement strategies proposed by the language model, including beam search, genetic algorithms, and simulated annealing. Since the language models themselves are not altered, this is not full recursive self-improvement. Nonetheless, it demonstrates that a modern language model, GPT-4 in our proof-of-concept experiments, is capable of writing code that can call itself to improve itself. We critically consider concerns around the development of self-improving technologies and evaluate the frequency with which the generated code bypasses a sandbox.
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
