new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 28

Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency

Large language models achieve high task performance yet often hallucinate or rely on outdated knowledge. Retrieval-augmented generation (RAG) addresses these gaps by coupling generation with external search. We analyse how hyperparameters influence speed and quality in RAG systems, covering Chroma and Faiss vector stores, chunking policies, cross-encoder re-ranking, and temperature, and we evaluate six metrics: faithfulness, answer correctness, answer relevancy, context precision, context recall, and answer similarity. Chroma processes queries 13% faster, whereas Faiss yields higher retrieval precision, revealing a clear speed-accuracy trade-off. Naive fixed-length chunking with small windows and minimal overlap outperforms semantic segmentation while remaining the quickest option. Re-ranking provides modest gains in retrieval quality yet increases runtime by roughly a factor of 5, so its usefulness depends on latency constraints. These results help practitioners balance computational cost and accuracy when tuning RAG systems for transparent, up-to-date responses. Finally, we re-evaluate the top configurations with a corrective RAG workflow and show that their advantages persist when the model can iteratively request additional evidence. We obtain a near-perfect context precision (99%), which demonstrates that RAG systems can achieve extremely high retrieval accuracy with the right combination of hyperparameters, with significant implications for applications where retrieval quality directly impacts downstream task performance, such as clinical decision support in healthcare.

  • 4 authors
·
May 13 2

A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions

Retrieval-Augmented Generation (RAG) represents a major advancement in natural language processing (NLP), combining large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance. This paper presents a comprehensive systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations across diverse applications. The review begins by outlining the motivations behind RAG, particularly its ability to mitigate hallucinations and outdated knowledge in parametric models. Core technical components-retrieval mechanisms, sequence-to-sequence generation models, and fusion strategies are examined in detail. A year-by-year analysis highlights key milestones and research trends, providing insight into RAG's rapid growth. The paper further explores the deployment of RAG in enterprise systems, addressing practical challenges related to retrieval of proprietary data, security, and scalability. A comparative evaluation of RAG implementations is conducted, benchmarking performance on retrieval accuracy, generation fluency, latency, and computational efficiency. Persistent challenges such as retrieval quality, privacy concerns, and integration overhead are critically assessed. Finally, the review highlights emerging solutions, including hybrid retrieval approaches, privacy-preserving techniques, optimized fusion strategies, and agentic RAG architectures. These innovations point toward a future of more reliable, efficient, and context-aware knowledge-intensive NLP systems.

  • 4 authors
·
Jul 24

TechniqueRAG: Retrieval Augmented Generation for Adversarial Technique Annotation in Cyber Threat Intelligence Text

Accurately identifying adversarial techniques in security texts is critical for effective cyber defense. However, existing methods face a fundamental trade-off: they either rely on generic models with limited domain precision or require resource-intensive pipelines that depend on large labeled datasets and task-specific optimizations, such as custom hard-negative mining and denoising, resources rarely available in specialized domains. We propose TechniqueRAG, a domain-specific retrieval-augmented generation (RAG) framework that bridges this gap by integrating off-the-shelf retrievers, instruction-tuned LLMs, and minimal text-technique pairs. Our approach addresses data scarcity by fine-tuning only the generation component on limited in-domain examples, circumventing the need for resource-intensive retrieval training. While conventional RAG mitigates hallucination by coupling retrieval and generation, its reliance on generic retrievers often introduces noisy candidates, limiting domain-specific precision. To address this, we enhance retrieval quality and domain specificity through zero-shot LLM re-ranking, which explicitly aligns retrieved candidates with adversarial techniques. Experiments on multiple security benchmarks demonstrate that TechniqueRAG achieves state-of-the-art performance without extensive task-specific optimizations or labeled data, while comprehensive analysis provides further insights.

RuleRAG: Rule-guided retrieval-augmented generation with language models for question answering

Retrieval-augmented generation (RAG) framework has shown promising potential in knowledge-intensive question answering (QA) by retrieving external corpus and generating based on augmented context. However, existing approaches only consider the query itself, neither specifying the retrieval preferences for the retrievers nor informing the generators of how to refer to the retrieved documents for the answers, which poses a significant challenge to the QA performance. To address these issues, we propose Rule-Guided Retrieval-Augmented Generation with LMs, which explicitly introduces symbolic rules as demonstrations for in-context learning (RuleRAG-ICL) to guide retrievers to retrieve logically related documents in the directions of rules and uniformly guide generators to generate answers attributed by the guidance of the same set of rules. Moreover, the combination of queries and rules can be further used as supervised fine-tuning data to update retrievers and generators (RuleRAG-FT) to achieve better rule-based instruction following capability, leading to retrieve more supportive results and generate more acceptable answers. To emphasize the attribution of rules, we construct five rule-aware QA benchmarks, including three temporal and two static scenarios, and equip RuleRAG with several kinds of retrievers and generators. Experiments demonstrate that training-free RuleRAG-ICL effectively improves the retrieval quality of +89.2% in Recall@10 scores and generation accuracy of +103.1% in exact match scores over standard RAG on average across the five benchmarks, and further fine-tuned RuleRAG-FT consistently yields more significant performance enhancement. Extensive analyses indicate that RuleRAG scales well with increasing numbers of retrieved documents and exhibits generalization ability for untrained rules.

  • 6 authors
·
Oct 15, 2024

ERAGent: Enhancing Retrieval-Augmented Language Models with Improved Accuracy, Efficiency, and Personalization

Retrieval-augmented generation (RAG) for language models significantly improves language understanding systems. The basic retrieval-then-read pipeline of response generation has evolved into a more extended process due to the integration of various components, sometimes even forming loop structures. Despite its advancements in improving response accuracy, challenges like poor retrieval quality for complex questions that require the search of multifaceted semantic information, inefficiencies in knowledge re-retrieval during long-term serving, and lack of personalized responses persist. Motivated by transcending these limitations, we introduce ERAGent, a cutting-edge framework that embodies an advancement in the RAG area. Our contribution is the introduction of the synergistically operated module: Enhanced Question Rewriter and Knowledge Filter, for better retrieval quality. Retrieval Trigger is incorporated to curtail extraneous external knowledge retrieval without sacrificing response quality. ERAGent also personalizes responses by incorporating a learned user profile. The efficiency and personalization characteristics of ERAGent are supported by the Experiential Learner module which makes the AI assistant being capable of expanding its knowledge and modeling user profile incrementally. Rigorous evaluations across six datasets and three question-answering tasks prove ERAGent's superior accuracy, efficiency, and personalization, emphasizing its potential to advance the RAG field and its applicability in practical systems.

  • 6 authors
·
May 6, 2024

Distill-VQ: Learning Retrieval Oriented Vector Quantization By Distilling Knowledge from Dense Embeddings

Vector quantization (VQ) based ANN indexes, such as Inverted File System (IVF) and Product Quantization (PQ), have been widely applied to embedding based document retrieval thanks to the competitive time and memory efficiency. Originally, VQ is learned to minimize the reconstruction loss, i.e., the distortions between the original dense embeddings and the reconstructed embeddings after quantization. Unfortunately, such an objective is inconsistent with the goal of selecting ground-truth documents for the input query, which may cause severe loss of retrieval quality. Recent works identify such a defect, and propose to minimize the retrieval loss through contrastive learning. However, these methods intensively rely on queries with ground-truth documents, whose performance is limited by the insufficiency of labeled data. In this paper, we propose Distill-VQ, which unifies the learning of IVF and PQ within a knowledge distillation framework. In Distill-VQ, the dense embeddings are leveraged as "teachers", which predict the query's relevance to the sampled documents. The VQ modules are treated as the "students", which are learned to reproduce the predicted relevance, such that the reconstructed embeddings may fully preserve the retrieval result of the dense embeddings. By doing so, Distill-VQ is able to derive substantial training signals from the massive unlabeled data, which significantly contributes to the retrieval quality. We perform comprehensive explorations for the optimal conduct of knowledge distillation, which may provide useful insights for the learning of VQ based ANN index. We also experimentally show that the labeled data is no longer a necessity for high-quality vector quantization, which indicates Distill-VQ's strong applicability in practice.

  • 13 authors
·
Mar 31, 2022

Benchmarking Information Retrieval Models on Complex Retrieval Tasks

Large language models (LLMs) are incredible and versatile tools for text-based tasks that have enabled countless, previously unimaginable, applications. Retrieval models, in contrast, have not yet seen such capable general-purpose models emerge. To achieve this goal, retrieval models must be able to perform complex retrieval tasks, where queries contain multiple parts, constraints, or requirements in natural language. These tasks represent a natural progression from the simple, single-aspect queries that are used in the vast majority of existing, commonly used evaluation sets. Complex queries naturally arise as people expect search systems to handle more specific and often ambitious information requests, as is demonstrated by how people use LLM-based information systems. Despite the growing desire for retrieval models to expand their capabilities in complex retrieval tasks, there exist limited resources to assess the ability of retrieval models on a comprehensive set of diverse complex tasks. The few resources that do exist feature a limited scope and often lack realistic settings making it hard to know the true capabilities of retrieval models on complex real-world retrieval tasks. To address this shortcoming and spur innovation in next-generation retrieval models, we construct a diverse and realistic set of complex retrieval tasks and benchmark a representative set of state-of-the-art retrieval models. Additionally, we explore the impact of LLM-based query expansion and rewriting on retrieval quality. Our results show that even the best models struggle to produce high-quality retrieval results with the highest average nDCG@10 of only 0.346 and R@100 of only 0.587 across all tasks. Although LLM augmentation can help weaker models, the strongest model has decreased performance across all metrics with all rewriting techniques.

  • 2 authors
·
Sep 8 2

RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing

Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.

  • 2 authors
·
Apr 30, 2024

Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems

Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.

  • 3 authors
·
Sep 21, 2023

LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora

Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.

  • 8 authors
·
Oct 11

EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation

We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT

  • 6 authors
·
Dec 17, 2024

Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation

Retrieval, re-ranking, and retrieval-augmented generation (RAG) are critical components of modern applications in information retrieval, question answering, or knowledge-based text generation. However, existing solutions are often fragmented, lacking a unified framework that easily integrates these essential processes. The absence of a standardized implementation, coupled with the complexity of retrieval and re-ranking workflows, makes it challenging for researchers to compare and evaluate different approaches in a consistent environment. While existing toolkits such as Rerankers and RankLLM provide general-purpose reranking pipelines, they often lack the flexibility required for fine-grained experimentation and benchmarking. In response to these challenges, we introduce Rankify, a powerful and modular open-source toolkit designed to unify retrieval, re-ranking, and RAG within a cohesive framework. Rankify supports a wide range of retrieval techniques, including dense and sparse retrievers, while incorporating state-of-the-art re-ranking models to enhance retrieval quality. Additionally, Rankify includes a collection of pre-retrieved datasets to facilitate benchmarking, available at Huggingface (https://huggingface.co/datasets/abdoelsayed/reranking-datasets-light). To encourage adoption and ease of integration, we provide comprehensive documentation (http://rankify.readthedocs.io/), an open-source implementation on GitHub (https://github.com/DataScienceUIBK/rankify), and a PyPI package for easy installation (https://pypi.org/project/rankify/). As a unified and lightweight framework, Rankify allows researchers and practitioners to advance retrieval and re-ranking methodologies while ensuring consistency, scalability, and ease of use.

  • 5 authors
·
Feb 4

SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval

Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.

  • 3 authors
·
Sep 30 3

Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging

Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.

  • 2 authors
·
May 14

DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis

The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of 19% across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.

  • 7 authors
·
Aug 27 2

Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding

Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.

  • 5 authors
·
Oct 14, 2022

$\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker

Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E^2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E^2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Alibaba-NLP Alibaba-NLP
·
Oct 26 1

KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model

In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.

KaLM-Embedding KaLM-Embedding
·
Jun 25

Online Writer Retrieval with Chinese Handwritten Phrases: A Synergistic Temporal-Frequency Representation Learning Approach

Currently, the prevalence of online handwriting has spurred a critical need for effective retrieval systems to accurately search relevant handwriting instances from specific writers, known as online writer retrieval. Despite the growing demand, this field suffers from a scarcity of well-established methodologies and public large-scale datasets. This paper tackles these challenges with a focus on Chinese handwritten phrases. First, we propose DOLPHIN, a novel retrieval model designed to enhance handwriting representations through synergistic temporal-frequency analysis. For frequency feature learning, we propose the HFGA block, which performs gated cross-attention between the vanilla temporal handwriting sequence and its high-frequency sub-bands to amplify salient writing details. For temporal feature learning, we propose the CAIR block, tailored to promote channel interaction and reduce channel redundancy. Second, to address data deficit, we introduce OLIWER, a large-scale online writer retrieval dataset encompassing over 670,000 Chinese handwritten phrases from 1,731 individuals. Through extensive evaluations, we demonstrate the superior performance of DOLPHIN over existing methods. In addition, we explore cross-domain writer retrieval and reveal the pivotal role of increasing feature alignment in bridging the distributional gap between different handwriting data. Our findings emphasize the significance of point sampling frequency and pressure features in improving handwriting representation quality and retrieval performance. Code and dataset are available at https://github.com/SCUT-DLVCLab/DOLPHIN.

  • 2 authors
·
Dec 16, 2024

MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation

Large Language Models (LLMs) are becoming essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses. However, the existing RAG systems frequently struggle with the quality of retrieval documents, as irrelevant or noisy documents degrade performance, increase computational overhead, and undermine response reliability. To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG), a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents. Specifically, MAIN-RAG introduces an adaptive filtering mechanism that dynamically adjusts the relevance filtering threshold based on score distributions, effectively minimizing noise while maintaining high recall of relevant documents. The proposed approach leverages inter-agent consensus to ensure robust document selection without requiring additional training data or fine-tuning. Experimental results across four QA benchmarks demonstrate that MAIN-RAG consistently outperforms traditional RAG approaches, achieving a 2-11% improvement in answer accuracy while reducing the number of irrelevant retrieved documents. Quantitative analysis further reveals that our approach achieves superior response consistency and answer accuracy over baseline methods, offering a competitive and practical alternative to training-based solutions.

  • 11 authors
·
Dec 31, 2024

HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) has become a fundamental paradigm for addressing the challenges faced by large language models in handling real-time information and domain-specific problems. Traditional RAG systems primarily rely on the in-context learning (ICL) capabilities of the large language model itself. Still, in-depth research on the specific capabilities needed by the RAG generation model is lacking, leading to challenges with inconsistent document quality and retrieval system imperfections. Even the limited studies that fine-tune RAG generative models often lack a granular focus on RAG task or a deeper utilization of chain-of-thought processes. To address this, we propose that RAG models should possess three progressively hierarchical abilities (1) Filtering: the ability to select relevant information; (2) Combination: the ability to combine semantic information across paragraphs; and (3) RAG-specific reasoning: the ability to further process external knowledge using internal knowledge. Thus, we introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG) incorporates a "think before answering" strategy. This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought. Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.

  • 7 authors
·
Jul 8

Large Language Models are In-Context Molecule Learners

Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Cross-modal Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Cross-modal Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve informative context examples. Additionally, we also propose Post-retrieval Re-ranking with Sequence Reversal and Random Walk to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context molecule learning capability of LLMs with retrieved examples and adapts the parameters of LLMs for the molecule-caption translation task. Experimental results demonstrate that ICMT can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.

  • 6 authors
·
Mar 6, 2024

Vendi-RAG: Adaptively Trading-Off Diversity And Quality Significantly Improves Retrieval Augmented Generation With LLMs

Retrieval-augmented generation (RAG) enhances large language models (LLMs) for domain-specific question-answering (QA) tasks by leveraging external knowledge sources. However, traditional RAG systems primarily focus on relevance-based retrieval and often struggle with redundancy, especially when reasoning requires connecting information from multiple sources. This paper introduces Vendi-RAG, a framework based on an iterative process that jointly optimizes retrieval diversity and answer quality. This joint optimization leads to significantly higher accuracy for multi-hop QA tasks. Vendi-RAG leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to promote semantic diversity in document retrieval. It then uses an LLM judge that evaluates candidate answers, generated after a reasoning step, and outputs a score that the retriever uses to balance relevance and diversity among the retrieved documents during each iteration. Experiments on three challenging datasets -- HotpotQA, MuSiQue, and 2WikiMultiHopQA -- demonstrate Vendi-RAG's effectiveness in multi-hop reasoning tasks. The framework achieves significant accuracy improvements over traditional single-step and multi-step RAG approaches, with accuracy increases reaching up to +4.2% on HotpotQA, +4.1% on 2WikiMultiHopQA, and +1.3% on MuSiQue compared to Adaptive-RAG, the current best baseline. The benefits of Vendi-RAG are even more pronounced as the number of retrieved documents increases. Finally, we evaluated Vendi-RAG across different LLM backbones, including GPT-3.5, GPT-4, and GPT-4o-mini, and observed consistent improvements, demonstrating that the framework's advantages are model-agnostic.

  • 2 authors
·
Feb 16

Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems

Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.

  • 6 authors
·
Jul 15, 2024

CoRNStack: High-Quality Contrastive Data for Better Code Ranking

Effective code retrieval plays a crucial role in advancing code generation, bug fixing, and software maintenance, particularly as software systems increase in complexity. While current code embedding models have demonstrated promise in retrieving code snippets for small-scale, well-defined tasks, they often underperform in more demanding real-world applications such as bug localization within GitHub repositories. We hypothesize that a key issue is their reliance on noisy and inconsistent datasets for training, which impedes their ability to generalize to more complex retrieval scenarios. To address these limitations, we introduce CoRNStack, a large-scale, high-quality contrastive training dataset for code that spans multiple programming languages. This dataset is curated using consistency filtering to eliminate noisy positives and is further enriched with mined hard negatives, thereby facilitating more effective learning. We demonstrate that contrastive training of embedding models using CoRNStack leads to state-of-the-art performance across a variety of code retrieval tasks. Furthermore, the dataset can be leveraged for training code reranking models, a largely underexplored area compared to text reranking. Our finetuned code reranking model significantly improves the ranking quality over the retrieved results. Finally, by employing our code retriever and reranker together, we demonstrate significant improvements in function localization for GitHub issues, an important component of real-world software development.

  • 7 authors
·
Dec 1, 2024

Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization

Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of design complexities - from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) - requires a nuanced `synthesis recipe` guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned alpha parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.

  • 5 authors
·
Jan 22, 2024

Towards Mixed-Modal Retrieval for Universal Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) by retrieving relevant documents from an external corpus. However, existing RAG systems primarily focus on unimodal text documents, and often fall short in real-world scenarios where both queries and documents may contain mixed modalities (such as text and images). In this paper, we address the challenge of Universal Retrieval-Augmented Generation (URAG), which involves retrieving and reasoning over mixed-modal information to improve vision-language generation. To this end, we propose Nyx, a unified mixed-modal to mixed-modal retriever tailored for URAG scenarios. To mitigate the scarcity of realistic mixed-modal data, we introduce a four-stage automated pipeline for generation and filtering, leveraging web documents to construct NyxQA, a dataset comprising diverse mixed-modal question-answer pairs that better reflect real-world information needs. Building on this high-quality dataset, we adopt a two-stage training framework for Nyx: we first perform pre-training on NyxQA along with a variety of open-source retrieval datasets, followed by supervised fine-tuning using feedback from downstream vision-language models (VLMs) to align retrieval outputs with generative preferences. Experimental results demonstrate that Nyx not only performs competitively on standard text-only RAG benchmarks, but also excels in the more general and realistic URAG setting, significantly improving generation quality in vision-language tasks.

Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study

Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT in both fine-tuning and zero-shot evaluation settings. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: https://github.com/NVIDIA/Megatron-LM#retro.

  • 12 authors
·
Apr 13, 2023

Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is often used with Large Language Models (LLMs) to infuse domain knowledge or user-specific information. In RAG, given a user query, a retriever extracts chunks of relevant text from a knowledge base. These chunks are sent to an LLM as part of the input prompt. Typically, any given chunk is repeatedly retrieved across user questions. However, currently, for every question, attention-layers in LLMs fully compute the key values (KVs) repeatedly for the input chunks, as state-of-the-art methods cannot reuse KV-caches when chunks appear at arbitrary locations with arbitrary contexts. Naive reuse leads to output quality degradation. This leads to potentially redundant computations on expensive GPUs and increases latency. In this work, we propose Cache-Craft, a system for managing and reusing precomputed KVs corresponding to the text chunks (we call chunk-caches) in RAG-based systems. We present how to identify chunk-caches that are reusable, how to efficiently perform a small fraction of recomputation to fix the cache to maintain output quality, and how to efficiently store and evict chunk-caches in the hardware for maximizing reuse while masking any overheads. With real production workloads as well as synthetic datasets, we show that Cache-Craft reduces redundant computation by 51% over SOTA prefix-caching and 75% over full recomputation. Additionally, with continuous batching on a real production workload, we get a 1.6X speed up in throughput and a 2X reduction in end-to-end response latency over prefix-caching while maintaining quality, for both the LLaMA-3-8B and LLaMA-3-70B models.

  • 9 authors
·
Feb 5

MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.

  • 5 authors
·
May 29, 2024

CLIP with Quality Captions: A Strong Pretraining for Vision Tasks

CLIP models perform remarkably well on zero-shot classification and retrieval tasks. But recent studies have shown that learnt representations in CLIP are not well suited for dense prediction tasks like object detection, semantic segmentation or depth estimation. More recently, multi-stage training methods for CLIP models was introduced to mitigate the weak performance of CLIP on downstream tasks. In this work, we find that simply improving the quality of captions in image-text datasets improves the quality of CLIP's visual representations, resulting in significant improvement on downstream dense prediction vision tasks. In fact, we find that CLIP pretraining with good quality captions can surpass recent supervised, self-supervised and weakly supervised pretraining methods. We show that when CLIP model with ViT-B/16 as image encoder is trained on well aligned image-text pairs it obtains 12.1% higher mIoU and 11.5% lower RMSE on semantic segmentation and depth estimation tasks over recent state-of-the-art Masked Image Modeling (MIM) pretraining methods like Masked Autoencoder (MAE). We find that mobile architectures also benefit significantly from CLIP pretraining. A recent mobile vision architecture, MCi2, with CLIP pretraining obtains similar performance as Swin-L, pretrained on ImageNet-22k for semantic segmentation task while being 6.1times smaller. Moreover, we show that improving caption quality results in 10times data efficiency when finetuning for dense prediction tasks.

  • 4 authors
·
May 14, 2024

HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models

Large-scale but noisy image-text pair data have paved the way for the success of Contrastive Language-Image Pretraining (CLIP). As the foundation vision encoder, CLIP in turn serves as the cornerstone for most large vision-language models (LVLMs). This interdependence naturally raises an interesting question: Can we reciprocally leverage LVLMs to enhance the quality of image-text pair data, thereby opening the possibility of a self-reinforcing cycle for continuous improvement? In this work, we take a significant step toward this vision by introducing an LVLM-driven data refinement pipeline. Our framework leverages LVLMs to process images and their raw alt-text, generating four complementary textual formulas: long positive descriptions, long negative descriptions, short positive tags, and short negative tags. Applying this pipeline to the curated DFN-Large dataset yields VLM-150M, a refined dataset enriched with multi-grained annotations. Based on this dataset, we further propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags as additional supervised signals. The resulting model, namely HQ-CLIP, demonstrates remarkable improvements across diverse benchmarks. Within a comparable training data scale, our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks. In retrieval benchmarks, HQ-CLIP even surpasses standard CLIP models trained on the DFN-2B dataset, which contains 10times more training data than ours. All code, data, and models are available at https://zxwei.site/hqclip.

  • 7 authors
·
Jul 30 1

Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions

User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, Qilin offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that Qilin will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.

Multimodal Music Generation with Explicit Bridges and Retrieval Augmentation

Multimodal music generation aims to produce music from diverse input modalities, including text, videos, and images. Existing methods use a common embedding space for multimodal fusion. Despite their effectiveness in other modalities, their application in multimodal music generation faces challenges of data scarcity, weak cross-modal alignment, and limited controllability. This paper addresses these issues by using explicit bridges of text and music for multimodal alignment. We introduce a novel method named Visuals Music Bridge (VMB). Specifically, a Multimodal Music Description Model converts visual inputs into detailed textual descriptions to provide the text bridge; a Dual-track Music Retrieval module that combines broad and targeted retrieval strategies to provide the music bridge and enable user control. Finally, we design an Explicitly Conditioned Music Generation framework to generate music based on the two bridges. We conduct experiments on video-to-music, image-to-music, text-to-music, and controllable music generation tasks, along with experiments on controllability. The results demonstrate that VMB significantly enhances music quality, modality, and customization alignment compared to previous methods. VMB sets a new standard for interpretable and expressive multimodal music generation with applications in various multimedia fields. Demos and code are available at https://github.com/wbs2788/VMB.

  • 10 authors
·
Dec 12, 2024 4

Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning

Retrieval-Augmented Generation (RAG) offers a cost-effective approach to injecting real-time knowledge into large language models (LLMs). Nevertheless, constructing and validating high-quality knowledge repositories require considerable effort. We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG), which conceptualizes LLMs as students by providing them with abundant raw reading materials and encouraging them to engage in autonomous reading to record factual information in their own words. The resulting concise, well-organized mental indices are interconnected through common topics or complementary facts to form a pseudo-graph database. During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes, identifying fact paths and subsequently exploring the related contexts. Adhering to the principle of the path taken by many is the best, it integrates highly corroborated fact paths to provide a structured and refined sub-graph assisting LLMs. We validated PG-RAG on three specialized question-answering datasets. In single-document tasks, PG-RAG significantly outperformed the current best baseline, KGP-LLaMA, across all key evaluation metrics, with an average overall performance improvement of 11.6%. Specifically, its BLEU score increased by approximately 14.3%, and the QE-F1 metric improved by 23.7%. In multi-document scenarios, the average metrics of PG-RAG were at least 2.35% higher than the best baseline. Notably, the BLEU score and QE-F1 metric showed stable improvements of around 7.55% and 12.75%, respectively. Our code: https://github.com/IAAR-Shanghai/PGRAG.

  • 10 authors
·
May 27, 2024

CodeRAG-Bench: Can Retrieval Augment Code Generation?

While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.

  • 7 authors
·
Jun 20, 2024

Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering

In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval-augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and inter-issue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.

  • 7 authors
·
Apr 26, 2024

Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models

Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.

  • 3 authors
·
Jul 17, 2023

Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks

Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.

  • 5 authors
·
Jul 1

Long-Context Inference with Retrieval-Augmented Speculative Decoding

The emergence of long-context large language models (LLMs) offers a promising alternative to traditional retrieval-augmented generation (RAG) for processing extensive documents. However, the computational overhead of long-context inference, particularly in managing key-value (KV) caches, presents significant efficiency challenges. While Speculative Decoding (SD) traditionally accelerates inference using smaller draft models, its effectiveness diminishes substantially in long-context scenarios due to memory-bound KV cache operations. We present Retrieval-Augmented Speculative Decoding (RAPID), which leverages RAG for both accelerating and enhancing generation quality in long-context inference. RAPID introduces the RAG drafter-a draft LLM operating on shortened retrieval contexts-to speculate on the generation of long-context target LLMs. Our approach enables a new paradigm where same-scale or even larger LLMs can serve as RAG drafters while maintaining computational efficiency. To fully leverage the potentially superior capabilities from stronger RAG drafters, we develop an inference-time knowledge transfer dynamic that enriches the target distribution by RAG. Extensive experiments on the LLaMA-3.1 and Qwen2.5 backbones demonstrate that RAPID effectively integrates the strengths of both approaches, achieving significant performance improvements (e.g., from 39.33 to 42.83 on InfiniteBench for LLaMA-3.1-8B) with more than 2x speedups. Our analyses reveal that RAPID achieves robust acceleration beyond 32K context length and demonstrates superior generation quality in real-world applications.

  • 5 authors
·
Feb 27

Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation

Interpreting the law is always essential for the law to adapt to the ever-changing society. It is a critical and challenging task even for legal practitioners, as it requires meticulous and professional annotations and summarizations by legal experts, which are admittedly time-consuming and expensive to collect at scale. To alleviate the burden on legal experts, we propose a method for automated legal interpretation. Specifically, by emulating doctrinal legal research, we introduce a novel framework, ATRIE, to address Legal Concept Interpretation, a typical task in legal interpretation. ATRIE utilizes large language models (LLMs) to AuTomatically Retrieve concept-related information, Interpret legal concepts, and Evaluate generated interpretations, eliminating dependence on legal experts. ATRIE comprises a legal concept interpreter and a legal concept interpretation evaluator. The interpreter uses LLMs to retrieve relevant information from previous cases and interpret legal concepts. The evaluator uses performance changes on Legal Concept Entailment, a downstream task we propose, as a proxy of interpretation quality. Automated and multifaceted human evaluations indicate that the quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability. Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.

  • 4 authors
·
Jan 3

Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

  • 10 authors
·
Mar 18, 2024

JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability

Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.

  • 4 authors
·
Feb 27, 2024

Re-Imagen: Retrieval-Augmented Text-to-Image Generator

Research on text-to-image generation has witnessed significant progress in generating diverse and photo-realistic images, driven by diffusion and auto-regressive models trained on large-scale image-text data. Though state-of-the-art models can generate high-quality images of common entities, they often have difficulty generating images of uncommon entities, such as `Chortai (dog)' or `Picarones (food)'. To tackle this issue, we present the Retrieval-Augmented Text-to-Image Generator (Re-Imagen), a generative model that uses retrieved information to produce high-fidelity and faithful images, even for rare or unseen entities. Given a text prompt, Re-Imagen accesses an external multi-modal knowledge base to retrieve relevant (image, text) pairs and uses them as references to generate the image. With this retrieval step, Re-Imagen is augmented with the knowledge of high-level semantics and low-level visual details of the mentioned entities, and thus improves its accuracy in generating the entities' visual appearances. We train Re-Imagen on a constructed dataset containing (image, text, retrieval) triples to teach the model to ground on both text prompt and retrieval. Furthermore, we develop a new sampling strategy to interleave the classifier-free guidance for text and retrieval conditions to balance the text and retrieval alignment. Re-Imagen achieves significant gain on FID score over COCO and WikiImage. To further evaluate the capabilities of the model, we introduce EntityDrawBench, a new benchmark that evaluates image generation for diverse entities, from frequent to rare, across multiple object categories including dogs, foods, landmarks, birds, and characters. Human evaluation on EntityDrawBench shows that Re-Imagen can significantly improve the fidelity of generated images, especially on less frequent entities.

  • 4 authors
·
Sep 28, 2022

Scaling Retrieval-Based Language Models with a Trillion-Token Datastore

Scaling laws with respect to the amount of training data and the number of parameters allow us to predict the cost-benefit trade-offs of pretraining language models (LMs) in different configurations. In this paper, we consider another dimension of scaling: the amount of data available at inference time. Specifically, we find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation, such that a smaller model augmented with a large datastore outperforms a larger LM-only model on knowledge-intensive tasks. By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget. We carry out our study by constructing a 1.4 trillion-token datastore named MassiveDS, which is the largest and the most diverse open-sourced datastore for retrieval-based LMs to date, and designing an efficient pipeline for studying datastore scaling in a computationally accessible manner. Finally, we analyze the effect of improving the retriever, datastore quality filtering, and other design choices on our observed scaling trends. Overall, our results show that datastore size should be considered as an integral part of LM efficiency and performance trade-offs. To facilitate future research, we open-source our datastore and code at https://github.com/RulinShao/retrieval-scaling.

  • 8 authors
·
Jul 9, 2024 3

SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation

Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)

  • 3 authors
·
Sep 12 2

SAGE: A Framework of Precise Retrieval for RAG

Retrieval-augmented generation (RAG) has demonstrated significant proficiency in conducting question-answering (QA) tasks within a specified corpus. Nonetheless, numerous failure instances of RAG in QA still exist. These failures are not solely attributable to the limitations of Large Language Models (LLMs); instead, they predominantly arise from the retrieval of inaccurate information for LLMs due to two limitations: (1) Current RAG methods segment the corpus without considering semantics, making it difficult to find relevant context due to impaired correlation between questions and the segments. (2) There is a trade-off between missing essential context with fewer context retrieved and getting irrelevant context with more context retrieved. In this paper, we introduce a RAG framework (SAGE), to overcome these limitations. First, to address the segmentation issue without considering semantics, we propose to train a semantic segmentation model. This model is trained to segment the corpus into semantically complete chunks. Second, to ensure that only the most relevant chunks are retrieved while the irrelevant ones are ignored, we design a chunk selection algorithm to dynamically select chunks based on the decreasing speed of the relevance score, leading to a more relevant selection. Third, to further ensure the precision of the retrieved chunks, we propose letting LLMs assess whether retrieved chunks are excessive or lacking and then adjust the amount of context accordingly. Experiments show that SAGE outperforms baselines by 61.25% in the quality of QA on average. Moreover, by avoiding retrieving noisy context, SAGE lowers the cost of the tokens consumed in LLM inference and achieves a 49.41% enhancement in cost efficiency on average. Additionally, our work offers valuable insights for boosting RAG.

  • 3 authors
·
Mar 3 2

MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries

Retrieval-augmented generation (RAG) augments large language models (LLM) by retrieving relevant knowledge, showing promising potential in mitigating LLM hallucinations and enhancing response quality, thereby facilitating the great adoption of LLMs in practice. However, we find that existing RAG systems are inadequate in answering multi-hop queries, which require retrieving and reasoning over multiple pieces of supporting evidence. Furthermore, to our knowledge, no existing RAG benchmarking dataset focuses on multi-hop queries. In this paper, we develop a novel dataset, MultiHop-RAG, which consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. We detail the procedure of building the dataset, utilizing an English news article dataset as the underlying RAG knowledge base. We demonstrate the benchmarking utility of MultiHop-RAG in two experiments. The first experiment compares different embedding models for retrieving evidence for multi-hop queries. In the second experiment, we examine the capabilities of various state-of-the-art LLMs, including GPT-4, PaLM, and Llama2-70B, in reasoning and answering multi-hop queries given the evidence. Both experiments reveal that existing RAG methods perform unsatisfactorily in retrieving and answering multi-hop queries. We hope MultiHop-RAG will be a valuable resource for the community in developing effective RAG systems, thereby facilitating greater adoption of LLMs in practice. The MultiHop-RAG and implemented RAG system is publicly available at https://github.com/yixuantt/MultiHop-RAG/.

  • 2 authors
·
Jan 27, 2024 1

Redefining Retrieval Evaluation in the Era of LLMs

Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components

Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG

Retrieval models typically rely on costly human-labeled query-document relevance annotations for training and evaluation. To reduce this cost and leverage the potential of Large Language Models (LLMs) in relevance judgments, we aim to explore whether LLM-generated annotations can effectively replace human annotations in training retrieval models. Retrieval usually emphasizes relevance, which indicates "topic-relatedness" of a document to a query, while in RAG, the value of a document (or utility) depends on how it contributes to answer generation. Recognizing this mismatch, some researchers use LLM performance on downstream tasks with documents as labels, but this approach requires manual answers for specific tasks, leading to high costs and limited generalization. In another line of work, prompting LLMs to select useful documents as RAG references eliminates the need for human annotation and is not task-specific. If we leverage LLMs' utility judgments to annotate retrieval data, we may retain cross-task generalization without human annotation in large-scale corpora. Therefore, we investigate utility-focused annotation via LLMs for large-scale retriever training data across both in-domain and out-of-domain settings on the retrieval and RAG tasks. To reduce the impact of low-quality positives labeled by LLMs, we design a novel loss function, i.e., Disj-InfoNCE. Our experiments reveal that: (1) Retrievers trained on utility-focused annotations significantly outperform those trained on human annotations in the out-of-domain setting on both tasks, demonstrating superior generalization capabilities. (2) LLM annotation does not replace human annotation in the in-domain setting. However, incorporating just 20% human-annotated data enables retrievers trained with utility-focused annotations to match the performance of models trained entirely with human annotations.

  • 8 authors
·
Apr 7

Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension

Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.

  • 10 authors
·
Nov 20, 2024

Accelerating Retrieval-Augmented Language Model Serving with Speculation

Retrieval-augmented language models (RaLM) have demonstrated the potential to solve knowledge-intensive natural language processing (NLP) tasks by combining a non-parametric knowledge base with a parametric language model. Instead of fine-tuning a fully parametric model, RaLM excels at its low-cost adaptation to the latest data and better source attribution mechanisms. Among various RaLM approaches, iterative RaLM delivers a better generation quality due to a more frequent interaction between the retriever and the language model. Despite the benefits, iterative RaLM usually encounters high overheads due to the frequent retrieval step. To this end, we propose RaLMSpec, a speculation-inspired framework that provides generic speed-up over iterative RaLM while preserving the same model outputs through speculative retrieval and batched verification. By further incorporating prefetching, optimal speculation stride scheduler, and asynchronous verification, RaLMSpec can automatically exploit the acceleration potential to the fullest. For naive iterative RaLM serving, extensive evaluations over three language models on four downstream QA datasets demonstrate that RaLMSpec can achieve a speed-up ratio of 1.75-2.39x, 1.04-1.39x, and 1.31-1.77x when the retriever is an exact dense retriever, approximate dense retriever, and sparse retriever respectively compared with the baseline. For KNN-LM serving, RaLMSpec can achieve a speed-up ratio up to 7.59x and 2.45x when the retriever is an exact dense retriever and approximate dense retriever, respectively, compared with the baseline.

  • 7 authors
·
Jan 25, 2024

GenIR: Generative Visual Feedback for Mental Image Retrieval

Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.

  • 5 authors
·
Jun 6

VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding

Existing Video Corpus Moment Retrieval (VCMR) is limited to coarse-grained understanding, which hinders precise video moment localization when given fine-grained queries. In this paper, we propose a more challenging fine-grained VCMR benchmark requiring methods to localize the best-matched moment from the corpus with other partially matched candidates. To improve the dataset construction efficiency and guarantee high-quality data annotations, we propose VERIFIED, an automatic VidEo-text annotation pipeline to generate captions with RelIable FInE-grained statics and Dynamics. Specifically, we resort to large language models (LLM) and large multimodal models (LMM) with our proposed Statics and Dynamics Enhanced Captioning modules to generate diverse fine-grained captions for each video. To filter out the inaccurate annotations caused by the LLM hallucination, we propose a Fine-Granularity Aware Noise Evaluator where we fine-tune a video foundation model with disturbed hard-negatives augmented contrastive and matching losses. With VERIFIED, we construct a more challenging fine-grained VCMR benchmark containing Charades-FIG, DiDeMo-FIG, and ActivityNet-FIG which demonstrate a high level of annotation quality. We evaluate several state-of-the-art VCMR models on the proposed dataset, revealing that there is still significant scope for fine-grained video understanding in VCMR. Code and Datasets are in https://github.com/hlchen23/VERIFIED{https://github.com/hlchen23/VERIFIED}.

  • 8 authors
·
Oct 11, 2024

Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.

  • 4 authors
·
Jan 12, 2024

Improving Retrieval-Augmented Large Language Models via Data Importance Learning

Retrieval augmentation enables large language models to take advantage of external knowledge, for example on tasks like question answering and data imputation. However, the performance of such retrieval-augmented models is limited by the data quality of their underlying retrieval corpus. In this paper, we propose an algorithm based on multilinear extension for evaluating the data importance of retrieved data points. There are exponentially many terms in the multilinear extension, and one key contribution of this paper is a polynomial time algorithm that computes exactly, given a retrieval-augmented model with an additive utility function and a validation set, the data importance of data points in the retrieval corpus using the multilinear extension of the model's utility function. We further proposed an even more efficient ({\epsilon}, {\delta})-approximation algorithm. Our experimental results illustrate that we can enhance the performance of large language models by only pruning or reweighting the retrieval corpus, without requiring further training. For some tasks, this even allows a small model (e.g., GPT-JT), augmented with a search engine API, to outperform GPT-3.5 (without retrieval augmentation). Moreover, we show that weights based on multilinear extension can be computed efficiently in practice (e.g., in less than ten minutes for a corpus with 100 million elements).

  • 7 authors
·
Jul 6, 2023

Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Ad-hoc search calls for the selection of appropriate answers from a massive-scale corpus. Nowadays, the embedding-based retrieval (EBR) becomes a promising solution, where deep learning based document representation and ANN search techniques are allied to handle this task. However, a major challenge is that the ANN index can be too large to fit into memory, given the considerable size of answer corpus. In this work, we tackle this problem with Bi-Granular Document Representation, where the lightweight sparse embeddings are indexed and standby in memory for coarse-grained candidate search, and the heavyweight dense embeddings are hosted in disk for fine-grained post verification. For the best of retrieval accuracy, a Progressive Optimization framework is designed. The sparse embeddings are learned ahead for high-quality search of candidates. Conditioned on the candidate distribution induced by the sparse embeddings, the dense embeddings are continuously learned to optimize the discrimination of ground-truth from the shortlisted candidates. Besides, two techniques: the contrastive quantization and the locality-centric sampling are introduced for the learning of sparse and dense embeddings, which substantially contribute to their performances. Thanks to the above features, our method effectively handles massive-scale EBR with strong advantages in accuracy: with up to +4.3% recall gain on million-scale corpus, and up to +17.5% recall gain on billion-scale corpus. Besides, Our method is applied to a major sponsored search platform with substantial gains on revenue (+1.95%), Recall (+1.01%) and CTR (+0.49%). Our code is available at https://github.com/microsoft/BiDR.

  • 12 authors
·
Jan 14, 2022

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

  • 6 authors
·
Jul 10, 2024

MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework

Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.

  • 8 authors
·
Apr 14

Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook

Retrieval-augmented generation (RAG) has emerged as a pivotal technique in artificial intelligence (AI), particularly in enhancing the capabilities of large language models (LLMs) by enabling access to external, reliable, and up-to-date knowledge sources. In the context of AI-Generated Content (AIGC), RAG has proven invaluable by augmenting model outputs with supplementary, relevant information, thus improving their quality. Recently, the potential of RAG has extended beyond natural language processing, with emerging methods integrating retrieval-augmented strategies into the computer vision (CV) domain. These approaches aim to address the limitations of relying solely on internal model knowledge by incorporating authoritative external knowledge bases, thereby improving both the understanding and generation capabilities of vision models. This survey provides a comprehensive review of the current state of retrieval-augmented techniques in CV, focusing on two main areas: (I) visual understanding and (II) visual generation. In the realm of visual understanding, we systematically review tasks ranging from basic image recognition to complex applications such as medical report generation and multimodal question answering. For visual content generation, we examine the application of RAG in tasks related to image, video, and 3D generation. Furthermore, we explore recent advancements in RAG for embodied AI, with a particular focus on applications in planning, task execution, multimodal perception, interaction, and specialized domains. Given that the integration of retrieval-augmented techniques in CV is still in its early stages, we also highlight the key limitations of current approaches and propose future research directions to drive the development of this promising area.

  • 10 authors
·
Mar 23

Enhancing Retrieval-Augmented Generation: A Study of Best Practices

Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.

  • 4 authors
·
Jan 13

CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming

Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem -- similar question retrieval -- to address this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code and Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate and Simplified-to-Full), built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. In addition, we develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Code and data are available at: https://github.com/coldchair/CPRet

  • 5 authors
·
May 19

Why These Documents? Explainable Generative Retrieval with Hierarchical Category Paths

Generative retrieval has recently emerged as a new alternative of traditional information retrieval approaches. However, existing generative retrieval methods directly decode docid when a query is given, making it impossible to provide users with explanations as an answer for "Why this document is retrieved?". To address this limitation, we propose Hierarchical Category Path-Enhanced Generative Retrieval(HyPE), which enhances explainability by generating hierarchical category paths step-by-step before decoding docid. HyPE leverages hierarchical category paths as explanation, progressing from broad to specific semantic categories. This approach enables diverse explanations for the same document depending on the query by using shared category paths between the query and the document, and provides reasonable explanation by reflecting the document's semantic structure through a coarse-to-fine manner. HyPE constructs category paths with external high-quality semantic hierarchy, leverages LLM to select appropriate candidate paths for each document, and optimizes the generative retrieval model with path-augmented dataset. During inference, HyPE utilizes path-aware reranking strategy to aggregate diverse topic information, allowing the most relevant documents to be prioritized in the final ranked list of docids. Our extensive experiments demonstrate that HyPE not only offers a high level of explainability but also improves the retrieval performance in the document retrieval task.

  • 6 authors
·
Nov 8, 2024

Audiobox TTA-RAG: Improving Zero-Shot and Few-Shot Text-To-Audio with Retrieval-Augmented Generation

Current leading Text-To-Audio (TTA) generation models suffer from degraded performance on zero-shot and few-shot settings. It is often challenging to generate high-quality audio for audio events that are unseen or uncommon in the training set. Inspired by the success of Retrieval-Augmented Generation (RAG) in Large Language Model (LLM)-based knowledge-intensive tasks, we extend the TTA process with additional conditioning contexts. We propose Audiobox TTA-RAG, a novel retrieval-augmented TTA approach based on Audiobox, a conditional flow-matching audio generation model. Unlike the vanilla Audiobox TTA solution which generates audio conditioned on text, we augmented the conditioning input with retrieved audio samples that provide additional acoustic information to generate the target audio. Our retrieval method does not require the external database to have labeled audio, offering more practical use cases. To evaluate our proposed method, we curated test sets in zero-shot and few-shot settings. Our empirical results show that the proposed model can effectively leverage the retrieved audio samples and significantly improve zero-shot and few-shot TTA performance, with large margins on multiple evaluation metrics, while maintaining the ability to generate semantically aligned audio for the in-domain setting. In addition, we investigate the effect of different retrieval methods and data sources.

  • 5 authors
·
Nov 7, 2024

LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration

GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present LEGO-GraphRAG, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.

  • 5 authors
·
Nov 6, 2024

RIGHT: Retrieval-augmented Generation for Mainstream Hashtag Recommendation

Automatic mainstream hashtag recommendation aims to accurately provide users with concise and popular topical hashtags before publication. Generally, mainstream hashtag recommendation faces challenges in the comprehensive difficulty of newly posted tweets in response to new topics, and the accurate identification of mainstream hashtags beyond semantic correctness. However, previous retrieval-based methods based on a fixed predefined mainstream hashtag list excel in producing mainstream hashtags, but fail to understand the constant flow of up-to-date information. Conversely, generation-based methods demonstrate a superior ability to comprehend newly posted tweets, but their capacity is constrained to identifying mainstream hashtags without additional features. Inspired by the recent success of the retrieval-augmented technique, in this work, we attempt to adopt this framework to combine the advantages of both approaches. Meantime, with the help of the generator component, we could rethink how to further improve the quality of the retriever component at a low cost. Therefore, we propose RetrIeval-augmented Generative Mainstream HashTag Recommender (RIGHT), which consists of three components: 1) a retriever seeks relevant hashtags from the entire tweet-hashtags set; 2) a selector enhances mainstream identification by introducing global signals; and 3) a generator incorporates input tweets and selected hashtags to directly generate the desired hashtags. The experimental results show that our method achieves significant improvements over state-of-the-art baselines. Moreover, RIGHT can be easily integrated into large language models, improving the performance of ChatGPT by more than 10%.

  • 6 authors
·
Dec 16, 2023

MSRS: Evaluating Multi-Source Retrieval-Augmented Generation

Retrieval-augmented systems are typically evaluated in settings where information required to answer the query can be found within a single source or the answer is short-form or factoid-based. However, many real-world applications demand the ability to integrate and summarize information scattered across multiple sources, where no single source is sufficient to respond to the user's question. In such settings, the retrieval component of a RAG pipeline must recognize a variety of relevance signals, and the generation component must connect and synthesize information across multiple sources. We present a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet, representing narrative synthesis and summarization tasks, respectively, that require retrieval from large collections. Our extensive experiments with various RAG pipelines -- including sparse and dense retrievers combined with frontier LLMs -- reveal that generation quality is highly dependent on retrieval effectiveness, which varies greatly by task. While multi-source synthesis proves challenging even in an oracle retrieval setting, we find that reasoning models significantly outperform standard LLMs at this distinct step.

  • 7 authors
·
Aug 28

LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval

Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG

  • 8 authors
·
Aug 14

ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding

Retrieval-Augmented Generation (RAG) systems for Large Language Models (LLMs) hold promise in knowledge-intensive tasks but face limitations in complex multi-step reasoning. While recent methods have integrated RAG with chain-of-thought reasoning or test-time search using Process Reward Models (PRMs), these approaches encounter challenges such as a lack of explanations, bias in PRM training data, early-step bias in PRM scores, and insufficient post-training optimization of reasoning potential. To address these issues, we propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR), a framework that enhances RAG systems' reasoning capabilities through post-training and test-time scaling. At test time, ReARTeR introduces Trustworthy Process Rewarding via a Process Reward Model for accurate scalar scoring and a Process Explanation Model (PEM) for generating natural language explanations, enabling step refinement. During post-training, it utilizes Monte Carlo Tree Search guided by Trustworthy Process Rewarding to collect high-quality step-level preference data, optimized through Iterative Preference Optimization. ReARTeR addresses three core challenges: (1) misalignment between PRM and PEM, tackled through off-policy preference learning; (2) bias in PRM training data, mitigated by balanced annotation methods and stronger annotations for challenging examples; and (3) early-step bias in PRM, resolved through a temporal-difference-based look-ahead search strategy. Experimental results on multi-step reasoning benchmarks demonstrate significant improvements, underscoring ReARTeR's potential to advance the reasoning capabilities of RAG systems.

  • 9 authors
·
Jan 14

LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies

Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.

  • 5 authors
·
Oct 7, 2024

Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

  • 6 authors
·
Mar 22, 2024

ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval

State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community.

  • 4 authors
·
Feb 22, 2024

HRDE: Retrieval-Augmented Large Language Models for Chinese Health Rumor Detection and Explainability

As people increasingly prioritize their health, the speed and breadth of health information dissemination on the internet have also grown. At the same time, the presence of false health information (health rumors) intermingled with genuine content poses a significant potential threat to public health. However, current research on Chinese health rumors still lacks a large-scale, public, and open-source dataset of health rumor information, as well as effective and reliable rumor detection methods. This paper addresses this gap by constructing a dataset containing 1.12 million health-related rumors (HealthRCN) through web scraping of common health-related questions and a series of data processing steps. HealthRCN is the largest known dataset of Chinese health information rumors to date. Based on this dataset, we propose retrieval-augmented large language models for Chinese health rumor detection and explainability (HRDE). This model leverages retrieved relevant information to accurately determine whether the input health information is a rumor and provides explanatory responses, effectively aiding users in verifying the authenticity of health information. In evaluation experiments, we compared multiple models and found that HRDE outperformed them all, including GPT-4-1106-Preview, in rumor detection accuracy and answer quality. HRDE achieved an average accuracy of 91.04% and an F1 score of 91.58%.

  • 8 authors
·
Jun 30, 2024

Distilling LLM Agent into Small Models with Retrieval and Code Tools

Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.

  • 5 authors
·
May 23 5

Toward General Instruction-Following Alignment for Retrieval-Augmented Generation

Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (<100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (>100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io.

  • 6 authors
·
Oct 12, 2024 3

GeAR: Generation Augmented Retrieval

Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.

  • 9 authors
·
Jan 6 2

Gradient-Attention Guided Dual-Masking Synergetic Framework for Robust Text-based Person Retrieval

Although Contrastive Language-Image Pre-training (CLIP) exhibits strong performance across diverse vision tasks, its application to person representation learning faces two critical challenges: (i) the scarcity of large-scale annotated vision-language data focused on person-centric images, and (ii) the inherent limitations of global contrastive learning, which struggles to maintain discriminative local features crucial for fine-grained matching while remaining vulnerable to noisy text tokens. This work advances CLIP for person representation learning through synergistic improvements in data curation and model architecture. First, we develop a noise-resistant data construction pipeline that leverages the in-context learning capabilities of MLLMs to automatically filter and caption web-sourced images. This yields WebPerson, a large-scale dataset of 5M high-quality person-centric image-text pairs. Second, we introduce the GA-DMS (Gradient-Attention Guided Dual-Masking Synergetic) framework, which improves cross-modal alignment by adaptively masking noisy textual tokens based on the gradient-attention similarity score. Additionally, we incorporate masked token prediction objectives that compel the model to predict informative text tokens, enhancing fine-grained semantic representation learning. Extensive experiments show that GA-DMS achieves state-of-the-art performance across multiple benchmarks.

  • 6 authors
·
Sep 10 2

WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval

We present WebFAQ, a large-scale collection of open-domain question answering datasets derived from FAQ-style schema.org annotations. In total, the data collection consists of 96 million natural question-answer (QA) pairs across 75 languages, including 47 million (49%) non-English samples. WebFAQ further serves as the foundation for 20 monolingual retrieval benchmarks with a total size of 11.2 million QA pairs (5.9 million non-English). These datasets are carefully curated through refined filtering and near-duplicate detection, yielding high-quality resources for training and evaluating multilingual dense retrieval models. To empirically confirm WebFAQ's efficacy, we use the collected QAs to fine-tune an in-domain pretrained XLM-RoBERTa model. Through this process of dataset-specific fine-tuning, the model achieves significant retrieval performance gains, which generalize - beyond WebFAQ - to other multilingual retrieval benchmarks evaluated in zero-shot setting. Last but not least, we utilize WebFAQ to construct a set of QA-aligned bilingual corpora spanning over 1000 language pairs using state-of-the-art bitext mining and automated LLM-assessed translation evaluation. Due to our advanced, automated method of bitext dataset generation, the resulting bilingual corpora demonstrate higher translation quality compared to similar datasets. WebFAQ and all associated resources are publicly available on GitHub and HuggingFace.

  • 5 authors
·
Feb 28

Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) mitigates issues of the factual errors and hallucinated outputs generated by Large Language Models (LLMs) in open-domain question-answering tasks (OpenQA) via introducing external knowledge. For complex QA, however, existing RAG methods use LLMs to actively predict retrieval timing and directly use the retrieved information for generation, regardless of whether the retrieval timing accurately reflects the actual information needs, or sufficiently considers prior retrieved knowledge, which may result in insufficient information gathering and interaction, yielding low-quality answers. To address these, we propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks, which includes the iterative information collector, adaptive memory reviewer, and task-oriented generator, while following a new Retriever-and-Memory paradigm. Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes and updating them into the existing optimal knowledge structure, enhancing high-quality knowledge interactions. In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration. We conduct extensive experiments on five complex QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The code and data are at https://github.com/thunlp/Adaptive-Note.

  • 12 authors
·
Oct 11, 2024

Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference

Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical key-value (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose ActQKV, a training-free, Activation-aware approach that dynamically determines probe-Query and leverages it to retrieve the relevant KV pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and infty Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.

  • 9 authors
·
Feb 19

DSRAG: A Domain-Specific Retrieval Framework Based on Document-derived Multimodal Knowledge Graph

Current general-purpose large language models (LLMs) commonly exhibit knowledge hallucination and insufficient domain-specific adaptability in domain-specific tasks, limiting their effectiveness in specialized question answering scenarios. Retrieval-augmented generation (RAG) effectively tackles these challenges by integrating external knowledge to enhance accuracy and relevance. However, traditional RAG still faces limitations in domain knowledge accuracy and context modeling.To enhance domain-specific question answering performance, this work focuses on a graph-based RAG framework, emphasizing the critical role of knowledge graph quality during the generation process. We propose DSRAG (Domain-Specific RAG), a multimodal knowledge graph-driven retrieval-augmented generation framework designed for domain-specific applications. Our approach leverages domain-specific documents as the primary knowledge source, integrating heterogeneous information such as text, images, and tables to construct a multimodal knowledge graph covering both conceptual and instance layers. Building on this foundation, we introduce semantic pruning and structured subgraph retrieval mechanisms, combining knowledge graph context and vector retrieval results to guide the language model towards producing more reliable responses. Evaluations using the Langfuse multidimensional scoring mechanism show that our method excels in domain-specific question answering, validating the efficacy of integrating multimodal knowledge graphs with retrieval-augmented generation.

  • 6 authors
·
Aug 22

Referring Expression Instance Retrieval and A Strong End-to-End Baseline

Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called Referring Expression Instance Retrieval (REIR), which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.

  • 8 authors
·
Jun 22

Fashion-RAG: Multimodal Fashion Image Editing via Retrieval-Augmented Generation

In recent years, the fashion industry has increasingly adopted AI technologies to enhance customer experience, driven by the proliferation of e-commerce platforms and virtual applications. Among the various tasks, virtual try-on and multimodal fashion image editing -- which utilizes diverse input modalities such as text, garment sketches, and body poses -- have become a key area of research. Diffusion models have emerged as a leading approach for such generative tasks, offering superior image quality and diversity. However, most existing virtual try-on methods rely on having a specific garment input, which is often impractical in real-world scenarios where users may only provide textual specifications. To address this limitation, in this work we introduce Fashion Retrieval-Augmented Generation (Fashion-RAG), a novel method that enables the customization of fashion items based on user preferences provided in textual form. Our approach retrieves multiple garments that match the input specifications and generates a personalized image by incorporating attributes from the retrieved items. To achieve this, we employ textual inversion techniques, where retrieved garment images are projected into the textual embedding space of the Stable Diffusion text encoder, allowing seamless integration of retrieved elements into the generative process. Experimental results on the Dress Code dataset demonstrate that Fashion-RAG outperforms existing methods both qualitatively and quantitatively, effectively capturing fine-grained visual details from retrieved garments. To the best of our knowledge, this is the first work to introduce a retrieval-augmented generation approach specifically tailored for multimodal fashion image editing.

  • 4 authors
·
Apr 18

When LLMs Meet API Documentation: Can Retrieval Augmentation Aid Code Generation Just as It Helps Developers?

Retrieval-augmented generation (RAG) has increasingly shown its power in extending large language models' (LLMs') capability beyond their pre-trained knowledge. Existing works have shown that RAG can help with software development tasks such as code generation, code update, and test generation. Yet, the effectiveness of adapting LLMs to fast-evolving or less common API libraries using RAG remains unknown. To bridge this gap, we take an initial step to study this unexplored yet practical setting - when developers code with a less common library, they often refer to its API documentation; likewise, when LLMs are allowed to look up API documentation via RAG, to what extent can LLMs be advanced? To mimic such a setting, we select four less common open-source Python libraries with a total of 1017 eligible APIs. We study the factors that affect the effectiveness of using the documentation of less common API libraries as additional knowledge for retrieval and generation. Our intensive study yields interesting findings: (1) RAG helps improve LLMs' performance by 83%-220%. (2) Example code contributes the most to advance LLMs, instead of the descriptive texts and parameter lists in the API documentation. (3) LLMs could sometimes tolerate mild noises (typos in description or incorrect parameters) by referencing their pre-trained knowledge or document context. Finally, we suggest that developers pay more attention to the quality and diversity of the code examples in the API documentation. The study sheds light on future low-code software development workflows.

  • 5 authors
·
Mar 19

An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities

Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions. The continuous advancements in deep learning, particularly pre-trained models, have empowered the code generation task to achieve remarkable performance. One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code. To address the issue, prior studies typically adopt a retrieval-augmented framework for the task, where the similar code snippets collected by a retrieval process can be leveraged to help understand the requirements and provide guidance for the generation process. However, there is a lack of systematic study on the application of this framework for code generation, including the impact of the final generated results and the specific usage of the framework. In this paper, we choose three popular pre-trained code models, namely CodeGen, UniXcoder, and CodeT5, to assess the impact of the quality and utilization of retrieved code on the retrieval-augmented framework. Our analysis shows that the retrieval-augmented framework is beneficial for improving the performance of the existing pre-trained models. We also provide suggestions on the utilization of the retrieval-augmented code generation framework: BM25 and Sequential Integration Fusion are recommended due to their convenience and superior performance. Sketch Filling Fusion, which extracts a sketch of relevant code, could help the model improve its performance further. Additionally, we conduct experiments to investigate the influence of the retrieval-augmented framework on large language models for code generation, showing the effectiveness of the framework, and we discuss the trade-off between performance improvement and computational costs in each phase within the framework.

  • 7 authors
·
Jan 23

CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment

Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning. Furthermore, those metrics enable tasks such as image retrieval, object recognition and quality assessment, essential in fields like healthcare, astronomy and surveillance. Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images. To address these challenges, a novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper. The novel metric uses Gaussian Copula from probability theory to transform an image into vectors of pixel distribution associated to local image patches. These vectors contain, in addition to intensities and pixel positions, information on the dependencies between pixel values, capturing the structural relationships within the image. By leveraging the properties of Copulas, CSIM effectively models the joint distribution of pixel intensities, enabling a more nuanced comparison of image patches making it more sensitive to local changes compared to other metrics. Experimental results demonstrate that CSIM outperforms existing similarity metrics in various image distortion scenarios, including noise, compression artifacts and blur. The metric's ability to detect subtle differences makes it suitable for applications requiring high precision, such as medical imaging, where the detection of minor anomalies can be of a high importance. The results obtained in this work can be reproduced from this Github repository: https://github.com/safouaneelg/copulasimilarity.

  • 4 authors
·
Oct 2, 2024

Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?

Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.

Think-on-Graph 3.0: Efficient and Adaptive LLM Reasoning on Heterogeneous Graphs via Multi-Agent Dual-Evolving Context Retrieval

Retrieval-Augmented Generation (RAG) and Graph-based RAG has become the important paradigm for enhancing Large Language Models (LLMs) with external knowledge. However, existing approaches face a fundamental trade-off. While graph-based methods are inherently dependent on high-quality graph structures, they face significant practical constraints: manually constructed knowledge graphs are prohibitively expensive to scale, while automatically extracted graphs from corpora are limited by the performance of the underlying LLM extractors, especially when using smaller, local-deployed models. This paper presents Think-on-Graph 3.0 (ToG-3), a novel framework that introduces Multi-Agent Context Evolution and Retrieval (MACER) mechanism to overcome these limitations. Our core innovation is the dynamic construction and refinement of a Chunk-Triplets-Community heterogeneous graph index, which pioneeringly incorporates a dual-evolution mechanism of Evolving Query and Evolving Sub-Graph for precise evidence retrieval. This approach addresses a critical limitation of prior Graph-based RAG methods, which typically construct a static graph index in a single pass without adapting to the actual query. A multi-agent system, comprising Constructor, Retriever, Reflector, and Responser agents, collaboratively engages in an iterative process of evidence retrieval, answer generation, sufficiency reflection, and, crucially, evolving query and subgraph. This dual-evolving multi-agent system allows ToG-3 to adaptively build a targeted graph index during reasoning, mitigating the inherent drawbacks of static, one-time graph construction and enabling deep, precise reasoning even with lightweight LLMs. Extensive experiments demonstrate that ToG-3 outperforms compared baselines on both deep and broad reasoning benchmarks, and ablation studies confirm the efficacy of the components of MACER framework.

SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis

Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.

  • 4 authors
·
Nov 25, 2024 2

Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found here{https://github.com/mh-tang/Passage-Injection}.

  • 4 authors
·
Jul 25

CPA-RAG:Covert Poisoning Attacks on Retrieval-Augmented Generation in Large Language Models

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by incorporating external knowledge, but its openness introduces vulnerabilities that can be exploited by poisoning attacks. Existing poisoning methods for RAG systems have limitations, such as poor generalization and lack of fluency in adversarial texts. In this paper, we propose CPA-RAG, a black-box adversarial framework that generates query-relevant texts capable of manipulating the retrieval process to induce target answers. The proposed method integrates prompt-based text generation, cross-guided optimization through multiple LLMs, and retriever-based scoring to construct high-quality adversarial samples. We conduct extensive experiments across multiple datasets and LLMs to evaluate its effectiveness. Results show that the framework achieves over 90\% attack success when the top-k retrieval setting is 5, matching white-box performance, and maintains a consistent advantage of approximately 5 percentage points across different top-k values. It also outperforms existing black-box baselines by 14.5 percentage points under various defense strategies. Furthermore, our method successfully compromises a commercial RAG system deployed on Alibaba's BaiLian platform, demonstrating its practical threat in real-world applications. These findings underscore the need for more robust and secure RAG frameworks to defend against poisoning attacks.

  • 6 authors
·
May 26

MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark

Document retrieval is an important task for search and Retrieval-Augmented Generation (RAG) applications. Large Language Models (LLMs) have contributed to improving the accuracy of text-based document retrieval. However, documents with complex layout and visual elements like tables, charts and infographics are not perfectly represented in textual format. Recently, image-based document retrieval pipelines have become popular, which use visual large language models (VLMs) to retrieve relevant page images given a query. Current evaluation benchmarks on visual document retrieval are limited, as they primarily focus only English language, rely on synthetically generated questions and offer a small corpus size. Therefore, we introduce MIRACL-VISION, a multilingual visual document retrieval evaluation benchmark. MIRACL-VISION covers 18 languages, and is an extension of the MIRACL dataset, a popular benchmark to evaluate text-based multilingual retrieval pipelines. MIRACL was built using a human-intensive annotation process to generate high-quality questions. In order to reduce MIRACL-VISION corpus size to make evaluation more compute friendly while keeping the datasets challenging, we have designed a method for eliminating the "easy" negatives from the corpus. We conducted extensive experiments comparing MIRACL-VISION with other benchmarks, using popular public text and image models. We observe a gap in state-of-the-art VLM-based embedding models on multilingual capabilities, with up to 59.7% lower retrieval accuracy than a text-based retrieval models. Even for the English language, the visual models retrieval accuracy is 12.1% lower compared to text-based models. MIRACL-VISION is a challenging, representative, multilingual evaluation benchmark for visual retrieval pipelines and will help the community build robust models for document retrieval.

  • 6 authors
·
May 16

Furthest Reasoning with Plan Assessment: Stable Reasoning Path with Retrieval-Augmented Large Language Models

Large Language Models (LLMs), acting as a powerful reasoner and generator, exhibit extraordinary performance across various natural language tasks, such as question answering (QA). Among these tasks, Multi-Hop Question Answering (MHQA) stands as a widely discussed category, necessitating seamless integration between LLMs and the retrieval of external knowledge. Existing methods employ LLM to generate reasoning paths and plans, and utilize IR to iteratively retrieve related knowledge, but these approaches have inherent flaws. On one hand, Information Retriever (IR) is hindered by the low quality of generated queries by LLM. On the other hand, LLM is easily misguided by the irrelevant knowledge by IR. These inaccuracies, accumulated by the iterative interaction between IR and LLM, lead to a disaster in effectiveness at the end. To overcome above barriers, in this paper, we propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA), including an improved framework (Furthest Reasoning) and an attached module (Plan Assessor). 1) Furthest reasoning operates by masking previous reasoning path and generated queries for LLM, encouraging LLM generating chain of thought from scratch in each iteration. This approach enables LLM to break the shackle built by previous misleading thoughts and queries (if any). 2) The Plan Assessor is a trained evaluator that selects an appropriate plan from a group of candidate plans proposed by LLM. Our methods are evaluated on three highly recognized public multi-hop question answering datasets and outperform state-of-the-art on most metrics (achieving a 10%-12% in answer accuracy).

  • 3 authors
·
Sep 22, 2023

Show Me the Instruments: Musical Instrument Retrieval from Mixture Audio

As digital music production has become mainstream, the selection of appropriate virtual instruments plays a crucial role in determining the quality of music. To search the musical instrument samples or virtual instruments that make one's desired sound, music producers use their ears to listen and compare each instrument sample in their collection, which is time-consuming and inefficient. In this paper, we call this task as Musical Instrument Retrieval and propose a method for retrieving desired musical instruments using reference music mixture as a query. The proposed model consists of the Single-Instrument Encoder and the Multi-Instrument Encoder, both based on convolutional neural networks. The Single-Instrument Encoder is trained to classify the instruments used in single-track audio, and we take its penultimate layer's activation as the instrument embedding. The Multi-Instrument Encoder is trained to estimate multiple instrument embeddings using the instrument embeddings computed by the Single-Instrument Encoder as a set of target embeddings. For more generalized training and realistic evaluation, we also propose a new dataset called Nlakh. Experimental results showed that the Single-Instrument Encoder was able to learn the mapping from the audio signal of unseen instruments to the instrument embedding space and the Multi-Instrument Encoder was able to extract multiple embeddings from the mixture of music and retrieve the desired instruments successfully. The code used for the experiment and audio samples are available at: https://github.com/minju0821/musical_instrument_retrieval

  • 7 authors
·
Nov 15, 2022

Optimizing What Matters: AUC-Driven Learning for Robust Neural Retrieval

Dual-encoder retrievers depend on the principle that relevant documents should score higher than irrelevant ones for a given query. Yet the dominant Noise Contrastive Estimation (NCE) objective, which underpins Contrastive Loss, optimizes a softened ranking surrogate that we rigorously prove is fundamentally oblivious to score separation quality and unrelated to AUC. This mismatch leads to poor calibration and suboptimal performance in downstream tasks like retrieval-augmented generation (RAG). To address this fundamental limitation, we introduce the MW loss, a new training objective that maximizes the Mann-Whitney U statistic, which is mathematically equivalent to the Area under the ROC Curve (AUC). MW loss encourages each positive-negative pair to be correctly ranked by minimizing binary cross entropy over score differences. We provide theoretical guarantees that MW loss directly upper-bounds the AoC, better aligning optimization with retrieval goals. We further promote ROC curves and AUC as natural threshold free diagnostics for evaluating retriever calibration and ranking quality. Empirically, retrievers trained with MW loss consistently outperform contrastive counterparts in AUC and standard retrieval metrics. Our experiments show that MW loss is an empirically superior alternative to Contrastive Loss, yielding better-calibrated and more discriminative retrievers for high-stakes applications like RAG.

ServiceNow-AI ServiceNow-AI
·
Sep 30 2

Precise Legal Sentence Boundary Detection for Retrieval at Scale: NUPunkt and CharBoundary

We present NUPunkt and CharBoundary, two sentence boundary detection libraries optimized for high-precision, high-throughput processing of legal text in large-scale applications such as due diligence, e-discovery, and legal research. These libraries address the critical challenges posed by legal documents containing specialized citations, abbreviations, and complex sentence structures that confound general-purpose sentence boundary detectors. Our experimental evaluation on five diverse legal datasets comprising over 25,000 documents and 197,000 annotated sentence boundaries demonstrates that NUPunkt achieves 91.1% precision while processing 10 million characters per second with modest memory requirements (432 MB). CharBoundary models offer balanced and adjustable precision-recall tradeoffs, with the large model achieving the highest F1 score (0.782) among all tested methods. Notably, NUPunkt provides a 29-32% precision improvement over general-purpose tools while maintaining exceptional throughput, processing multi-million document collections in minutes rather than hours. Both libraries run efficiently on standard CPU hardware without requiring specialized accelerators. NUPunkt is implemented in pure Python with zero external dependencies, while CharBoundary relies only on scikit-learn and optional ONNX runtime integration for optimized performance. Both libraries are available under the MIT license, can be installed via PyPI, and can be interactively tested at https://sentences.aleainstitute.ai/. These libraries address critical precision issues in retrieval-augmented generation systems by preserving coherent legal concepts across sentences, where each percentage improvement in precision yields exponentially greater reductions in context fragmentation, creating cascading benefits throughout retrieval pipelines and significantly enhancing downstream reasoning quality.

  • 3 authors
·
Apr 5

OCR Hinders RAG: Evaluating the Cascading Impact of OCR on Retrieval-Augmented Generation

Retrieval-augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external knowledge to reduce hallucinations and incorporate up-to-date information without retraining. As an essential part of RAG, external knowledge bases are commonly built by extracting structured data from unstructured PDF documents using Optical Character Recognition (OCR). However, given the imperfect prediction of OCR and the inherent non-uniform representation of structured data, knowledge bases inevitably contain various OCR noises. In this paper, we introduce OHRBench, the first benchmark for understanding the cascading impact of OCR on RAG systems. OHRBench includes 350 carefully selected unstructured PDF documents from six real-world RAG application domains, along with Q&As derived from multimodal elements in documents, challenging existing OCR solutions used for RAG To better understand OCR's impact on RAG systems, we identify two primary types of OCR noise: Semantic Noise and Formatting Noise and apply perturbation to generate a set of structured data with varying degrees of each OCR noise. Using OHRBench, we first conduct a comprehensive evaluation of current OCR solutions and reveal that none is competent for constructing high-quality knowledge bases for RAG systems. We then systematically evaluate the impact of these two noise types and demonstrate the vulnerability of RAG systems. Furthermore, we discuss the potential of employing Vision-Language Models (VLMs) without OCR in RAG systems. Code: https://github.com/opendatalab/OHR-Bench

  • 9 authors
·
Dec 3, 2024 2

MoM: Mixtures of Scenario-Aware Document Memories for Retrieval-Augmented Generation Systems

The traditional RAG paradigm, which typically engages in the comprehension of relevant text chunks in response to received queries, inherently restricts both the depth of knowledge internalization and reasoning capabilities. To address this limitation, our research transforms the text processing in RAG from passive chunking to proactive understanding, defining this process as document memory extraction with the objective of simulating human cognitive processes during reading. Building upon this, we propose the Mixtures of scenario-aware document Memories (MoM) framework, engineered to efficiently handle documents from multiple domains and train small language models (SLMs) to acquire the ability to proactively explore and construct document memories. The MoM initially instructs large language models (LLMs) to simulate domain experts in generating document logical outlines, thereby directing structured chunking and core content extraction. It employs a multi-path sampling and multi-perspective evaluation mechanism, specifically designing comprehensive metrics that represent chunk clarity and extraction completeness to select the optimal document memories. Additionally, to infuse deeper human-like reading abilities during the training of SLMs, we incorporate a reverse reasoning strategy, which deduces refined expert thinking paths from high-quality outcomes. Finally, leveraging diverse forms of content generated by MoM, we develop a three-layer document memory retrieval mechanism, which is grounded in our theoretical proof from the perspective of probabilistic modeling. Extensive experimental results across three distinct domains demonstrate that the MoM framework not only resolves text chunking challenges in existing RAG systems, providing LLMs with semantically complete document memories, but also paves the way for SLMs to achieve human-centric intelligent text processing.

  • 6 authors
·
Oct 15 2

MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval

Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline.

  • 8 authors
·
Jun 14

CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs

Research question answering requires accurate retrieval and contextual understanding of scientific literature. However, current Retrieval-Augmented Generation (RAG) methods often struggle to balance complex document relationships with precise information retrieval. In this paper, we introduce Contextualized Graph Retrieval-Augmented Generation (CG-RAG), a novel framework that integrates sparse and dense retrieval signals within graph structures to enhance retrieval efficiency and subsequently improve generation quality for research question answering. First, we propose a contextual graph representation for citation graphs, effectively capturing both explicit and implicit connections within and across documents. Next, we introduce Lexical-Semantic Graph Retrieval (LeSeGR), which seamlessly integrates sparse and dense retrieval signals with graph encoding. It bridges the gap between lexical precision and semantic understanding in citation graph retrieval, demonstrating generalizability to existing graph retrieval and hybrid retrieval methods. Finally, we present a context-aware generation strategy that utilizes the retrieved graph-structured information to generate precise and contextually enriched responses using large language models (LLMs). Extensive experiments on research question answering benchmarks across multiple domains demonstrate that our CG-RAG framework significantly outperforms RAG methods combined with various state-of-the-art retrieval approaches, delivering superior retrieval accuracy and generation quality.

  • 7 authors
·
Jan 24

Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation

Knowledge-intensive tasks (e.g., open-domain question answering (QA)) require a substantial amount of factual knowledge and often rely on external information for assistance. Recently, large language models (LLMs) (e.g., ChatGPT), have demonstrated impressive prowess in solving a wide range of tasks with world knowledge, including knowledge-intensive tasks. However, it remains unclear how well LLMs are able to perceive their factual knowledge boundaries, particularly how they behave when incorporating retrieval augmentation. In this study, we present an initial analysis of the factual knowledge boundaries of LLMs and how retrieval augmentation affects LLMs on open-domain QA. Specially, we focus on three primary research questions and analyze them by examining QA performance, priori judgement and posteriori judgement of LLMs. We show evidence that LLMs possess unwavering confidence in their capabilities to respond to questions and the accuracy of their responses. Furthermore, retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries, thereby improving their judgemental abilities. Additionally, we also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers, while the quality of these results significantly impacts their reliance. The code to reproduce this work is available at https://github.com/RUCAIBox/LLM-Knowledge-Boundary.

  • 9 authors
·
Jul 20, 2023

FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval

In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.

  • 10 authors
·
Aug 4

From Query to Explanation: Uni-RAG for Multi-Modal Retrieval-Augmented Learning in STEM

In AI-facilitated teaching, leveraging various query styles to interpret abstract educational content is crucial for delivering effective and accessible learning experiences. However, existing retrieval systems predominantly focus on natural text-image matching and lack the capacity to address the diversity and ambiguity inherent in real-world educational scenarios. To address this limitation, we develop a lightweight and efficient multi-modal retrieval module, named Uni-Retrieval, which extracts query-style prototypes and dynamically matches them with tokens from a continually updated Prompt Bank. This Prompt Bank encodes and stores domain-specific knowledge by leveraging a Mixture-of-Expert Low-Rank Adaptation (MoE-LoRA) module and can be adapted to enhance Uni-Retrieval's capability to accommodate unseen query types at test time. To enable natural language educational content generation, we integrate the original Uni-Retrieval with a compact instruction-tuned language model, forming a complete retrieval-augmented generation pipeline named Uni-RAG. Given a style-conditioned query, Uni-RAG first retrieves relevant educational materials and then generates human-readable explanations, feedback, or instructional content aligned with the learning objective. Experimental results on SER and other multi-modal benchmarks show that Uni-RAG outperforms baseline retrieval and RAG systems in both retrieval accuracy and generation quality, while maintaining low computational cost. Our framework provides a scalable, pedagogically grounded solution for intelligent educational systems, bridging retrieval and generation to support personalized, explainable, and efficient learning assistance across diverse STEM scenarios.

  • 6 authors
·
Jul 4

MomentSeeker: A Comprehensive Benchmark and A Strong Baseline For Moment Retrieval Within Long Videos

Retrieval augmented generation (RAG) holds great promise in addressing challenges associated with long video understanding. These methods retrieve useful moments from long videos for their presented tasks, thereby enabling multimodal large language models (MLLMs) to generate high-quality answers in a cost-effective way. In this work, we present MomentSeeker, a comprehensive benchmark to evaluate retrieval models' performance in handling general long-video moment retrieval (LVMR) tasks. MomentSeeker offers three key advantages. First, it incorporates long videos of over 500 seconds on average, making it the first benchmark specialized for long-video moment retrieval. Second, it covers a wide range of task categories (including Moment Search, Caption Alignment, Image-conditioned Moment Search, and Video-conditioned Moment Search) and diverse application scenarios (e.g., sports, movies, cartoons, and ego), making it a comprehensive tool for assessing retrieval models' general LVMR performance. Additionally, the evaluation tasks are carefully curated through human annotation, ensuring the reliability of assessment. We further fine-tune an MLLM-based LVMR retriever on synthetic data, which demonstrates strong performance on our benchmark. We perform extensive experiments with various popular multimodal retrievers based on our benchmark, whose results highlight the challenges of LVMR and limitations for existing methods. Our created resources will be shared with community to advance future research in this field.

  • 9 authors
·
Feb 18

Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs

Dialogue benchmarks are crucial in training and evaluating chatbots engaging in domain-specific conversations. Knowledge graphs (KGs) represent semantically rich and well-organized data spanning various domains, such as DBLP, DBpedia, and YAGO. Traditionally, dialogue benchmarks have been manually created from documents, neglecting the potential of KGs in automating this process. Some question-answering benchmarks are automatically generated using extensive preprocessing from KGs, but they do not support dialogue generation. This paper introduces Chatty-Gen, a novel multi-stage retrieval-augmented generation platform for automatically generating high-quality dialogue benchmarks tailored to a specific domain using a KG. Chatty-Gen decomposes the generation process into manageable stages and uses assertion rules for automatic validation between stages. Our approach enables control over intermediate results to prevent time-consuming restarts due to hallucinations. It also reduces reliance on costly and more powerful commercial LLMs. Chatty-Gen eliminates upfront processing of the entire KG using efficient query-based retrieval to find representative subgraphs based on the dialogue context. Our experiments with several real and large KGs demonstrate that Chatty-Gen significantly outperforms state-of-the-art systems and ensures consistent model and system performance across multiple LLMs of diverse capabilities, such as GPT-4o, Gemini 1.5, Llama 3, and Mistral.

  • 3 authors
·
Jan 16

RAD-Bench: Evaluating Large Language Models Capabilities in Retrieval Augmented Dialogues

In real-world applications with Large Language Models (LLMs), external retrieval mechanisms - such as Search-Augmented Generation (SAG), tool utilization, and Retrieval-Augmented Generation (RAG) - are often employed to enhance the quality of augmented generations in dialogues. These approaches often come with multi-turn dialogue, where each interaction is enriched by relevant information retrieved from external sources. Existing benchmarks either assess LLMs' chat abilities in multi-turn dialogues or their use of retrieval for augmented responses in single-turn settings. However, there is a gap in evaluating LLMs' ability to leverage retrieval for more precise responses across multiple turns. To address this limitation, we introduce RAD-Bench (Retrieval Augmented Dialogue), a benchmark designed to evaluate LLMs' capabilities in multi-turn dialogues following retrievals, essential for their deployment in context-rich applications. RAD-Bench evaluates two key abilities of LLMs: Retrieval Synthesis and Retrieval Reasoning. These are measured using discriminative questions and retrieved contexts, and corresponding reference answers, assessing how effectively LLMs integrate and reason with context to maintain and enhance conversation quality over multiple turns. Our evaluation results on commonly used LLMs reveal that model performance deteriorates as additional layers of conditions or constraints are applied across conversation turns, even when accurate retrieved contexts are provided. The data and code are available at https://github.com/mtkresearch/RAD-Bench

  • 6 authors
·
Sep 19, 2024

Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval

Passage retrieval is a fundamental task in information retrieval (IR) research, which has drawn much attention recently. In the English field, the availability of large-scale annotated dataset (e.g, MS MARCO) and the emergence of deep pre-trained language models (e.g, BERT) has resulted in a substantial improvement of existing passage retrieval systems. However, in the Chinese field, especially for specific domains, passage retrieval systems are still immature due to quality-annotated dataset being limited by scale. Therefore, in this paper, we present a novel multi-domain Chinese dataset for passage retrieval (Multi-CPR). The dataset is collected from three different domains, including E-commerce, Entertainment video and Medical. Each dataset contains millions of passages and a certain amount of human annotated query-passage related pairs. We implement various representative passage retrieval methods as baselines. We find that the performance of retrieval models trained on dataset from general domain will inevitably decrease on specific domain. Nevertheless, a passage retrieval system built on in-domain annotated dataset can achieve significant improvement, which indeed demonstrates the necessity of domain labeled data for further optimization. We hope the release of the Multi-CPR dataset could benchmark Chinese passage retrieval task in specific domain and also make advances for future studies.

  • 10 authors
·
Mar 7, 2022

LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.

  • 10 authors
·
Aug 27

Automatic Synthetic Data and Fine-grained Adaptive Feature Alignment for Composed Person Retrieval

Person retrieval has attracted rising attention. Existing methods are mainly divided into two retrieval modes, namely image-only and text-only. However, they are unable to make full use of the available information and are difficult to meet diverse application requirements. To address the above limitations, we propose a new Composed Person Retrieval (CPR) task, which combines visual and textual queries to identify individuals of interest from large-scale person image databases. Nevertheless, the foremost difficulty of the CPR task is the lack of available annotated datasets. Therefore, we first introduce a scalable automatic data synthesis pipeline, which decomposes complex multimodal data generation into the creation of textual quadruples followed by identity-consistent image synthesis using fine-tuned generative models. Meanwhile, a multimodal filtering method is designed to ensure the resulting SynCPR dataset retains 1.15 million high-quality and fully synthetic triplets. Additionally, to improve the representation of composed person queries, we propose a novel Fine-grained Adaptive Feature Alignment (FAFA) framework through fine-grained dynamic alignment and masked feature reasoning. Moreover, for objective evaluation, we manually annotate the Image-Text Composed Person Retrieval (ITCPR) test set. The extensive experiments demonstrate the effectiveness of the SynCPR dataset and the superiority of the proposed FAFA framework when compared with the state-of-the-art methods. All code and data will be provided at https://github.com/Delong-liu-bupt/Composed_Person_Retrieval.

  • 6 authors
·
Nov 25, 2023

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval

Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.

  • 5 authors
·
Jul 11

Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding

We present a comprehensive framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning. This approach significantly improves large language models on knowledge-intensive tasks, including opendomain question answering and complex reasoning. Our framework integrates two complementary techniques: Policy-Optimized RetrievalAugmented Generation (PORAG), which optimizes the use of retrieved information, and Adaptive Token-Layer Attention Scoring (ATLAS), which dynamically determines retrieval timing and content based on contextual needs. Together, these techniques enhance both the utilization and relevance of retrieved content, improving factual accuracy and response quality. Designed as a lightweight solution compatible with any Transformer-based LLM without requiring additional training, our framework excels in knowledge-intensive tasks, boosting output accuracy in RAG settings. We further propose CRITIC, a novel method to selectively compress key-value caches by token importance, mitigating memory bottlenecks in long-context applications. The framework also incorporates test-time scaling techniques to dynamically balance reasoning depth and computational resources, alongside optimized decoding strategies for faster inference. Experiments on benchmark datasets show that our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems. This integrated approach advances the development of robust, efficient, and scalable RAG systems across diverse applications.

  • 2 authors
·
Apr 1

Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation

Large Language Models (LLMs) have demonstrated significant performance improvements across various cognitive tasks. An emerging application is using LLMs to enhance retrieval-augmented generation (RAG) capabilities. These systems require LLMs to understand user queries, retrieve relevant information, and synthesize coherent and accurate responses. Given the increasing real-world deployment of such systems, comprehensive evaluation becomes crucial. To this end, we propose FRAMES (Factuality, Retrieval, And reasoning MEasurement Set), a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses, assess retrieval capabilities, and evaluate the reasoning required to generate final answers. While previous work has provided datasets and benchmarks to evaluate these abilities in isolation, FRAMES offers a unified framework that provides a clearer picture of LLM performance in end-to-end RAG scenarios. Our dataset comprises challenging multi-hop questions that require the integration of information from multiple sources. We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval. The accuracy is significantly improved with our proposed multi-step retrieval pipeline, achieving an accuracy of 0.66 (>50% improvement). We hope our work will help bridge evaluation gaps and assist in developing more robust and capable RAG systems.

  • 7 authors
·
Sep 19, 2024 5

OutfitTransformer: Learning Outfit Representations for Fashion Recommendation

Learning an effective outfit-level representation is critical for predicting the compatibility of items in an outfit, and retrieving complementary items for a partial outfit. We present a framework, OutfitTransformer, that uses the proposed task-specific tokens and leverages the self-attention mechanism to learn effective outfit-level representations encoding the compatibility relationships between all items in the entire outfit for addressing both compatibility prediction and complementary item retrieval tasks. For compatibility prediction, we design an outfit token to capture a global outfit representation and train the framework using a classification loss. For complementary item retrieval, we design a target item token that additionally takes the target item specification (in the form of a category or text description) into consideration. We train our framework using a proposed set-wise outfit ranking loss to generate a target item embedding given an outfit, and a target item specification as inputs. The generated target item embedding is then used to retrieve compatible items that match the rest of the outfit. Additionally, we adopt a pre-training approach and a curriculum learning strategy to improve retrieval performance. Since our framework learns at an outfit-level, it allows us to learn a single embedding capturing higher-order relations among multiple items in the outfit more effectively than pairwise methods. Experiments demonstrate that our approach outperforms state-of-the-art methods on compatibility prediction, fill-in-the-blank, and complementary item retrieval tasks. We further validate the quality of our retrieval results with a user study.

  • 7 authors
·
Apr 10, 2022

MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery

Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG's performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied.

  • 5 authors
·
Sep 9, 2024 4

Meta-Chunking: Learning Efficient Text Segmentation via Logical Perception

Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed two strategies based on LLMs: Margin Sampling Chunking and Perplexity Chunking. The former employs LLMs to perform binary classification on whether consecutive sentences need to be segmented, making decisions based on the probability difference obtained from margin sampling. The latter precisely identifies text chunk boundaries by analyzing the characteristics of perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines Meta-Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of single-hop and multi-hop question answering based on RAG. For instance, on the 2WikiMultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Our code is available at https://github.com/IAAR-Shanghai/Meta-Chunking.

  • 7 authors
·
Oct 16, 2024 4

A New Pipeline For Generating Instruction Dataset via RAG and Self Fine-Tuning

With the rapid development of large language models in recent years, there has been an increasing demand for domain-specific Agents that can cater to the unique needs of enterprises and organizations. Unlike general models, which strive for broad coverage, these specialized Agents rely on focused datasets tailored to their intended applications. This research proposes a pipeline that leverages the power of LLMs and the Retrieval-Augmented Generation related framework to construct high-quality instruction datasets for fine-tuning on specific domains using custom document collections. By ingesting domain-specific documents, the pipeline generates relevant and contextually appropriate instructions, thus effectively creating a comprehensive dataset for fine-tuning LLMs on the target domain. This approach overcomes the limitations of traditional dataset creation methods, which often rely on manual curation or web-scraping techniques that may introduce noise and irrelevant data. Notably, our pipeline offers a dynamic solution that can quickly adapt to updates or modifications in the domain-specific document collection, eliminating the need for complete retraining. Additionally, it addresses the challenge of data scarcity by enabling the generation of instruction datasets from a limited set of initial documents, rendering it suitable for unpopular or specialized domains where comprehensive datasets are scarce. As a case study, we apply this approach to the domain of psychiatry, a field requiring specialized knowledge and sensitive handling of patient information. The resulting fine-tuned LLM demonstrates showcases the viability of the proposed approach and underscores its potential for widespread adoption across various industries and domains where tailored, accurate, and contextually relevant language models are indispensable.

  • 3 authors
·
Aug 11, 2024