new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering

Dynamic human rendering from video sequences has achieved remarkable progress by formulating the rendering as a mapping from static poses to human images. However, existing methods focus on the human appearance reconstruction of every single frame while the temporal motion relations are not fully explored. In this paper, we propose a new 4D motion modeling paradigm, SurMo, that jointly models the temporal dynamics and human appearances in a unified framework with three key designs: 1) Surface-based motion encoding that models 4D human motions with an efficient compact surface-based triplane. It encodes both spatial and temporal motion relations on the dense surface manifold of a statistical body template, which inherits body topology priors for generalizable novel view synthesis with sparse training observations. 2) Physical motion decoding that is designed to encourage physical motion learning by decoding the motion triplane features at timestep t to predict both spatial derivatives and temporal derivatives at the next timestep t+1 in the training stage. 3) 4D appearance decoding that renders the motion triplanes into images by an efficient volumetric surface-conditioned renderer that focuses on the rendering of body surfaces with motion learning conditioning. Extensive experiments validate the state-of-the-art performance of our new paradigm and illustrate the expressiveness of surface-based motion triplanes for rendering high-fidelity view-consistent humans with fast motions and even motion-dependent shadows. Our project page is at: https://taohuumd.github.io/projects/SurMo/

  • 3 authors
·
Apr 1, 2024

Fusion-DeepONet: A Data-Efficient Neural Operator for Geometry-Dependent Hypersonic and Supersonic Flows

Shape optimization is essential in aerospace vehicle design, including reentry systems, and propulsion system components, as it directly influences aerodynamic efficiency, structural integrity, and overall mission success. Rapid and accurate prediction of external and internal flows accelerates design iterations. To this end, we develop a new variant of DeepONet, called Fusion-DeepONet as a fast surrogate model for geometry-dependent hypersonic and supersonic flow fields. We evaluated Fusion-DeepONet in learning two external hypersonic flows and a supersonic shape-dependent internal flow problem. First, we compare the performance of Fusion-DeepONet with state-of-the-art neural operators to learn inviscid hypersonic flow around semi-elliptic blunt bodies for two grid types: uniform Cartesian and irregular grids. Fusion-DeepONet provides comparable accuracy to parameter-conditioned U-Net on uniform grids while outperforming MeshGraphNet and Vanilla-DeepONet on irregular grids. Fusion-DeepONet requires significantly fewer trainable parameters than U-Net, MeshGraphNet, and FNO. For the second hypersonic problem, we set up Fusion-DeepONet to map from geometry and free stream Mach number to the temperature field around a reentry capsule traveling at hypersonic speed. This fast surrogate is then improved to predict the spatial derivative of the temperature, resulting in an accurate prediction of heat flux at the surfaces of the capsule. To enhance the accuracy of spatial derivative prediction, we introduce a derivative-enhanced loss term with the least computation overhead. For the third problem, we show that Fusion-DeepONet outperforms MeshGraphNet in learning geometry-dependent supersonic flow in a converging-diverging nozzle configuration. For all the problems, we used high-fidelity simulations with a high-order entropy-stable DGSEM solver to generate training datasets with limited samples.

  • 3 authors
·
Jan 3

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

  • 5 authors
·
Sep 30, 2022

Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks

Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencoder

  • 5 authors
·
Oct 10, 2023

Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data

Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there are finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, real-world data is often not naturally posed in this setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions. Then, we convert each GP into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications. We release the code of FunBaT at https://github.com/xuangu-fang/Functional-Bayesian-Tucker-Decomposition.

  • 6 authors
·
Nov 8, 2023

Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows

Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new Spatiotemporal Fourier Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues. This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed architecture initiates the training with a few epochs for SFNO, concluding with the freezing of most model parameters. Then, the last linear spectral convolution layer is fine-tuned without the frequency truncation. The optimization uses a negative Sobolev norm for the first time as the loss in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is almost exact thanks to the Parseval identity. This design allows the neural operators to effectively tackle low-frequency errors while the relief of the de-aliasing filter addresses high-frequency errors. Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.

  • 4 authors
·
May 27, 2024

Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case

Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.

  • 3 authors
·
Sep 22, 2023

How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning

Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.

  • 6 authors
·
Oct 6

Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation

Recently, diffusion models have achieved great success in mono-channel audio generation. However, when it comes to stereo audio generation, the soundscapes often have a complex scene of multiple objects and directions. Controlling stereo audio with spatial contexts remains challenging due to high data costs and unstable generative models. To the best of our knowledge, this work represents the first attempt to address these issues. We first construct a large-scale, simulation-based, and GPT-assisted dataset, BEWO-1M, with abundant soundscapes and descriptions even including moving and multiple sources. Beyond text modality, we have also acquired a set of images and rationally paired stereo audios through retrieval to advance multimodal generation. Existing audio generation models tend to generate rather random and indistinct spatial audio. To provide accurate guidance for Latent Diffusion Models, we introduce the SpatialSonic model utilizing spatial-aware encoders and azimuth state matrices to reveal reasonable spatial guidance. By leveraging spatial guidance, our model not only achieves the objective of generating immersive and controllable spatial audio from text but also extends to other modalities as the pioneer attempt. Finally, under fair settings, we conduct subjective and objective evaluations on simulated and real-world data to compare our approach with prevailing methods. The results demonstrate the effectiveness of our method, highlighting its capability to generate spatial audio that adheres to physical rules.

  • 8 authors
·
Oct 14, 2024

Implicit Gaussian process representation of vector fields over arbitrary latent manifolds

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

  • 9 authors
·
Sep 28, 2023

CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs

Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.

  • 7 authors
·
Dec 27, 2024

Random Grid Neural Processes for Parametric Partial Differential Equations

We introduce a new class of spatially stochastic physics and data informed deep latent models for parametric partial differential equations (PDEs) which operate through scalable variational neural processes. We achieve this by assigning probability measures to the spatial domain, which allows us to treat collocation grids probabilistically as random variables to be marginalised out. Adapting this spatial statistics view, we solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields. The implementation of these random grids poses a unique set of challenges for inverse physics informed deep learning frameworks and we propose a new architecture called Grid Invariant Convolutional Networks (GICNets) to overcome these challenges. We further show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available but whose measurement location does not coincide with any fixed mesh or grid. The proposed method is tested on a nonlinear Poisson problem, Burgers equation, and Navier-Stokes equations, and we provide extensive numerical comparisons. We demonstrate significant computational advantages over current physics informed neural learning methods for parametric PDEs while improving the predictive capabilities and flexibility of these models.

  • 6 authors
·
Jan 26, 2023

Geometric Trajectory Diffusion Models

Generative models have shown great promise in generating 3D geometric systems, which is a fundamental problem in many natural science domains such as molecule and protein design. However, existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature. In this work, we propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories. Modeling such distribution is challenging as it requires capturing both the complex spatial interactions with physical symmetries and temporal correspondence encapsulated in the dynamics. We theoretically justify that diffusion models with equivariant temporal kernels can lead to density with desired symmetry, and develop a novel transition kernel leveraging SE(3)-equivariant spatial convolution and temporal attention. Furthermore, to induce an expressive trajectory distribution for conditional generation, we introduce a generalized learnable geometric prior into the forward diffusion process to enhance temporal conditioning. We conduct extensive experiments on both unconditional and conditional generation in various scenarios, including physical simulation, molecular dynamics, and pedestrian motion. Empirical results on a wide suite of metrics demonstrate that GeoTDM can generate realistic geometric trajectories with significantly higher quality.

  • 5 authors
·
Oct 16, 2024

How to Detect Network Dependence in Latent Factor Models? A Bias-Corrected CD Test

In a recent paper Juodis and Reese (2022) (JR) show that the application of the CD test proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection. They propose a randomized test statistic to correct for over-rejection, and add a screening component to achieve power. This paper considers the same problem but from a different perspective, and shows that the standard CD test remains valid if the latent factors are weak in the sense the strength is less than half. In the case where latent factors are strong, we propose a bias-corrected version, CD*, which is shown to be asymptotically standard normal under the null of error cross-sectional independence and have power against network type alternatives. This result is shown to hold for pure latent factor models as well as for panel regression models with latent factors. The case where the errors are serially correlated is also considered. Small sample properties of the CD* test are investigated by Monte Carlo experiments and are shown to have the correct size for strong and weak factors as well as for Gaussian and non-Gaussian errors. In contrast, it is found that JR's test tends to over-reject in the case of panels with non-Gaussian errors, and has low power against spatial network alternatives. In an empirical application, using the CD* test, it is shown that there remains spatial error dependence in a panel data model for real house price changes across 377 Metropolitan Statistical Areas in the U.S., even after the effects of latent factors are filtered out.

  • 2 authors
·
Sep 1, 2021

CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models

Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.

  • 8 authors
·
Dec 17, 2024

NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.

  • 7 authors
·
Sep 27, 2023 2

Random Spatial Networks: Small Worlds without Clustering, Traveling Waves, and Hop-and-Spread Disease Dynamics

Random network models play a prominent role in modeling, analyzing and understanding complex phenomena on real-life networks. However, a key property of networks is often neglected: many real-world networks exhibit spatial structure, the tendency of a node to select neighbors with a probability depending on physical distance. Here, we introduce a class of random spatial networks (RSNs) which generalizes many existing random network models but adds spatial structure. In these networks, nodes are placed randomly in space and joined in edges with a probability depending on their distance and their individual expected degrees, in a manner that crucially remains analytically tractable. We use this network class to propose a new generalization of small-world networks, where the average shortest path lengths in the graph are small, as in classical Watts-Strogatz small-world networks, but with close spatial proximity of nodes that are neighbors in the network playing the role of large clustering. Small-world effects are demonstrated on these spatial small-world networks without clustering. We are able to derive partial integro-differential equations governing susceptible-infectious-recovered disease spreading through an RSN, and we demonstrate the existence of traveling wave solutions. If the distance kernel governing edge placement decays slower than exponential, the population-scale dynamics are dominated by long-range hops followed by local spread of traveling waves. This provides a theoretical modeling framework for recent observations of how epidemics like Ebola evolve in modern connected societies, with long-range connections seeding new focal points from which the epidemic locally spreads in a wavelike manner.

  • 4 authors
·
Feb 4, 2017

On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties

In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.

  • 4 authors
·
Jun 28, 2021