Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?
Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate seven S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when judging holistically the toxicity of a prompt, and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microagressions, bias). We release of this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment.
Semantic Probabilistic Control of Language Models
Semantic control entails steering LM generations towards satisfying subtle non-lexical constraints, e.g., toxicity, sentiment, or politeness, attributes that can be captured by a sequence-level verifier. It can thus be viewed as sampling from the LM distribution conditioned on the target attribute, a computationally intractable problem due to the non-decomposable nature of the verifier. Existing approaches to LM control either only deal with syntactic constraints which cannot capture the aforementioned attributes, or rely on sampling to explore the conditional LM distribution, an ineffective estimator for low-probability events. In this work, we leverage a verifier's gradient information to efficiently reason over all generations that satisfy the target attribute, enabling precise steering of LM generations by reweighing the next-token distribution. Starting from an initial sample, we create a local LM distribution favoring semantically similar sentences. This approximation enables the tractable computation of an expected sentence embedding. We use this expected embedding, informed by the verifier's evaluation at the initial sample, to estimate the probability of satisfying the constraint, which directly informs the update to the next-token distribution. We evaluated the effectiveness of our approach in controlling the toxicity, sentiment, and topic-adherence of LMs yielding generations satisfying the constraint with high probability (>95%) without degrading their quality.
On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts
Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.
Redefining Experts: Interpretable Decomposition of Language Models for Toxicity Mitigation
Large Language Models have demonstrated impressive fluency across diverse tasks, yet their tendency to produce toxic content remains a critical challenge for AI safety and public trust. Existing toxicity mitigation approaches primarily manipulate individual neuron activations, but these methods suffer from instability, context dependence, and often compromise the model's core language abilities. To address these shortcomings, we investigate three key questions: the stability of neuron-level toxicity indicators, the advantages of structural (layer-wise) representations, and the interpretability of mechanisms driving toxic generation. Through extensive experiments on Jigsaw and ToxiCN datasets, we show that aggregated layer-wise features provide more robust signals than single neurons. Moreover, we observe conceptual limitations in prior works that conflate toxicity detection experts and generation experts within neuron-based interventions. To mitigate this, we propose a novel principled intervention technique, EigenShift, based on eigen-decomposition of the language model's final output layer. This method selectively targets generation-aligned components, enabling precise toxicity suppression without impairing linguistic competence. Our method requires no additional training or fine-tuning, incurs minimal computational cost, and is grounded in rigorous theoretical analysis.
Unveiling the Implicit Toxicity in Large Language Models
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use. While recent studies primarily focus on probing toxic outputs that can be easily detected with existing toxicity classifiers, we show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting. Moreover, we propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs. Specifically, we optimize the language model with a reward that prefers implicit toxic outputs to explicit toxic and non-toxic ones. Experiments on five widely-adopted toxicity classifiers demonstrate that the attack success rate can be significantly improved through RL fine-tuning. For instance, the RL-finetuned LLaMA-13B model achieves an attack success rate of 90.04% on BAD and 62.85% on Davinci003. Our findings suggest that LLMs pose a significant threat in generating undetectable implicit toxic outputs. We further show that fine-tuning toxicity classifiers on the annotated examples from our attacking method can effectively enhance their ability to detect LLM-generated implicit toxic language. The code is publicly available at https://github.com/thu-coai/Implicit-Toxicity.
Realistic Evaluation of Toxicity in Large Language Models
Large language models (LLMs) have become integral to our professional workflows and daily lives. Nevertheless, these machine companions of ours have a critical flaw: the huge amount of data which endows them with vast and diverse knowledge, also exposes them to the inevitable toxicity and bias. While most LLMs incorporate defense mechanisms to prevent the generation of harmful content, these safeguards can be easily bypassed with minimal prompt engineering. In this paper, we introduce the new Thoroughly Engineered Toxicity (TET) dataset, comprising manually crafted prompts designed to nullify the protective layers of such models. Through extensive evaluations, we demonstrate the pivotal role of TET in providing a rigorous benchmark for evaluation of toxicity awareness in several popular LLMs: it highlights the toxicity in the LLMs that might remain hidden when using normal prompts, thus revealing subtler issues in their behavior.
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company's Reputation
Not all topics are equally "flammable" in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labeling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labeled dataset and an appropriateness-labeled dataset. We also release pre-trained classification models trained on this data.
Tiny-Toxic-Detector: A compact transformer-based model for toxic content detection
This paper presents Tiny-toxic-detector, a compact transformer-based model designed for toxic content detection. Despite having only 2.1 million parameters, Tiny-toxic-detector achieves competitive performance on benchmark datasets, with 90.97% accuracy on ToxiGen and 86.98% accuracy on the Jigsaw dataset, rivaling models over 50 times its size. This efficiency enables deployment in resource-constrained environments, addressing the need for effective content moderation tools that balance performance with computational efficiency. The model architecture features 4 transformer encoder layers, each with 2 attention heads, an embedding dimension of 64, and a feedforward dimension of 128. Trained on both public and private datasets, Tiny-toxic-detector demonstrates the potential of efficient, task-specific models for addressing online toxicity. The paper covers the model architecture, training process, performance benchmarks, and limitations, underscoring its suitability for applications such as social media monitoring and content moderation. By achieving results comparable to much larger models while significantly reducing computational demands, Tiny-toxic-detector represents progress toward more sustainable and scalable AI-driven content moderation solutions.
Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.
Ablation is Not Enough to Emulate DPO: How Neuron Dynamics Drive Toxicity Reduction
Safety fine-tuning algorithms are commonly used to fine-tune language models to reduce harmful outputs, but the exact internal mechanisms of how those models achieve this remain unclear. In studying direct preference optimisation (DPO) for toxicity reduction, current explanations claim that DPO works by dampening the most toxic MLP neurons to learn an offset to avert toxic regions in the residual stream. However, by ablating the most toxic neurons and applying activation patching, we find this explanation incomplete. By projecting neuron activation changes onto a toxicity probe, we find that only 31.8\% of toxicity reduction comes from dampened toxic neurons. Instead, DPO reduces toxicity by accumulating effects across multiple neuron groups, both reducing writing in the toxic direction and promoting anti-toxicity in the residual stream. Moreover, DPO gives noisy adjustments to neuron activations, with many neurons actually increasing toxicity. This indicates that DPO is a balancing process between opposing neuron effects to achieve toxicity reduction.
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning "bad" words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.
When Bad Data Leads to Good Models
In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.
Understanding and Mitigating Toxicity in Image-Text Pretraining Datasets: A Case Study on LLaVA
Pretraining datasets are foundational to the development of multimodal models, yet they often have inherent biases and toxic content from the web-scale corpora they are sourced from. In this paper, we investigate the prevalence of toxicity in LLaVA image-text pretraining dataset, examining how harmful content manifests in different modalities. We present a comprehensive analysis of common toxicity categories and propose targeted mitigation strategies, resulting in the creation of a refined toxicity-mitigated dataset. This dataset removes 7,531 of toxic image-text pairs in the LLaVA pre-training dataset. We offer guidelines for implementing robust toxicity detection pipelines. Our findings underscore the need to actively identify and filter toxic content - such as hate speech, explicit imagery, and targeted harassment - to build more responsible and equitable multimodal systems. The toxicity-mitigated dataset is open source and is available for further research.
PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models
Recent advances in large language models (LLMs) have led to their extensive global deployment, and ensuring their safety calls for comprehensive and multilingual toxicity evaluations. However, existing toxicity benchmarks are overwhelmingly focused on English, posing serious risks to deploying LLMs in other languages. We address this by introducing PolygloToxicityPrompts (PTP), the first large-scale multilingual toxicity evaluation benchmark of 425K naturally occurring prompts spanning 17 languages. We overcome the scarcity of naturally occurring toxicity in web-text and ensure coverage across languages with varying resources by automatically scraping over 100M web-text documents. Using PTP, we investigate research questions to study the impact of model size, prompt language, and instruction and preference-tuning methods on toxicity by benchmarking over 60 LLMs. Notably, we find that toxicity increases as language resources decrease or model size increases. Although instruction- and preference-tuning reduce toxicity, the choice of preference-tuning method does not have any significant impact. Our findings shed light on crucial shortcomings of LLM safeguarding and highlight areas for future research.
ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Goodtriever: Adaptive Toxicity Mitigation with Retrieval-augmented Models
Considerable effort has been dedicated to mitigating toxicity, but existing methods often require drastic modifications to model parameters or the use of computationally intensive auxiliary models. Furthermore, previous approaches have often neglected the crucial factor of language's evolving nature over time. In this work, we present a comprehensive perspective on toxicity mitigation that takes into account its changing nature. We introduce Goodtriever, a flexible methodology that matches the current state-of-the-art toxicity mitigation while achieving 43% relative latency reduction during inference and being more computationally efficient. By incorporating a retrieval-based approach at decoding time, Goodtriever enables toxicity-controlled text generation. Our research advocates for an increased focus on adaptable mitigation techniques, which better reflect the data drift models face when deployed in the wild. Code and data are available at https://github.com/for-ai/goodtriever.
PclGPT: A Large Language Model for Patronizing and Condescending Language Detection
Disclaimer: Samples in this paper may be harmful and cause discomfort! Patronizing and condescending language (PCL) is a form of speech directed at vulnerable groups. As an essential branch of toxic language, this type of language exacerbates conflicts and confrontations among Internet communities and detrimentally impacts disadvantaged groups. Traditional pre-trained language models (PLMs) perform poorly in detecting PCL due to its implicit toxicity traits like hypocrisy and false sympathy. With the rise of large language models (LLMs), we can harness their rich emotional semantics to establish a paradigm for exploring implicit toxicity. In this paper, we introduce PclGPT, a comprehensive LLM benchmark designed specifically for PCL. We collect, annotate, and integrate the Pcl-PT/SFT dataset, and then develop a bilingual PclGPT-EN/CN model group through a comprehensive pre-training and supervised fine-tuning staircase process to facilitate implicit toxic detection. Group detection results and fine-grained detection from PclGPT and other models reveal significant variations in the degree of bias in PCL towards different vulnerable groups, necessitating increased societal attention to protect them.
Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate \haf of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and nonsensical responses. We open-source our code and LLM-generated explanations at https://github.com/uofthcdslab/HAF.
LifeTox: Unveiling Implicit Toxicity in Life Advice
As large language models become increasingly integrated into daily life, detecting implicit toxicity across diverse contexts is crucial. To this end, we introduce LifeTox, a dataset designed for identifying implicit toxicity within a broad range of advice-seeking scenarios. Unlike existing safety datasets, LifeTox comprises diverse contexts derived from personal experiences through open-ended questions. Experiments demonstrate that RoBERTa fine-tuned on LifeTox matches or surpasses the zero-shot performance of large language models in toxicity classification tasks. These results underscore the efficacy of LifeTox in addressing the complex challenges inherent in implicit toxicity.
"Silent Is Not Actually Silent": An Investigation of Toxicity on Bug Report Discussion
Toxicity in bug report discussions poses significant challenges to the collaborative dynamics of open-source software development. Bug reports are crucial for identifying and resolving defects, yet their inherently problem-focused nature and emotionally charged context make them susceptible to toxic interactions. This study explores toxicity in GitHub bug reports through a qualitative analysis of 203 bug threads, including 81 toxic ones. Our findings reveal that toxicity frequently arises from misaligned perceptions of bug severity and priority, unresolved frustrations with tools, and lapses in professional communication. These toxic interactions not only derail productive discussions but also reduce the likelihood of actionable outcomes, such as linking issues with pull requests. Our preliminary findings offer actionable recommendations to improve bug resolution by mitigating toxicity.
Recourse for reclamation: Chatting with generative language models
Researchers and developers increasingly rely on toxicity scoring to moderate generative language model outputs, in settings such as customer service, information retrieval, and content generation. However, toxicity scoring may render pertinent information inaccessible, rigidify or "value-lock" cultural norms, and prevent language reclamation processes, particularly for marginalized people. In this work, we extend the concept of algorithmic recourse to generative language models: we provide users a novel mechanism to achieve their desired prediction by dynamically setting thresholds for toxicity filtering. Users thereby exercise increased agency relative to interactions with the baseline system. A pilot study (n = 30) supports the potential of our proposed recourse mechanism, indicating improvements in usability compared to fixed-threshold toxicity-filtering of model outputs. Future work should explore the intersection of toxicity scoring, model controllability, user agency, and language reclamation processes -- particularly with regard to the bias that many communities encounter when interacting with generative language models.
ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation
Despite remarkable advances that large language models have achieved in chatbots, maintaining a non-toxic user-AI interactive environment has become increasingly critical nowadays. However, previous efforts in toxicity detection have been mostly based on benchmarks derived from social media content, leaving the unique challenges inherent to real-world user-AI interactions insufficiently explored. In this work, we introduce ToxicChat, a novel benchmark based on real user queries from an open-source chatbot. This benchmark contains the rich, nuanced phenomena that can be tricky for current toxicity detection models to identify, revealing a significant domain difference compared to social media content. Our systematic evaluation of models trained on existing toxicity datasets has shown their shortcomings when applied to this unique domain of ToxicChat. Our work illuminates the potentially overlooked challenges of toxicity detection in real-world user-AI conversations. In the future, ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions.
ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection
Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language. To help mitigate these issues, we create ToxiGen, a new large-scale and machine-generated dataset of 274k toxic and benign statements about 13 minority groups. We develop a demonstration-based prompting framework and an adversarial classifier-in-the-loop decoding method to generate subtly toxic and benign text with a massive pretrained language model. Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale, and about more demographic groups, than previous resources of human-written text. We conduct a human evaluation on a challenging subset of ToxiGen and find that annotators struggle to distinguish machine-generated text from human-written language. We also find that 94.5% of toxic examples are labeled as hate speech by human annotators. Using three publicly-available datasets, we show that finetuning a toxicity classifier on our data improves its performance on human-written data substantially. We also demonstrate that ToxiGen can be used to fight machine-generated toxicity as finetuning improves the classifier significantly on our evaluation subset. Our code and data can be found at https://github.com/microsoft/ToxiGen.
CONDA: a CONtextual Dual-Annotated dataset for in-game toxicity understanding and detection
Traditional toxicity detection models have focused on the single utterance level without deeper understanding of context. We introduce CONDA, a new dataset for in-game toxic language detection enabling joint intent classification and slot filling analysis, which is the core task of Natural Language Understanding (NLU). The dataset consists of 45K utterances from 12K conversations from the chat logs of 1.9K completed Dota 2 matches. We propose a robust dual semantic-level toxicity framework, which handles utterance and token-level patterns, and rich contextual chatting history. Accompanying the dataset is a thorough in-game toxicity analysis, which provides comprehensive understanding of context at utterance, token, and dual levels. Inspired by NLU, we also apply its metrics to the toxicity detection tasks for assessing toxicity and game-specific aspects. We evaluate strong NLU models on CONDA, providing fine-grained results for different intent classes and slot classes. Furthermore, we examine the coverage of toxicity nature in our dataset by comparing it with other toxicity datasets.
Low-rank finetuning for LLMs: A fairness perspective
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models (LLMs) due to their reduced computational and memory requirements. This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution. Our findings reveal that there are cases in which low-rank fine-tuning falls short in learning such shifts. This, in turn, produces non-negligible side effects, especially when fine-tuning is adopted for toxicity mitigation in pre-trained models, or in scenarios where it is important to provide fair models. Through comprehensive empirical evidence on several models, datasets, and tasks, we show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors. We also show that this extends to sequential decision-making tasks, emphasizing the need for careful evaluation to promote responsible LLMs development.
On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research
Perception of toxicity evolves over time and often differs between geographies and cultural backgrounds. Similarly, black-box commercially available APIs for detecting toxicity, such as the Perspective API, are not static, but frequently retrained to address any unattended weaknesses and biases. We evaluate the implications of these changes on the reproducibility of findings that compare the relative merits of models and methods that aim to curb toxicity. Our findings suggest that research that relied on inherited automatic toxicity scores to compare models and techniques may have resulted in inaccurate findings. Rescoring all models from HELM, a widely respected living benchmark, for toxicity with the recent version of the API led to a different ranking of widely used foundation models. We suggest caution in applying apples-to-apples comparisons between studies and lay recommendations for a more structured approach to evaluating toxicity over time. Code and data are available at https://github.com/for-ai/black-box-api-challenges.
Detoxifying Large Language Models via Knowledge Editing
This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments to compare knowledge editing approaches with previous baselines, indicating that knowledge editing has the potential to efficiently detoxify LLMs with limited impact on general performance. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxify approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs. Code and benchmark are available at https://github.com/zjunlp/EasyEdit.
Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing
Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.
Automated Identification of Toxic Code Reviews Using ToxiCR
Toxic conversations during software development interactions may have serious repercussions on a Free and Open Source Software (FOSS) development project. For example, victims of toxic conversations may become afraid to express themselves, therefore get demotivated, and may eventually leave the project. Automated filtering of toxic conversations may help a FOSS community to maintain healthy interactions among its members. However, off-the-shelf toxicity detectors perform poorly on Software Engineering (SE) datasets, such as one curated from code review comments. To encounter this challenge, we present ToxiCR, a supervised learning-based toxicity identification tool for code review interactions. ToxiCR includes a choice to select one of the ten supervised learning algorithms, an option to select text vectorization techniques, eight preprocessing steps, and a large-scale labeled dataset of 19,571 code review comments. Two out of those eight preprocessing steps are SE domain specific. With our rigorous evaluation of the models with various combinations of preprocessing steps and vectorization techniques, we have identified the best combination for our dataset that boosts 95.8% accuracy and 88.9% F1 score. ToxiCR significantly outperforms existing toxicity detectors on our dataset. We have released our dataset, pre-trained models, evaluation results, and source code publicly available at: https://github.com/WSU-SEAL/ToxiCR
Large Language Models for Toxic Language Detection in Low-Resource Balkan Languages
Online toxic language causes real harm, especially in regions with limited moderation tools. In this study, we evaluate how large language models handle toxic comments in Serbian, Croatian, and Bosnian, languages with limited labeled data. We built and manually labeled a dataset of 4,500 YouTube and TikTok comments drawn from videos across diverse categories, including music, politics, sports, modeling, influencer content, discussions of sexism, and general topics. Four models (GPT-3.5 Turbo, GPT-4.1, Gemini 1.5 Pro, and Claude 3 Opus) were tested in two modes: zero-shot and context-augmented. We measured precision, recall, F1 score, accuracy and false positive rates. Including a short context snippet raised recall by about 0.12 on average and improved F1 score by up to 0.10, though it sometimes increased false positives. The best balance came from Gemini in context-augmented mode, reaching an F1 score of 0.82 and accuracy of 0.82, while zero-shot GPT-4.1 led on precision and had the lowest false alarms. We show how adding minimal context can improve toxic language detection in low-resource settings and suggest practical strategies such as improved prompt design and threshold calibration. These results show that prompt design alone can yield meaningful gains in toxicity detection for underserved Balkan language communities.
Chinese Toxic Language Mitigation via Sentiment Polarity Consistent Rewrites
Detoxifying offensive language while preserving the speaker's original intent is a challenging yet critical goal for improving the quality of online interactions. Although large language models (LLMs) show promise in rewriting toxic content, they often default to overly polite rewrites, distorting the emotional tone and communicative intent. This problem is especially acute in Chinese, where toxicity often arises implicitly through emojis, homophones, or discourse context. We present ToxiRewriteCN, the first Chinese detoxification dataset explicitly designed to preserve sentiment polarity. The dataset comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans. It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues. We evaluate 17 LLMs, including commercial and open-source models with variant architectures, across four dimensions: detoxification accuracy, fluency, content preservation, and sentiment polarity. Results show that while commercial and MoE models perform best overall, all models struggle to balance safety with emotional fidelity in more subtle or context-heavy settings such as emoji, homophone, and dialogue-based inputs. We release ToxiRewriteCN to support future research on controllable, sentiment-aware detoxification for Chinese.
Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models
Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.
CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.
Toxicity in ChatGPT: Analyzing Persona-assigned Language Models
Large language models (LLMs) have shown incredible capabilities and transcended the natural language processing (NLP) community, with adoption throughout many services like healthcare, therapy, education, and customer service. Since users include people with critical information needs like students or patients engaging with chatbots, the safety of these systems is of prime importance. Therefore, a clear understanding of the capabilities and limitations of LLMs is necessary. To this end, we systematically evaluate toxicity in over half a million generations of ChatGPT, a popular dialogue-based LLM. We find that setting the system parameter of ChatGPT by assigning it a persona, say that of the boxer Muhammad Ali, significantly increases the toxicity of generations. Depending on the persona assigned to ChatGPT, its toxicity can increase up to 6x, with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions. This may be potentially defamatory to the persona and harmful to an unsuspecting user. Furthermore, we find concerning patterns where specific entities (e.g., certain races) are targeted more than others (3x more) irrespective of the assigned persona, that reflect inherent discriminatory biases in the model. We hope that our findings inspire the broader AI community to rethink the efficacy of current safety guardrails and develop better techniques that lead to robust, safe, and trustworthy AI systems.
