- Sustainable Carbon-Aware and Water-Efficient LLM Scheduling in Geo-Distributed Cloud Datacenters In recent years, Large Language Models (LLM) such as ChatGPT, CoPilot, and Gemini have been widely adopted in different areas. As the use of LLMs continues to grow, many efforts have focused on reducing the massive training overheads of these models. But it is the environmental impact of handling user requests to LLMs that is increasingly becoming a concern. Recent studies estimate that the costs of operating LLMs in their inference phase can exceed training costs by 25x per year. As LLMs are queried incessantly, the cumulative carbon footprint for the operational phase has been shown to far exceed the footprint during the training phase. Further, estimates indicate that 500 ml of fresh water is expended for every 20-50 requests to LLMs during inference. To address these important sustainability issues with LLMs, we propose a novel framework called SLIT to co-optimize LLM quality of service (time-to-first token), carbon emissions, water usage, and energy costs. The framework utilizes a machine learning (ML) based metaheuristic to enhance the sustainability of LLM hosting across geo-distributed cloud datacenters. Such a framework will become increasingly vital as LLMs proliferate. 6 authors · May 29
- Sustainable Aviation Fuels: Opportunities, Alternatives and Challenges for Decarbonizing the Aviation Industry and Foster the Renewable Chemicals Sustainable Aviation Fuels (SAF) are pivotal in the global effort to decarbonize the aviation sector and meet greenhouse gas (GHG) reduction targets established by international frameworks such as CORSIA and Brazil ProBioQAV. This study evaluates SAF potential to reduce lifecycle carbon emissions by up to 80% while being compatible with existing aviation infrastructure. Through bibliometric analysis, scenario evaluation, legal and regulatory framework analysis and economic modeling, the research examines two key SAF production technologies: Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK) and Alcohol-to-Jet (ATJ) pathways in the Brazilian context. The findings reveal significant economic challenges, particularly high feedstock and production costs, which hinder SAF competitiveness with fossil fuels at recent and current market prices in Brazil, leading to the analysis of potential incentives and commercial conditions aiming to increase economic attractiveness of SAF production. Based on interviews with relevant stakeholders and decision makers in the industry, scenarios incorporating tax incentives, carbon credits, capital grants, and premium pricing for SAF and its biogenic by-products demonstrate that combined policy interventions and commercial arrangements, along with a regulated Carbon Market are essential for SAF economic viability. Future research is suggested to look at regional assessments of feedstock availability, supply chain logistics, and global market eligibility. This research provides insights for guiding public policy and private investment to support the transition to sustainable aviation in Brazil and beyond. 5 authors · Apr 4
- Sustainable Cloud Services for Verbal Interaction with Embodied Agents This article presents the design and the implementation of a cloud system for knowledge-based autonomous interaction devised for Social Robots and other conversational agents. The system is particularly convenient for low-cost robots and devices: it can be used as a stand-alone dialogue system or as an integration to provide "background" dialogue capabilities to any preexisting Natural Language Processing ability that the robot may already have as part of its basic skills. By connecting to the cloud, developers are provided with a sustainable solution to manage verbal interaction through a network connection, with about 3,000 topics of conversation ready for "chit-chatting" and a library of pre-cooked plans that only needs to be grounded into the robot's physical capabilities. The system is structured as a set of REST API endpoints so that it can be easily expanded by adding new APIs to improve the capabilities of the clients connected to the cloud. Another key feature of the system is that it has been designed to make the development of its clients straightforward: in this way, multiple robots and devices can be easily endowed with the capability of autonomously interacting with the user, understanding when to perform specific actions, and exploiting all the information provided by cloud services. The article outlines and discusses the results of the experiments performed to assess the system's performance in terms of response time, paving the way for its use both for research and market solutions. Links to repositories with clients for ROS and popular robots such as Pepper and NAO are available on request. 3 authors · Mar 4, 2022
- Sustainable AI: Environmental Implications, Challenges and Opportunities This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective, spanning Data, Algorithms, and System Hardware. We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases and, at the same time, considering the life cycle of system hardware. Taking a step further, we capture the operational and manufacturing carbon footprint of AI computing and present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI. Based on the industry experience and lessons learned, we share the key challenges and chart out important development directions across the many dimensions of AI. We hope the key messages and insights presented in this paper can inspire the community to advance the field of AI in an environmentally-responsible manner. 25 authors · Oct 30, 2021
- Modeling Sustainable City Trips: Integrating CO2e Emissions, Popularity, and Seasonality into Tourism Recommender Systems Tourism affects not only the tourism industry but also society and stakeholders such as the environment, local businesses, and residents. Tourism Recommender Systems (TRS) can be pivotal in promoting sustainable tourism by guiding travelers toward destinations with minimal negative impact. Our paper introduces a composite sustainability indicator for a city trip TRS based on the users' starting point and month of travel. This indicator integrates CO2e emissions for different transportation modes and analyses destination popularity and seasonal demand. We quantify city popularity based on user reviews, points of interest, and search trends from Tripadvisor and Google Trends data. To calculate a seasonal demand index, we leverage data from TourMIS and Airbnb. We conducted a user study to explore the fundamental trade-offs in travel decision-making and determine the weights for our proposed indicator. Finally, we demonstrate the integration of this indicator into a TRS, illustrating its ability to deliver sustainable city trip recommendations. This work lays the foundation for future research by integrating sustainability measures and contributing to responsible recommendations by TRS. 5 authors · Mar 27, 2024
- Towards Sustainable Learning: Coresets for Data-efficient Deep Learning To improve the efficiency and sustainability of learning deep models, we propose CREST, the first scalable framework with rigorous theoretical guarantees to identify the most valuable examples for training non-convex models, particularly deep networks. To guarantee convergence to a stationary point of a non-convex function, CREST models the non-convex loss as a series of quadratic functions and extracts a coreset for each quadratic sub-region. In addition, to ensure faster convergence of stochastic gradient methods such as (mini-batch) SGD, CREST iteratively extracts multiple mini-batch coresets from larger random subsets of training data, to ensure nearly-unbiased gradients with small variances. Finally, to further improve scalability and efficiency, CREST identifies and excludes the examples that are learned from the coreset selection pipeline. Our extensive experiments on several deep networks trained on vision and NLP datasets, including CIFAR-10, CIFAR-100, TinyImageNet, and SNLI, confirm that CREST speeds up training deep networks on very large datasets, by 1.7x to 2.5x with minimum loss in the performance. By analyzing the learning difficulty of the subsets selected by CREST, we show that deep models benefit the most by learning from subsets of increasing difficulty levels. 3 authors · Jun 1, 2023
20 Exploring the sustainable scaling of AI dilemma: A projective study of corporations' AI environmental impacts The rapid growth of artificial intelligence (AI), particularly Large Language Models (LLMs), has raised concerns regarding its global environmental impact that extends beyond greenhouse gas emissions to include consideration of hardware fabrication and end-of-life processes. The opacity from major providers hinders companies' abilities to evaluate their AI-related environmental impacts and achieve net-zero targets. In this paper, we propose a methodology to estimate the environmental impact of a company's AI portfolio, providing actionable insights without necessitating extensive AI and Life-Cycle Assessment (LCA) expertise. Results confirm that large generative AI models consume up to 4600x more energy than traditional models. Our modelling approach, which accounts for increased AI usage, hardware computing efficiency, and changes in electricity mix in line with IPCC scenarios, forecasts AI electricity use up to 2030. Under a high adoption scenario, driven by widespread Generative AI and agents adoption associated to increasingly complex models and frameworks, AI electricity use is projected to rise by a factor of 24.4. Mitigating the environmental impact of Generative AI by 2030 requires coordinated efforts across the AI value chain. Isolated measures in hardware efficiency, model efficiency, or grid improvements alone are insufficient. We advocate for standardized environmental assessment frameworks, greater transparency from the all actors of the value chain and the introduction of a "Return on Environment" metric to align AI development with net-zero goals. 6 authors · Jan 24 3
- Climate And Resource Awareness is Imperative to Achieving Sustainable AI (and Preventing a Global AI Arms Race) Sustainability encompasses three key facets: economic, environmental, and social. However, the nascent discourse that is emerging on sustainable artificial intelligence (AI) has predominantly focused on the environmental sustainability of AI, often neglecting the economic and social aspects. Achieving truly sustainable AI necessitates addressing the tension between its climate awareness and its social sustainability, which hinges on equitable access to AI development resources. The concept of resource awareness advocates for broader access to the infrastructure required to develop AI, fostering equity in AI innovation. Yet, this push for improving accessibility often overlooks the environmental costs of expanding such resource usage. In this position paper, we argue that reconciling climate and resource awareness is essential to realizing the full potential of sustainable AI. We use the framework of base-superstructure to analyze how the material conditions are influencing the current AI discourse. We also introduce the Climate and Resource Aware Machine Learning (CARAML) framework to address this conflict and propose actionable recommendations spanning individual, community, industry, government, and global levels to achieve sustainable AI. 4 authors · Feb 27
- The Esethu Framework: Reimagining Sustainable Dataset Governance and Curation for Low-Resource Languages This paper presents the Esethu Framework, a sustainable data curation framework specifically designed to empower local communities and ensure equitable benefit-sharing from their linguistic resources. This framework is supported by the Esethu license, a novel community-centric data license. As a proof of concept, we introduce the Vuk'uzenzele isiXhosa Speech Dataset (ViXSD), an open-source corpus developed under the Esethu Framework and License. The dataset, containing read speech from native isiXhosa speakers enriched with demographic and linguistic metadata, demonstrates how community-driven licensing and curation principles can bridge resource gaps in automatic speech recognition (ASR) for African languages while safeguarding the interests of data creators. We describe the framework guiding dataset development, outline the Esethu license provisions, present the methodology for ViXSD, and present ASR experiments validating ViXSD's usability in building and refining voice-driven applications for isiXhosa. 15 authors · Feb 21
- Learning to Suggest Breaks: Sustainable Optimization of Long-Term User Engagement Optimizing user engagement is a key goal for modern recommendation systems, but blindly pushing users towards increased consumption risks burn-out, churn, or even addictive habits. To promote digital well-being, most platforms now offer a service that periodically prompts users to take breaks. These, however, must be set up manually, and so may be suboptimal for both users and the system. In this paper, we study the role of breaks in recommendation, and propose a framework for learning optimal breaking policies that promote and sustain long-term engagement. Based on the notion that recommendation dynamics are susceptible to both positive and negative feedback, we cast recommendation as a Lotka-Volterra dynamical system, where breaking reduces to a problem of optimal control. We then give an efficient learning algorithm, provide theoretical guarantees, and empirically demonstrate the utility of our approach on semi-synthetic data. 2 authors · Nov 24, 2022
1 Lightweight Fish Classification Model for Sustainable Marine Management: Indonesian Case The enormous demand for seafood products has led to exploitation of marine resources and near-extinction of some species. In particular, overfishing is one the main issues in sustainable marine development. In alignment with the protection of marine resources and sustainable fishing, this study proposes to advance fish classification techniques that support identifying protected fish species using state-of-the-art machine learning. We use a custom modification of the MobileNet model to design a lightweight classifier called M-MobileNet that is capable of running on limited hardware. As part of the study, we compiled a labeled dataset of 37,462 images of fish found in the waters of the Indonesian archipelago. The proposed model is trained on the dataset to classify images of the captured fish into their species and give recommendations on whether they are consumable or not. Our modified MobileNet model uses only 50\% of the top layer parameters with about 42% GTX 860M utility and achieves up to 97% accuracy in fish classification and determining its consumability. Given the limited computing capacity available on many fishing vessels, the proposed model provides a practical solution to on-site fish classification. In addition, synchronized implementation of the proposed model on multiple vessels can supply valuable information about the movement and location of different species of fish. 3 authors · Jan 4, 2024 1
- Novel Loss-Enhanced Universal Adversarial Patches for Sustainable Speaker Privacy Deep learning voice models are commonly used nowadays, but the safety processing of personal data, such as human identity and speech content, remains suspicious. To prevent malicious user identification, speaker anonymization methods were proposed. Current methods, particularly based on universal adversarial patch (UAP) applications, have drawbacks such as significant degradation of audio quality, decreased speech recognition quality, low transferability across different voice biometrics models, and performance dependence on the input audio length. To mitigate these drawbacks, in this work, we introduce and leverage the novel Exponential Total Variance (TV) loss function and provide experimental evidence that it positively affects UAP strength and imperceptibility. Moreover, we present a novel scalable UAP insertion procedure and demonstrate its uniformly high performance for various audio lengths. 5 authors · May 26
- OVS Meets Continual Learning: Towards Sustainable Open-Vocabulary Segmentation Open-Vocabulary Segmentation (OVS) aims to segment classes that are not present in the training dataset. However, most existing studies assume that the training data is fixed in advance, overlooking more practical scenarios where new datasets are continuously collected over time. To address this, we first analyze how existing OVS models perform under such conditions. In this context, we explore several approaches such as retraining, fine-tuning, and continual learning but find that each of them has clear limitations. To address these issues, we propose ConOVS, a novel continual learning method based on a Mixture-of-Experts framework. ConOVS dynamically combines expert decoders based on the probability that an input sample belongs to the distribution of each incremental dataset. Through extensive experiments, we show that ConOVS consistently outperforms existing methods across pre-training, incremental, and zero-shot test datasets, effectively expanding the recognition capabilities of OVS models when data is collected sequentially. 5 authors · Oct 15, 2024
- Enhancing Tourism Recommender Systems for Sustainable City Trips Using Retrieval-Augmented Generation Tourism Recommender Systems (TRS) have traditionally focused on providing personalized travel suggestions, often prioritizing user preferences without considering broader sustainability goals. Integrating sustainability into TRS has become essential with the increasing need to balance environmental impact, local community interests, and visitor satisfaction. This paper proposes a novel approach to enhancing TRS for sustainable city trips using Large Language Models (LLMs) and a modified Retrieval-Augmented Generation (RAG) pipeline. We enhance the traditional RAG system by incorporating a sustainability metric based on a city's popularity and seasonal demand during the prompt augmentation phase. This modification, called Sustainability Augmented Reranking (SAR), ensures the system's recommendations align with sustainability goals. Evaluations using popular open-source LLMs, such as Llama-3.1-Instruct-8B and Mistral-Instruct-7B, demonstrate that the SAR-enhanced approach consistently matches or outperforms the baseline (without SAR) across most metrics, highlighting the benefits of incorporating sustainability into TRS. 3 authors · Sep 26, 2024
- Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents As AI systems pervade human life, ensuring that large language models (LLMs) make safe decisions remains a significant challenge. We introduce the Governance of the Commons Simulation (GovSim), a generative simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. In GovSim, a society of AI agents must collectively balance exploiting a common resource with sustaining it for future use. This environment enables the study of how ethical considerations, strategic planning, and negotiation skills impact cooperative outcomes. We develop an LLM-based agent architecture and test it with the leading open and closed LLMs. We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%. Ablations reveal that successful multi-agent communication between agents is critical for achieving cooperation in these cases. Furthermore, our analyses show that the failure to achieve sustainable cooperation in most LLMs stems from their inability to formulate and analyze hypotheses about the long-term effects of their actions on the equilibrium of the group. Finally, we show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability. Taken together, GovSim enables us to study the mechanisms that underlie sustainable self-government with specificity and scale. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface. 6 authors · Apr 25, 2024
- A Configurable Pythonic Data Center Model for Sustainable Cooling and ML Integration There have been growing discussions on estimating and subsequently reducing the operational carbon footprint of enterprise data centers. The design and intelligent control for data centers have an important impact on data center carbon footprint. In this paper, we showcase PyDCM, a Python library that enables extremely fast prototyping of data center design and applies reinforcement learning-enabled control with the purpose of evaluating key sustainability metrics including carbon footprint, energy consumption, and observing temperature hotspots. We demonstrate these capabilities of PyDCM and compare them to existing works in EnergyPlus for modeling data centers. PyDCM can also be used as a standalone Gymnasium environment for demonstrating sustainability-focused data center control. 8 authors · Apr 18, 2024
- Chasing Low-Carbon Electricity for Practical and Sustainable DNN Training Deep learning has experienced significant growth in recent years, resulting in increased energy consumption and carbon emission from the use of GPUs for training deep neural networks (DNNs). Answering the call for sustainability, conventional solutions have attempted to move training jobs to locations or time frames with lower carbon intensity. However, moving jobs to other locations may not always be feasible due to large dataset sizes or data regulations. Moreover, postponing training can negatively impact application service quality because the DNNs backing the service are not updated in a timely fashion. In this work, we present a practical solution that reduces the carbon footprint of DNN training without migrating or postponing jobs. Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPUs, thereby reducing carbon footprint while maintaining training performance. Furthermore, in order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm that predicts the carbon intensity of the upcoming time frame. Our solution, Chase, reduces the total carbon footprint of training ResNet-50 on ImageNet by 13.6% while only increasing training time by 2.5%. 4 authors · Mar 4, 2023
- SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Progress toward the United Nations Sustainable Development Goals (SDGs) has been hindered by a lack of data on key environmental and socioeconomic indicators, which historically have come from ground surveys with sparse temporal and spatial coverage. Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media, to provide insights into progress toward SDGs. Despite promising early results, approaches to using such data for SDG measurement thus far have largely evaluated on different datasets or used inconsistent evaluation metrics, making it hard to understand whether performance is improving and where additional research would be most fruitful. Furthermore, processing satellite and ground survey data requires domain knowledge that many in the machine learning community lack. In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to (1) lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs; (2) provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and (3) encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs. 10 authors · Nov 8, 2021
- Reproducibility Study of "Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents" This study evaluates and extends the findings made by Piatti et al., who introduced GovSim, a simulation framework designed to assess the cooperative decision-making capabilities of large language models (LLMs) in resource-sharing scenarios. By replicating key experiments, we validate claims regarding the performance of large models, such as GPT-4-turbo, compared to smaller models. The impact of the universalization principle is also examined, with results showing that large models can achieve sustainable cooperation, with or without the principle, while smaller models fail without it. In addition, we provide multiple extensions to explore the applicability of the framework to new settings. We evaluate additional models, such as DeepSeek-V3 and GPT-4o-mini, to test whether cooperative behavior generalizes across different architectures and model sizes. Furthermore, we introduce new settings: we create a heterogeneous multi-agent environment, study a scenario using Japanese instructions, and explore an "inverse environment" where agents must cooperate to mitigate harmful resource distributions. Our results confirm that the benchmark can be applied to new models, scenarios, and languages, offering valuable insights into the adaptability of LLMs in complex cooperative tasks. Moreover, the experiment involving heterogeneous multi-agent systems demonstrates that high-performing models can influence lower-performing ones to adopt similar behaviors. This finding has significant implications for other agent-based applications, potentially enabling more efficient use of computational resources and contributing to the development of more effective cooperative AI systems. 4 authors · May 14
- DeepWaste: Applying Deep Learning to Waste Classification for a Sustainable Planet Accurate waste disposal, at the point of disposal, is crucial to fighting climate change. When materials that could be recycled or composted get diverted into landfills, they cause the emission of potent greenhouse gases such as methane. Current attempts to reduce erroneous waste disposal are expensive, inaccurate, and confusing. In this work, we propose DeepWaste, an easy-to-use mobile app, that utilizes highly optimized deep learning techniques to provide users instantaneous waste classification into trash, recycling, and compost. We experiment with several convolution neural network architectures to detect and classify waste items. Our best model, a deep learning residual neural network with 50 layers, achieves an average precision of 0.881 on the test set. We demonstrate the performance and efficiency of our app on a set of real-world images. 1 authors · Jan 14, 2021
1 The Use of Synthetic Data to Train AI Models: Opportunities and Risks for Sustainable Development In the current data driven era, synthetic data, artificially generated data that resembles the characteristics of real world data without containing actual personal information, is gaining prominence. This is due to its potential to safeguard privacy, increase the availability of data for research, and reduce bias in machine learning models. This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data. Synthetic data can be a powerful instrument for protecting the privacy of individuals, but it also presents challenges, such as ensuring its quality and authenticity. A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data, ensuring that it can be utilized effectively without compromising ethical or legal standards. Organizations and institutions must develop standardized guidelines and best practices in order to capitalize on the benefits of synthetic data while addressing its inherent challenges. 3 authors · Aug 31, 2023
- Energy-Aware Code Generation with LLMs: Benchmarking Small vs. Large Language Models for Sustainable AI Programming Large Language Models (LLMs) are widely used for code generation. However, commercial models like ChatGPT require significant computing power, which leads to high energy use and carbon emissions. This has raised concerns about their environmental impact. In this study, we evaluate open-source Small Language Models (SLMs) trained explicitly for code generation and compare their performance and energy efficiency against large LLMs and efficient human-written Python code. The goal is to investigate whether SLMs can match the performance of LLMs on certain types of programming problems while producing more energy-efficient code. We evaluate 150 coding problems from LeetCode, evenly distributed across three difficulty levels: easy, medium, and hard. Our comparison includes three small open-source models, StableCode-3B, StarCoderBase-3B, and Qwen2.5-Coder-3B-Instruct, and two large commercial models, GPT-4.0 and DeepSeek-Reasoner. The generated code is evaluated using four key metrics: run-time, memory usage, energy consumption, and correctness. We use human-written solutions as a baseline to assess the quality and efficiency of the model-generated code. Results indicate that LLMs achieve the highest correctness across all difficulty levels, but SLMs are often more energy-efficient when their outputs are correct. In over 52% of the evaluated problems, SLMs consumed the same or less energy than LLMs. 5 authors · Aug 10
- Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research. 5 authors · Feb 19
- Advanced Unstructured Data Processing for ESG Reports: A Methodology for Structured Transformation and Enhanced Analysis In the evolving field of corporate sustainability, analyzing unstructured Environmental, Social, and Governance (ESG) reports is a complex challenge due to their varied formats and intricate content. This study introduces an innovative methodology utilizing the "Unstructured Core Library", specifically tailored to address these challenges by transforming ESG reports into structured, analyzable formats. Our approach significantly advances the existing research by offering high-precision text cleaning, adept identification and extraction of text from images, and standardization of tables within these reports. Emphasizing its capability to handle diverse data types, including text, images, and tables, the method adeptly manages the nuances of differing page layouts and report styles across industries. This research marks a substantial contribution to the fields of industrial ecology and corporate sustainability assessment, paving the way for the application of advanced NLP technologies and large language models in the analysis of corporate governance and sustainability. Our code is available at https://github.com/linancn/TianGong-AI-Unstructure.git. 9 authors · Jan 4, 2024
1 PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) Sustainable Development Goals (SDG), our work leverages non-invasive analysis methods utilizing RGB and hyperspectral imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this paper, we introduce 'PCB-Vision'; a pioneering RGB-hyperspectral printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution hyperspectral data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (IC), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multi-scene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision. 6 authors · Jan 12, 2024
- From fields to fuel: analyzing the global economic and emissions potential of agricultural pellets, informed by a case study Agricultural residues represent a vast, underutilized resource for renewable energy. This study combines empirical analysis from 179 countries with a case study of a pelletization facility to evaluate the global potential of agricultural pelletization for fossil fuel replacement. The findings estimate a technical availability of 1.44 billion tons of crop residues suitable for pellet production, translating to a 4.5% potential displacement of global fossil fuel energy use, equating to 22 million TJ and equivalent to 917 million tons of coal annually. The economically optimized scenario projects annual savings of $163 billion and a reduction of 1.35 billion tons of CO2 equivalent in emissions. Utilizing the custom-developed CLASP-P and RECOP models, the study further demonstrates that agricultural pellets can achieve competitive pricing against conventional fossil fuels in many markets. Despite logistical and policy challenges, agricultural pelletization emerges as a scalable, market-driven pathway to support global decarbonization goals while fostering rural economic development. These results reinforce the need for targeted investment, technological advancement, and supportive policy to unlock the full potential of agricultural pellets in the renewable energy mix. 2 authors · Aug 17
- Exploring Public Attention in the Circular Economy through Topic Modelling with Twin Hyperparameter Optimisation To advance the circular economy (CE), it is crucial to gain insights into the evolution of public attention, cognitive pathways of the masses concerning circular products, and to identify primary concerns. To achieve this, we collected data from diverse platforms, including Twitter, Reddit, and The Guardian, and utilised three topic models to analyse the data. Given the performance of topic modelling may vary depending on hyperparameter settings, this research proposed a novel framework that integrates twin (single and multi-objective) hyperparameter optimisation for the CE. We conducted systematic experiments to ensure that topic models are set with appropriate hyperparameters under different constraints, providing valuable insights into the correlations between CE and public attention. In summary, our optimised model reveals that public remains concerned about the economic impacts of sustainability and circular practices, particularly regarding recyclable materials and environmentally sustainable technologies. The analysis shows that the CE has attracted significant attention on The Guardian, especially in topics related to sustainable development and environmental protection technologies, while discussions are comparatively less active on Twitter. These insights highlight the need for policymakers to implement targeted education programs, create incentives for businesses to adopt CE principles, and enforce more stringent waste management policies alongside improved recycling processes. 6 authors · May 16, 2024
4 More than Carbon: Cradle-to-Grave environmental impacts of GenAI training on the Nvidia A100 GPU The rapid expansion of AI has intensified concerns about its environmental sustainability. Yet, current assessments predominantly focus on operational carbon emissions using secondary data or estimated values, overlooking environmental impacts in other life cycle stages. This study presents the first comprehensive multi-criteria life cycle assessment (LCA) of AI training, examining 16 environmental impact categories based on detailed primary data collection of the Nvidia A100 SXM 40GB GPU. The LCA results for training BLOOM reveal that the use phase dominates 11 of 16 impact categories including climate change (96\%), while manufacturing dominates the remaining 5 impact categories including human toxicity, cancer (99\%) and mineral and metal depletion (85\%). For training GPT-4, the use phase dominates 10 of 16 impact categories, contributing about 96\% to both the climate change and resource use, fossils category. The manufacturing stage dominates 6 of 16 impact categories including human toxicity, cancer (94\%) and eutrophication, freshwater (81\%). Assessing the cradle-to-gate environmental impact distribution across the GPU components reveals that the GPU chip is the largest contributor across 10 of 16 of impact categories and shows particularly pronounced contributions to climate change (81\%) and resource use, fossils (80\%). While primary data collection results in modest changes in carbon estimates compared to database-derived estimates, substantial variations emerge in other categories. Most notably, minerals and metals depletion increases by 33\%, demonstrating the critical importance of primary data for non-carbon accounting. This multi-criteria analysis expands the Sustainable AI discourse beyond operational carbon emissions, challenging current sustainability narratives and highlighting the need for policy frameworks addressing the full spectrum of AI's environmental impact. 8 authors · Aug 27
4 Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice As the possibilities for Artificial Intelligence (AI) have grown, so have concerns regarding its impacts on society and the environment. However, these issues are often raised separately; i.e. carbon footprint analyses of AI models typically do not consider how the pursuit of scale has contributed towards building models that are both inaccessible to most researchers in terms of cost and disproportionately harmful to the environment. On the other hand, model audits that aim to evaluate model performance and disparate impacts mostly fail to engage with the environmental ramifications of AI models and how these fit into their auditing approaches. In this separation, both research directions fail to capture the depth of analysis that can be explored by considering the two in parallel and the potential solutions for making informed choices that can be developed at their convergence. In this essay, we build upon work carried out in AI and in sister communities, such as philosophy and sustainable development, to make more deliberate connections around topics such as generalizability, transparency, evaluation and equity across AI research and practice. We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment, and we conclude with a proposal of best practices to better integrate AI ethics and sustainability in AI research and practice. 4 authors · Apr 1
- On The Impact of Replacing Private Cars with Autonomous Shuttles: An Agent-Based Approach The European Green Deal aims to achieve climate neutrality by 2050, which demands improved emissions efficiency from the transportation industry. This study uses an agent-based simulation to analyze the sustainability impacts of shared autonomous shuttles. We forecast travel demands for 2050 and simulate regulatory interventions in the form of replacing private cars with a fleet of shared autonomous shuttles in specific areas. We derive driving-related emissions, energy consumption, and non-driving-related emissions to calculate life-cycle emissions. We observe reduced life-cycle emissions from 0.4% to 9.6% and reduced energy consumption from 1.5% to 12.2%. 4 authors · Nov 23, 2023
3 Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI With the growing attention and investment in recent AI approaches such as large language models, the narrative that the larger the AI system the more valuable, powerful and interesting it is is increasingly seen as common sense. But what is this assumption based on, and how are we measuring value, power, and performance? And what are the collateral consequences of this race to ever-increasing scale? Here, we scrutinize the current scaling trends and trade-offs across multiple axes and refute two common assumptions underlying the 'bigger-is-better' AI paradigm: 1) that improved performance is a product of increased scale, and 2) that all interesting problems addressed by AI require large-scale models. Rather, we argue that this approach is not only fragile scientifically, but comes with undesirable consequences. First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint. Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate. Finally, it exacerbates a concentration of power, which centralizes decision-making in the hands of a few actors while threatening to disempower others in the context of shaping both AI research and its applications throughout society. 3 authors · Sep 21, 2024 1
1 SusGen-GPT: A Data-Centric LLM for Financial NLP and Sustainability Report Generation The rapid growth of the financial sector and the rising focus on Environmental, Social, and Governance (ESG) considerations highlight the need for advanced NLP tools. However, open-source LLMs proficient in both finance and ESG domains remain scarce. To address this gap, we introduce SusGen-30K, a category-balanced dataset comprising seven financial NLP tasks and ESG report generation, and propose TCFD-Bench, a benchmark for evaluating sustainability report generation. Leveraging this dataset, we developed SusGen-GPT, a suite of models achieving state-of-the-art performance across six adapted and two off-the-shelf tasks, trailing GPT-4 by only 2% despite using 7-8B parameters compared to GPT-4's 1,700B. Based on this, we propose the SusGen system, integrated with Retrieval-Augmented Generation (RAG), to assist in sustainability report generation. This work demonstrates the efficiency of our approach, advancing research in finance and ESG. 8 authors · Dec 14, 2024
- Discovering Effective Policies for Land-Use Planning with Neuroevolution How areas of land are allocated for different uses, such as forests, urban areas, and agriculture, has a large effect on the terrestrial carbon balance, and therefore climate change. Based on available historical data on land-use changes and a simulation of the associated carbon emissions and removals, a surrogate model can be learned that makes it possible to evaluate the different options available to decision-makers efficiently. An evolutionary search process can then be used to discover effective land-use policies for specific locations. Such a system was built on the Project Resilience platform and evaluated with the Land-Use Harmonization dataset LUH2 and the bookkeeping model BLUE. It generates Pareto fronts that trade off carbon impact and amount of land-use change customized to different locations, thus providing a proof-of-concept tool that is potentially useful for land-use planning. 8 authors · Nov 20, 2023
- Enhancing Retrieval for ESGLLM via ESG-CID -- A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS Climate change has intensified the need for transparency and accountability in organizational practices, making Environmental, Social, and Governance (ESG) reporting increasingly crucial. Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting, yet generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles. To facilitate ESG report automation, Retrieval-Augmented Generation (RAG) systems can be employed, but their development is hindered by a lack of labeled data suitable for training retrieval models. In this paper, we leverage an underutilized source of weak supervision -- the disclosure content index found in past ESG reports -- to create a comprehensive dataset, ESG-CID, for both GRI and ESRS standards. By extracting mappings between specific disclosure requirements and corresponding report sections, and refining them using a Large Language Model as a judge, we generate a robust training and evaluation set. We benchmark popular embedding models on this dataset and show that fine-tuning BERT-based models can outperform commercial embeddings and leading public models, even under temporal data splits for cross-report style transfer from GRI to ESRS 8 authors · Mar 10
- High carbon stock mapping at large scale with optical satellite imagery and spaceborne LIDAR The increasing demand for commodities is leading to changes in land use worldwide. In the tropics, deforestation, which causes high carbon emissions and threatens biodiversity, is often linked to agricultural expansion. While the need for deforestation-free global supply chains is widely recognized, making progress in practice remains a challenge. Here, we propose an automated approach that aims to support conservation and sustainable land use planning decisions by mapping tropical landscapes at large scale and high spatial resolution following the High Carbon Stock (HCS) approach. A deep learning approach is developed that estimates canopy height for each 10 m Sentinel-2 pixel by learning from sparse GEDI LIDAR reference data, achieving an overall RMSE of 6.3 m. We show that these wall-to-wall maps of canopy top height are predictive for classifying HCS forests and degraded areas with an overall accuracy of 86 % and produce a first high carbon stock map for Indonesia, Malaysia, and the Philippines. 3 authors · Jul 15, 2021
1 Kitchen Food Waste Image Segmentation and Classification for Compost Nutrients Estimation The escalating global concern over extensive food wastage necessitates innovative solutions to foster a net-zero lifestyle and reduce emissions. The LILA home composter presents a convenient means of recycling kitchen scraps and daily food waste into nutrient-rich, high-quality compost. To capture the nutritional information of the produced compost, we have created and annotated a large high-resolution image dataset of kitchen food waste with segmentation masks of 19 nutrition-rich categories. Leveraging this dataset, we benchmarked four state-of-the-art semantic segmentation models on food waste segmentation, contributing to the assessment of compost quality of Nitrogen, Phosphorus, or Potassium. The experiments demonstrate promising results of using segmentation models to discern food waste produced in our daily lives. Based on the experiments, SegFormer, utilizing MIT-B5 backbone, yields the best performance with a mean Intersection over Union (mIoU) of 67.09. Class-based results are also provided to facilitate further analysis of different food waste classes. 6 authors · Jan 26, 2024