new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 4

EfficientVLA: Training-Free Acceleration and Compression for Vision-Language-Action Models

Vision-Language-Action (VLA) models, particularly diffusion-based architectures, demonstrate transformative potential for embodied intelligence but are severely hampered by high computational and memory demands stemming from extensive inherent and inference-time redundancies. While existing acceleration efforts often target isolated inefficiencies, such piecemeal solutions typically fail to holistically address the varied computational and memory bottlenecks across the entire VLA pipeline, thereby limiting practical deployability. We introduce EfficientVLA, a structured and training-free inference acceleration framework that systematically eliminates these barriers by cohesively exploiting multifaceted redundancies. EfficientVLA synergistically integrates three targeted strategies: (1) pruning of functionally inconsequential layers from the language module, guided by an analysis of inter-layer redundancies; (2) optimizing the visual processing pathway through a task-aware strategy that selects a compact, diverse set of visual tokens, balancing task-criticality with informational coverage; and (3) alleviating temporal computational redundancy within the iterative diffusion-based action head by strategically caching and reusing key intermediate features. We apply our method to a standard VLA model CogACT, yielding a 1.93X inference speedup and reduces FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.

  • 8 authors
·
Jun 11 2

Training-Free Unsupervised Prompt for Vision-Language Models

Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.

  • 7 authors
·
Apr 25, 2024

$Δ$-DiT: A Training-Free Acceleration Method Tailored for Diffusion Transformers

Diffusion models are widely recognized for generating high-quality and diverse images, but their poor real-time performance has led to numerous acceleration works, primarily focusing on UNet-based structures. With the more successful results achieved by diffusion transformers (DiT), there is still a lack of exploration regarding the impact of DiT structure on generation, as well as the absence of an acceleration framework tailored to the DiT architecture. To tackle these challenges, we conduct an investigation into the correlation between DiT blocks and image generation. Our findings reveal that the front blocks of DiT are associated with the outline of the generated images, while the rear blocks are linked to the details. Based on this insight, we propose an overall training-free inference acceleration framework Delta-DiT: using a designed cache mechanism to accelerate the rear DiT blocks in the early sampling stages and the front DiT blocks in the later stages. Specifically, a DiT-specific cache mechanism called Delta-Cache is proposed, which considers the inputs of the previous sampling image and reduces the bias in the inference. Extensive experiments on PIXART-alpha and DiT-XL demonstrate that the Delta-DiT can achieve a 1.6times speedup on the 20-step generation and even improves performance in most cases. In the scenario of 4-step consistent model generation and the more challenging 1.12times acceleration, our method significantly outperforms existing methods. Our code will be publicly available.

  • 8 authors
·
Jun 3, 2024

WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance

Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.

  • 5 authors
·
Sep 18 3

Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model

Diffusion models have obtained substantial progress in image-to-video (I2V) generation. However, such models are not fully understood. In this paper, we report a significant but previously overlooked issue in I2V diffusion models (I2V-DMs), namely, conditional image leakage. I2V-DMs tend to over-rely on the conditional image at large time steps, neglecting the crucial task of predicting the clean video from noisy inputs, which results in videos lacking dynamic and vivid motion. We further address this challenge from both inference and training aspects by presenting plug-and-play strategies accordingly. First, we introduce a training-free inference strategy that starts the generation process from an earlier time step to avoid the unreliable late-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to effectively bridge the training-inference gap. Second, to mitigate conditional image leakage during training, we design a time-dependent noise distribution for the conditional image, which favors high noise levels at large time steps to sufficiently interfere with the conditional image. We validate these strategies on various I2V-DMs using our collected open-domain image benchmark and the UCF101 dataset. Extensive results demonstrate that our methods outperform baselines by producing videos with more dynamic and natural motion without compromising image alignment and temporal consistency. The project page: https://cond-image-leak.github.io/.

  • 6 authors
·
Jun 22, 2024

Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts

Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.

VMoBA: Mixture-of-Block Attention for Video Diffusion Models

The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.

  • 8 authors
·
Jun 30 1

The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering

Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.

AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning

Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.

  • 4 authors
·
Dec 4, 2024 2

Test-Time Anchoring for Discrete Diffusion Posterior Sampling

We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.

LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence

We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX, the first installment of our large structured-data models (LDMs). LimiX treats structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. LimiX is pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, where the model predicts for query subsets conditioned on dataset-specific contexts, supporting rapid, training-free adaptation at inference. We evaluate LimiX across 10 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. With a single model and a unified interface, LimiX consistently surpasses strong baselines including gradient-boosting trees, deep tabular networks, recent tabular foundation models, and automated ensembles, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. All LimiX models are publicly accessible under Apache 2.0.

  • 38 authors
·
Sep 3

[CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster

Large vision-language models (VLMs) often rely on a substantial number of visual tokens when interacting with large language models (LLMs), which has proven to be inefficient. Recent efforts have aimed to accelerate VLM inference by pruning visual tokens. Most existing methods assess the importance of visual tokens based on the text-visual cross-attentions in LLMs. In this study, we find that the cross-attentions between text and visual tokens in LLMs are inaccurate. Pruning tokens based on these inaccurate attentions leads to significant performance degradation, especially at high reduction ratios. To this end, we introduce FasterVLM, a simple yet effective training-free visual token pruning method that evaluates the importance of visual tokens more accurately by utilizing attentions between the [CLS] token and image tokens from the visual encoder. Since FasterVLM eliminates redundant visual tokens immediately after the visual encoder, ensuring they do not interact with LLMs and resulting in faster VLM inference. It is worth noting that, benefiting from the accuracy of [CLS] cross-attentions, FasterVLM can prune 95\% of visual tokens while maintaining 90\% of the performance of LLaVA-1.5-7B. We apply FasterVLM to various VLMs, including LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA, to demonstrate its effectiveness. Experimental results show that our FasterVLM maintains strong performance across various VLM architectures and reduction ratios, significantly outperforming existing text-visual attention-based methods. Our code is available at https://github.com/Theia-4869/FasterVLM.

  • 9 authors
·
Dec 2, 2024

XL3M: A Training-free Framework for LLM Length Extension Based on Segment-wise Inference

Length generalization failure problem, namely the large language model (LLM) fails to generalize to texts longer than its maximum training length, greatly restricts the application of LLM in the scenarios with streaming long inputs. To address this problem, the existing methods either require substantial costs or introduce precision loss. In this paper, we empirically find that the accuracy of the LLM's prediction is highly correlated to its certainty. Based on this, we propose an efficient training free framework, named XL3M (it means extra-long large language model), which enables the LLMs trained on short sequences to reason extremely long sequence without any further training or fine-tuning. Under the XL3M framework, the input context will be firstly decomposed into multiple short sub-contexts, where each sub-context contains an independent segment and a common ``question'' which is a few tokens from the end of the original context. Then XL3M gives a method to measure the relevance between each segment and the ``question'', and constructs a concise key context by splicing all the relevant segments in chronological order. The key context is further used instead of the original context to complete the inference task. Evaluations on comprehensive benchmarks show the superiority of XL3M. Using our framework, a Llama2-7B model is able to reason 20M long sequences on an 8-card Huawei Ascend 910B NPU machine with 64GB memory per card.

  • 10 authors
·
May 27, 2024 2

DeltaLLM: A Training-Free Framework Exploiting Temporal Sparsity for Efficient Edge LLM Inference

Deploying Large Language Models (LLMs) on edge devices remains challenging due to their quadratically increasing computations with the sequence length. Existing studies for dynamic attention pruning are designed for hardware with massively parallel computation capabilities, such as GPUs or TPUs, and aim at long context lengths (e.g., 64K), making them unsuitable for edge scenarios. We present DeltaLLM, a training-free framework that exploits temporal sparsity in attention patterns to enable efficient LLM inference across both the prefilling and decoding stages, on resource-constrained edge devices. DeltaLLM introduces an accuracy- and memory-aware delta matrix construction strategy that introduces temporal sparsity, and a context-aware hybrid attention mechanism that combines full attention in a local context window with delta approximation outside it to increase accuracy. We evaluate our framework on the edge-device-friendly BitNet-b1.58-2B-4T model and Llama3.2-1B-Instruct model across diverse language tasks. The results show that on BitNet, our framework increases the attention sparsity from 0% to 60% during the prefilling stage with slight accuracy improvement on the WG task, and 0% to 57% across both the prefilling and decoding stages, with even higher F1 score from 29.63 to 30.97 on SQuAD-v2 task. On the Llama model, it can also achieve up to 60% sparsity during the prefilling stage and around 57% across both stages with negligible accuracy drop. These results demonstrate that DeltaLLM offers a promising solution for efficient edge deployment, requiring no fine-tuning and seamlessly integrating with existing inference pipelines.

  • 4 authors
·
Jul 25

Training-free Diffusion Acceleration with Bottleneck Sampling

Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3times for image generation and 2.5times for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics. Code is available at: https://github.com/tyfeld/Bottleneck-Sampling

  • 9 authors
·
Mar 24 4

Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss

In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.

  • 4 authors
·
Jan 13

CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones

Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we consistently outperform a baseline based on an SOTA unsupervised object detector under the same label- and training-free setting. Additionally, we achieve competitive results -- and in some cases surpass -- training-free methods that rely on supervised backbones, non-training-free unsupervised methods, as well as several fully supervised SOTA approaches. This demonstrates that label- and training-free CAC can be both scalable and effective. Code: https://lorebianchi98.github.io/CountingDINO/.

  • 6 authors
·
Apr 23

Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization

Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.

  • 6 authors
·
Apr 11 2

MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models

Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This simple yet effective training-free strategy, what we refer to as RCR, consistently improves performance and yields additional gains when combined with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.

  • 4 authors
·
Aug 18

HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models

Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9times, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.

  • 6 authors
·
Aug 1

Compositional Caching for Training-free Open-vocabulary Attribute Detection

Attribute detection is crucial for many computer vision tasks, as it enables systems to describe properties such as color, texture, and material. Current approaches often rely on labor-intensive annotation processes which are inherently limited: objects can be described at an arbitrary level of detail (e.g., color vs. color shades), leading to ambiguities when the annotators are not instructed carefully. Furthermore, they operate within a predefined set of attributes, reducing scalability and adaptability to unforeseen downstream applications. We present Compositional Caching (ComCa), a training-free method for open-vocabulary attribute detection that overcomes these constraints. ComCa requires only the list of target attributes and objects as input, using them to populate an auxiliary cache of images by leveraging web-scale databases and Large Language Models to determine attribute-object compatibility. To account for the compositional nature of attributes, cache images receive soft attribute labels. Those are aggregated at inference time based on the similarity between the input and cache images, refining the predictions of underlying Vision-Language Models (VLMs). Importantly, our approach is model-agnostic, compatible with various VLMs. Experiments on public datasets demonstrate that ComCa significantly outperforms zero-shot and cache-based baselines, competing with recent training-based methods, proving that a carefully designed training-free approach can successfully address open-vocabulary attribute detection.

  • 5 authors
·
Mar 24

Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts

Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios. To alleviate this issue, researchers introduce open-set perception tasks to detect or segment unseen objects in the training set. However, these models require predefined object categories as inputs during inference, which are not available in real-world scenarios. Recently, researchers pose a new and more practical problem, i.e., open-ended object detection, which discovers unseen objects without any object categories as inputs. In this paper, we present VL-SAM, a training-free framework that combines the generalized object recognition model (i.e., Vision-Language Model) with the generalized object localization model (i.e., Segment-Anything Model), to address the open-ended object detection and segmentation task. Without additional training, we connect these two generalized models with attention maps as the prompts. Specifically, we design an attention map generation module by employing head aggregation and a regularized attention flow to aggregate and propagate attention maps across all heads and layers in VLM, yielding high-quality attention maps. Then, we iteratively sample positive and negative points from the attention maps with a prompt generation module and send the sampled points to SAM to segment corresponding objects. Experimental results on the long-tail instance segmentation dataset (LVIS) show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks. Besides, VL-SAM achieves favorable performance on the corner case object detection dataset (CODA), demonstrating the effectiveness of VL-SAM in real-world applications. Moreover, VL-SAM exhibits good model generalization that can incorporate various VLMs and SAMs.

  • 3 authors
·
Oct 8, 2024

FastVGGT: Training-Free Acceleration of Visual Geometry Transformer

Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, scaling these models to long-sequence image inputs remains a significant challenge due to inference-time inefficiency. In this work, we present a detailed analysis of VGGT, a state-of-the-art feed-forward visual geometry model and identify its primary bottleneck. Visualization further reveals a token collapse phenomenon in the attention maps. Motivated by these findings, we explore the potential of token merging in the feed-forward visual geometry model. Owing to the unique architectural and task-specific properties of 3D models, directly applying existing merging techniques proves challenging. To this end, we propose FastVGGT, which, for the first time, leverages token merging in the 3D domain through a training-free mechanism for accelerating VGGT. we devise a unique token partitioning strategy tailored to 3D architectures and tasks, effectively eliminating redundant computation while preserving VGGT's powerful reconstruction capacity. Extensive experiments on multiple 3D geometry benchmarks validate the effectiveness of our approach. Notably, with 1000 input images, FastVGGT achieves a 4x speedup over VGGT while mitigating error accumulation in long-sequence scenarios. These findings underscore the potential of token merging as a principled solution for scalable 3D vision systems. Code is available at: https://mystorm16.github.io/fastvggt/.

  • 4 authors
·
Sep 2

Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs

Vision-language large models have achieved remarkable success in various multi-modal tasks, yet applying them to video understanding remains challenging due to the inherent complexity and computational demands of video data. While training-based video-LLMs deliver high performance, they often require substantial resources for training and inference. Conversely, training-free approaches offer a more efficient alternative by adapting pre-trained image-LLMs models for video tasks without additional training, but they face inference efficiency bottlenecks due to the large number of visual tokens generated from video frames. In this work, we present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs. The proposed framework decouples spatial-temporal dimension and performs temporal frame sampling and spatial RoI cropping respectively based on task-specific prompts. Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks. Extensive experiments demonstrate that our approach achieves competitive results with significantly fewer tokens, offering an optimal trade-off between accuracy and computational efficiency compared to state-of-the-art video LLMs. The code will be available at https://github.com/contrastive/FreeVideoLLM.

  • 6 authors
·
Oct 14, 2024

AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration

Diffusion models are emerging expressive generative models, in which a large number of time steps (inference steps) are required for a single image generation. To accelerate such tedious process, reducing steps uniformly is considered as an undisputed principle of diffusion models. We consider that such a uniform assumption is not the optimal solution in practice; i.e., we can find different optimal time steps for different models. Therefore, we propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training. Specifically, we first design a unified search space that consists of all possible time steps and various architectures. Then, a two stage evolutionary algorithm is introduced to find the optimal solution in the designed search space. To further accelerate the search process, we employ FID score between generated and real samples to estimate the performance of the sampled examples. As a result, the proposed method is (i).training-free, obtaining the optimal time steps and model architecture without any training process; (ii). orthogonal to most advanced diffusion samplers and can be integrated to gain better sample quality. (iii). generalized, where the searched time steps and architectures can be directly applied on different diffusion models with the same guidance scale. Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 times 64 with only four steps, compared to 138.66 with DDIM. The code is available at https://github.com/lilijiangg/AutoDiffusion.

  • 10 authors
·
Sep 19, 2023

TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling

Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.

  • 10 authors
·
May 22

Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration

Multimodal large language models (MLLMs) have attracted considerable attention due to their exceptional performance in visual content understanding and reasoning. However, their inference efficiency has been a notable concern, as the increasing length of multimodal contexts leads to quadratic complexity. Token compression techniques, which reduce the number of visual tokens, have demonstrated their effectiveness in reducing computational costs. Yet, these approaches have struggled to keep pace with the rapid advancements in MLLMs, especially the AnyRes strategy in the context of high-resolution image understanding. In this paper, we propose a novel token compression method, GlobalCom^2, tailored for high-resolution MLLMs that receive both the thumbnail and multiple crops. GlobalCom^2 treats the tokens derived from the thumbnail as the "commander" of the entire token compression process, directing the allocation of retention ratios and the specific compression for each crop. In this way, redundant tokens are eliminated while important local details are adaptively preserved to the highest extent feasible. Empirical results across 10 benchmarks reveal that GlobalCom^2 achieves an optimal balance between performance and efficiency, and consistently outperforms state-of-the-art token compression methods with LLaVA-NeXT-7B/13B models. Our code is released at https://github.com/xuyang-liu16/GlobalCom2.

  • 10 authors
·
Jan 9

Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models

This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead search for efficient guidance policies. We formulate the discovery of such policies in the differentiable Neural Architecture Search framework. Our findings suggest that the denoising steps proposed by CFG become increasingly aligned with simple conditional steps, which renders the extra neural network evaluation of CFG redundant, especially in the second half of the denoising process. Building upon this insight, we propose "Adaptive Guidance" (AG), an efficient variant of CFG, that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter while being training-free and retaining the capacity to handle negative prompts. Finally, we uncover further redundancies of CFG in the first half of the diffusion process, showing that entire neural function evaluations can be replaced by simple affine transformations of past score estimates. This method, termed LinearAG, offers even cheaper inference at the cost of deviating from the baseline model. Our findings provide insights into the efficiency of the conditional denoising process that contribute to more practical and swift deployment of text-conditioned diffusion models.

  • 8 authors
·
Dec 19, 2023

ComCLIP: Training-Free Compositional Image and Text Matching

Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-lanaguage pretrained models like CLIP to compositional image and text matching -- a more challenging image and text matching task requiring the model understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel \textit{training-free} compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: SVO, ComVG, Winoground, and VL-checklist, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the \textit{zero-shot} inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.

  • 4 authors
·
Nov 24, 2022

AudioGenie-Reasoner: A Training-Free Multi-Agent Framework for Coarse-to-Fine Audio Deep Reasoning

Audio deep reasoning is a challenging task that requires expert-level perception, multi-step logical inference, and the integration of contextual knowledge. However, existing models suffer from a gap between audio perception and reasoning abilities due to the lack of training data with explicit reasoning chains and the absence of mechanisms for active exploration and iterative refinement. To address these challenges, we propose AudioGenie-Reasoner (AGR), the first unified training-free multi-agent system that coordinates perception and reasoning over an evolving chain of textual evidence. Our key idea is a paradigm shift that transforms audio deep reasoning into complex text understanding task from a new perspective, thereby unlocking the full potential of large language models. Specifically, the design of AGR mimics the human coarse-to-fine cognitive process. It first transforms the input audio into a coarse text-based document. Then, we design a novel proactive iterative document refinement loop, featuring tool-augmented routes and specialized agents, to continuously search for missing information and augment the evidence chain in a coarse-to-fine manner until sufficient question-related information is gathered for making final predictions. Experimental results show that AGR achieves state-of-the-art (SOTA) performance over existing open-source audio deep reasoning models across various benchmarks. The code will be available at https://github.com/ryysayhi/AudioGenie-Reasoner.

  • 4 authors
·
Sep 21

Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs

Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.

  • 7 authors
·
Dec 16, 2024

First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection

Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose First RAG, Second SEG (RAG-SEG), a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a personal laptop, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. blue {Code: https://github.com/Lwt-diamond/RAG-SEG.}

  • 3 authors
·
Aug 21

A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition

Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.

  • 4 authors
·
Mar 19

AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models

While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.

  • 5 authors
·
Mar 10

ConsistEdit: Highly Consistent and Precise Training-free Visual Editing

Recent advances in training-free attention control methods have enabled flexible and efficient text-guided editing capabilities for existing generation models. However, current approaches struggle to simultaneously deliver strong editing strength while preserving consistency with the source. This limitation becomes particularly critical in multi-round and video editing, where visual errors can accumulate over time. Moreover, most existing methods enforce global consistency, which limits their ability to modify individual attributes such as texture while preserving others, thereby hindering fine-grained editing. Recently, the architectural shift from U-Net to MM-DiT has brought significant improvements in generative performance and introduced a novel mechanism for integrating text and vision modalities. These advancements pave the way for overcoming challenges that previous methods failed to resolve. Through an in-depth analysis of MM-DiT, we identify three key insights into its attention mechanisms. Building on these, we propose ConsistEdit, a novel attention control method specifically tailored for MM-DiT. ConsistEdit incorporates vision-only attention control, mask-guided pre-attention fusion, and differentiated manipulation of the query, key, and value tokens to produce consistent, prompt-aligned edits. Extensive experiments demonstrate that ConsistEdit achieves state-of-the-art performance across a wide range of image and video editing tasks, including both structure-consistent and structure-inconsistent scenarios. Unlike prior methods, it is the first approach to perform editing across all inference steps and attention layers without handcraft, significantly enhancing reliability and consistency, which enables robust multi-round and multi-region editing. Furthermore, it supports progressive adjustment of structural consistency, enabling finer control.

  • 4 authors
·
Oct 20 2

Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer

Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.

  • 3 authors
·
Dec 11, 2023

Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration

Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by times1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.

  • 4 authors
·
Jun 5

Grouping First, Attending Smartly: Training-Free Acceleration for Diffusion Transformers

Diffusion-based Transformers have demonstrated impressive generative capabilities, but their high computational costs hinder practical deployment, for example, generating an 8192times 8192 image can take over an hour on an A100 GPU. In this work, we propose GRAT (GRouping first, ATtending smartly), a training-free attention acceleration strategy for fast image and video generation without compromising output quality. The key insight is to exploit the inherent sparsity in learned attention maps (which tend to be locally focused) in pretrained Diffusion Transformers and leverage better GPU parallelism. Specifically, GRAT first partitions contiguous tokens into non-overlapping groups, aligning both with GPU execution patterns and the local attention structures learned in pretrained generative Transformers. It then accelerates attention by having all query tokens within the same group share a common set of attendable key and value tokens. These key and value tokens are further restricted to structured regions, such as surrounding blocks or criss-cross regions, significantly reducing computational overhead (e.g., attaining a 35.8times speedup over full attention when generating 8192times 8192 images) while preserving essential attention patterns and long-range context. We validate GRAT on pretrained Flux and HunyuanVideo for image and video generation, respectively. In both cases, GRAT achieves substantially faster inference without any fine-tuning, while maintaining the performance of full attention. We hope GRAT will inspire future research on accelerating Diffusion Transformers for scalable visual generation.

  • 5 authors
·
May 20

Is Less More? Exploring Token Condensation as Training-free Test-time Adaptation

Contrastive Language-Image Pretraining (CLIP) excels at learning generalizable image representations but often falls short in zero-shot inference on certain downstream datasets. Test-time adaptation (TTA) mitigates this issue by adjusting components like normalization layers or context prompts, yet it typically requires large batch sizes and extensive augmentations, leading to high computational costs. This raises a key question: Can VLMs' performance drop in specific test cases be mitigated through efficient, training-free approaches? To explore the solution, we investigate token condensation (TC) techniques, originally designed to enhance vision transformer efficiency by refining token usage during inference. We observe that informative tokens improve visual-text alignment in VLMs like CLIP on unseen datasets. However, existing TC methods often fail to maintain in-distribution performance when reducing tokens, prompting us to ask: How can we transform TC into an effective ``free-lunch'' adaptation strategy for VLMs? To address this, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method that takes a step beyond standard TC. Rather than passively discarding tokens, TCA condenses token representation by introducing reservoir-based domain anchor tokens for information-preserving token reduction and logits correction. TCA achieves up to a 21.4% performance improvement over the strongest baseline on cross-dataset benchmark and the CIFAR-100-Corrupted dataset while reducing GFLOPs by 12.2% to 48.9%, with minimal hyperparameter dependency on both CLIP and SigLIP series.

  • 5 authors
·
Oct 16, 2024 1

Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding

The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality.

  • 8 authors
·
Oct 2, 2024 2

CoTMR: Chain-of-Thought Multi-Scale Reasoning for Training-Free Zero-Shot Composed Image Retrieval

Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images by integrating information from a composed query (reference image and modification text) without training samples. Existing methods primarily combine caption models and large language models (LLMs) to generate target captions based on composed queries but face various issues such as incompatibility, visual information loss, and insufficient reasoning. In this work, we propose CoTMR, a training-free framework crafted for ZS-CIR with novel Chain-of-thought (CoT) and Multi-scale Reasoning. Instead of relying on caption models for modality transformation, CoTMR employs the Large Vision-Language Model (LVLM) to achieve unified understanding and reasoning for composed queries. To enhance the reasoning reliability, we devise CIRCoT, which guides the LVLM through a step-by-step inference process using predefined subtasks. Considering that existing approaches focus solely on global-level reasoning, our CoTMR incorporates multi-scale reasoning to achieve more comprehensive inference via fine-grained predictions about the presence or absence of key elements at the object scale. Further, we design a Multi-Grained Scoring (MGS) mechanism, which integrates CLIP similarity scores of the above reasoning outputs with candidate images to realize precise retrieval. Extensive experiments demonstrate that our CoTMR not only drastically outperforms previous methods across four prominent benchmarks but also offers appealing interpretability.

  • 3 authors
·
Feb 28

Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model

The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need

  • 1 authors
·
Sep 30

Nudging: Inference-time Alignment via Model Collaboration

Large language models (LLMs) require alignment, such as instruction-tuning or reinforcement learning from human feedback, to effectively and safely follow user instructions. This process necessitates training aligned versions for every model size in each model family, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens, such as "Sure" or "Thank". We find that base models are significantly more uncertain when generating these tokens. Leveraging this observation, nudging employs a small aligned model to generate nudging tokens to steer the large base model's output toward desired directions when the base model's uncertainty is high. We evaluate the effectiveness of nudging across 3 model families and 13 tasks, covering reasoning, general knowledge, instruction following, and safety benchmarks. Without any additional training, nudging a large base model with a 7x - 14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. For example, nudging OLMo-7b with OLMo-1b-instruct, affecting less than 9% of tokens, achieves a 10% absolute improvement on GSM8K over OLMo-7b-instruct. Unlike prior inference-time tuning methods, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, this work introduces a simple yet powerful approach to token-level model collaboration, offering a modular solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .

  • 3 authors
·
Oct 11, 2024

RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval

Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).

  • 14 authors
·
Sep 16, 2024 2

PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models

Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments.

  • 9 authors
·
Sep 21

Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time

Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.

  • 4 authors
·
Apr 12

PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference

As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall 1% to 5% performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.

  • 7 authors
·
Mar 29

Fast and Memory-Efficient Video Diffusion Using Streamlined Inference

The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).

  • 10 authors
·
Nov 2, 2024

Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion

Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.

  • 7 authors
·
May 27 1

Accelerating Diffusion LLM Inference via Local Determinism Propagation

Diffusion large language models (dLLMs) represent a significant advancement in text generation, offering parallel token decoding capabilities. However, existing open-source implementations suffer from quality-speed trade-offs that impede their practical deployment. Conservative sampling strategies typically decode only the most confident token per step to ensure quality (i.e., greedy decoding), at the cost of inference efficiency due to repeated redundant refinement iterations--a phenomenon we term delayed decoding. Through systematic analysis of dLLM decoding dynamics, we characterize this delayed decoding behavior and propose a training-free adaptive parallel decoding strategy, named LocalLeap, to address these inefficiencies. LocalLeap is built on two fundamental empirical principles: local determinism propagation centered on high-confidence anchors and progressive spatial consistency decay. By applying these principles, LocalLeap identifies anchors and performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial inference step reduction through early commitment of already-determined tokens without compromising output quality. Comprehensive evaluation on various benchmarks demonstrates that LocalLeap achieves 6.94times throughput improvements and reduces decoding steps to just 14.2\% of the original requirement, achieving these gains with negligible performance impact. The source codes are available at: https://github.com/friedrichor/LocalLeap.

  • 7 authors
·
Oct 8

AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size

Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.

  • 6 authors
·
Sep 30

FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion

Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.

  • 15 authors
·
Jun 5

WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference

The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise ell_2-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to 2.94% in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.

  • 7 authors
·
May 25 2

Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference

Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical key-value (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose ActQKV, a training-free, Activation-aware approach that dynamically determines probe-Query and leverages it to retrieve the relevant KV pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and infty Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.

  • 9 authors
·
Feb 19

TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection

With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.

  • 8 authors
·
Nov 5, 2024

R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference

Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.

  • 6 authors
·
Apr 27

Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models without Training through Attention Calibration

Attention is a fundamental component behind the remarkable achievements of large language models (LLMs). However, our current understanding of the attention mechanism, especially regarding how attention distributions are established, remains limited. Inspired by recent studies that explore the presence of attention sink in the initial token, which receives disproportionately large attention scores despite their lack of semantic importance, this work delves deeper into this phenomenon. We aim to provide a more profound understanding of the existence of attention sinks within LLMs and to uncover ways to enhance the achievable accuracy of LLMs by directly optimizing the attention distributions, without the need for weight finetuning. Specifically, this work begins with comprehensive visualizations of the attention distributions in LLMs during inference across various inputs and tasks. Based on these visualizations, to the best of our knowledge, we are the first to discover that (1) attention sinks occur not only at the start of sequences but also within later tokens of the input, and (2) not all attention sinks have a positive impact on the achievable accuracy of LLMs. Building upon our findings, we propose a training-free Attention Calibration Technique (ACT) that automatically optimizes the attention distributions on the fly during inference in an input-adaptive manner. Extensive experiments validate that ACT consistently enhances the accuracy of various LLMs across different applications. Specifically, ACT achieves an average improvement of up to 7.30% in accuracy across different datasets when applied to Llama-30B. Our code is available at https://github.com/GATECH-EIC/ACT.

  • 6 authors
·
Jun 22, 2024

TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis

The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.

  • 8 authors
·
May 19

Enhancing Physical Plausibility in Video Generation by Reasoning the Implausibility

Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.

  • 5 authors
·
Sep 29

Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor

Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is https://cg-taylor-acce.github.io/CG-Taylor/{here.}

  • 9 authors
·
Aug 4

ImageBind-LLM: Multi-modality Instruction Tuning

We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.

  • 17 authors
·
Sep 7, 2023 5