Update README.md (#2)
Browse files- Update README.md (b3b52d77d4ba4dc586d2920083b891f93418050c)
README.md
CHANGED
|
@@ -3,197 +3,155 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
##
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
[
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Baichuan-M1-14B-Instruct-tokenizer
|
| 7 |
+
|
| 8 |
+
Fast transformers tokenizer for [mlx-community/Baichuan-M1-14B-Instruct-8bit](https://hf.co/mlx-community/Baichuan-M1-14B-Instruct-8bit)
|
| 9 |
+
|
| 10 |
+
Thanks a lot @Xenova for finding the final fix! 🙌
|
| 11 |
+
|
| 12 |
+
## Conversion
|
| 13 |
+
|
| 14 |
+
```py
|
| 15 |
+
from tokenization_baichuan import BaichuanTokenizer
|
| 16 |
+
|
| 17 |
+
original = BaichuanTokenizer.from_pretrained(".")
|
| 18 |
+
|
| 19 |
+
from transformers.convert_slow_tokenizer import SpmConverter, LlamaConverter, GemmaConverter, _get_prepend_scheme
|
| 20 |
+
from tokenizers import decoders, normalizers, pre_tokenizers, processors, Tokenizer, AddedToken
|
| 21 |
+
from tokenizers.models import BPE
|
| 22 |
+
|
| 23 |
+
class BaichuanConverter(SpmConverter):
|
| 24 |
+
handle_byte_fallback = True
|
| 25 |
+
|
| 26 |
+
def vocab(self, proto):
|
| 27 |
+
vocab = [
|
| 28 |
+
(self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
|
| 29 |
+
(self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
|
| 30 |
+
(self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
|
| 31 |
+
]
|
| 32 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
| 33 |
+
return vocab
|
| 34 |
+
|
| 35 |
+
def unk_id(self, proto):
|
| 36 |
+
unk_id = 0
|
| 37 |
+
return unk_id
|
| 38 |
+
|
| 39 |
+
def decoder(self, replacement, add_prefix_space):
|
| 40 |
+
sequence = [
|
| 41 |
+
decoders.Replace("▁", " "),
|
| 42 |
+
decoders.ByteFallback(),
|
| 43 |
+
decoders.Fuse(),
|
| 44 |
+
]
|
| 45 |
+
return decoders.Sequence(sequence)
|
| 46 |
+
|
| 47 |
+
def normalizer(self, proto):
|
| 48 |
+
return normalizers.Replace(pattern=" ", content="▁")
|
| 49 |
+
|
| 50 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
def post_processor(self):
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
def tokenizer(self, proto):
|
| 57 |
+
vocab_scores = self.vocab(proto)
|
| 58 |
+
_, merges = self.SpmExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
| 59 |
+
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
|
| 60 |
+
tokenizer = Tokenizer(
|
| 61 |
+
BPE(
|
| 62 |
+
bpe_vocab,
|
| 63 |
+
merges,
|
| 64 |
+
unk_token=proto.trainer_spec.unk_piece,
|
| 65 |
+
fuse_unk=True,
|
| 66 |
+
byte_fallback=self.handle_byte_fallback,
|
| 67 |
+
dropout=None,
|
| 68 |
+
)
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# control tokens are special
|
| 72 |
+
# user defined symbols are not
|
| 73 |
+
# both user and control tokens are AddedTokens
|
| 74 |
+
# Add user defined symbols (type == 4) from sentencepiece (https://github.com/google/sentencepiece/blob/6225e08edb2577757163b3f5dbba4c0b670ef445/src/sentencepiece_model.proto#L299C29-L299C33)
|
| 75 |
+
spm_added_tokens = [
|
| 76 |
+
(id, p.piece, p.type == 3 or p.piece in self.special_tokens)
|
| 77 |
+
for id, p in enumerate(proto.pieces)
|
| 78 |
+
if p.type in [3, 4]
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
# Reproduce weird behaviour in original tokenizer
|
| 82 |
+
# only add tokens that did not originally exist
|
| 83 |
+
bad_added_tokens = set()
|
| 84 |
+
for _, token, _ in spm_added_tokens:
|
| 85 |
+
encoded = self.original_tokenizer.encode(token)
|
| 86 |
+
if len(encoded) != 1:
|
| 87 |
+
bad_added_tokens.add(token)
|
| 88 |
+
|
| 89 |
+
tokenizer.add_tokens(
|
| 90 |
+
[
|
| 91 |
+
AddedToken(token, normalized=True, special=special)
|
| 92 |
+
for id, token, special in sorted(spm_added_tokens, key=lambda x: x[0])
|
| 93 |
+
if token not in bad_added_tokens
|
| 94 |
+
]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
return tokenizer
|
| 98 |
+
|
| 99 |
+
converter = BaichuanConverter(original)
|
| 100 |
+
converted = converter.converted()
|
| 101 |
+
|
| 102 |
+
from transformers import PreTrainedTokenizerFast
|
| 103 |
+
|
| 104 |
+
t_fast = PreTrainedTokenizerFast(
|
| 105 |
+
tokenizer_object=converted,
|
| 106 |
+
model_input_names=original.model_input_names,
|
| 107 |
+
model_max_length=32768,
|
| 108 |
+
clean_up_tokenization_spaces=False,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
test_strings = [
|
| 112 |
+
" {\n",
|
| 113 |
+
" {\n",
|
| 114 |
+
"x {\n",
|
| 115 |
+
"----------------------------------------------------------------------------\n",
|
| 116 |
+
"\n \n",
|
| 117 |
+
"\n \n",
|
| 118 |
+
'// -----------------------------------------------------------------------\n',
|
| 119 |
+
'-----------------------------------------------------------------------\n',
|
| 120 |
+
]
|
| 121 |
+
for test_string in test_strings:
|
| 122 |
+
print("Original:", original.encode(test_string))
|
| 123 |
+
print("Fast: ", t_fast.encode(test_string))
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# Testing on xnli
|
| 127 |
+
|
| 128 |
+
from datasets import load_dataset
|
| 129 |
+
from tqdm import tqdm
|
| 130 |
+
|
| 131 |
+
xnli = load_dataset("xnli", "all_languages", split="validation")
|
| 132 |
+
|
| 133 |
+
def verify(lang, text):
|
| 134 |
+
encoded_original = original.encode(text)
|
| 135 |
+
encoded_fast = t_fast.encode(text)
|
| 136 |
+
assert encoded_fast == encoded_original, f"Fast encode error: {lang} - {text}"
|
| 137 |
+
decoded = original.decode(encoded_original)
|
| 138 |
+
decoded_fast = t_fast.decode(encoded_fast, skip_special_tokens=True)
|
| 139 |
+
assert decoded_fast == decoded, f"Fast decode error: {lang} - {text}"
|
| 140 |
+
|
| 141 |
+
for p in tqdm(xnli["premise"]):
|
| 142 |
+
for lang, text in p.items():
|
| 143 |
+
verify(lang, text)
|
| 144 |
+
|
| 145 |
+
# Testing on codeparrot
|
| 146 |
+
|
| 147 |
+
ds = load_dataset("codeparrot/github-code", streaming=True, trust_remote_code=True, split="train")
|
| 148 |
+
|
| 149 |
+
iterator = iter(ds)
|
| 150 |
+
for _ in tqdm(range(1000)):
|
| 151 |
+
item = next(iterator)
|
| 152 |
+
code = item["code"]
|
| 153 |
+
lang = item["language"]
|
| 154 |
+
verify(lang, code)
|
| 155 |
+
|
| 156 |
+
t_fast.push_to_hub("Baichuan-M1-14B-Instruct-tokenizer")
|
| 157 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|