Commit
·
dad9f58
0
Parent(s):
Modified clone
Browse files- .gitattributes +3 -0
- .gitkeep +0 -0
- README.md +36 -0
- added_tokens.json +1021 -0
- chat_template.jinja +22 -0
- config.json +75 -0
- configuration_paddleocr_vl.py +191 -0
- generation_config.json +6 -0
- image_processing.py +569 -0
- inference.yml +2 -0
- model.safetensors +3 -0
- modeling_paddleocr_vl.py +0 -0
- preprocessor_config.json +33 -0
- processing_paddleocr_vl.py +293 -0
- processor_config.json +6 -0
- special_tokens_map.json +58 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
.gitkeep
ADDED
|
File without changes
|
README.md
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: image-text-to-text
|
| 3 |
+
library_name: transformers
|
| 4 |
+
---
|
| 5 |
+
# PaddleOCR-VL-0.9B
|
| 6 |
+
|
| 7 |
+
Duplicated from https://huggingface.co/PaddlePaddle/PaddleOCR-VL
|
| 8 |
+
|
| 9 |
+
Example use with transformers:
|
| 10 |
+
|
| 11 |
+
```py
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
DEVICE="cuda" if torch.cuda.is_available() else "mps" if torch.mps.is_available() else "cpu"
|
| 16 |
+
model_id = "pcuenq/PaddleOCR-VL-0.9B"
|
| 17 |
+
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
model_id, trust_remote_code=True, dtype=torch.bfloat16
|
| 20 |
+
).to(DEVICE).eval()
|
| 21 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 22 |
+
|
| 23 |
+
from transformers.image_utils import load_image
|
| 24 |
+
image_url = "https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto,q_auto,f_auto/gigs/154456946/original/41556aac80fc43dcb29ce656d786c0a6f9b4073f/do-handwritten-text-image-or-pdf-to-word-means-typing-form.jpg"
|
| 25 |
+
image = load_image(image_url)
|
| 26 |
+
|
| 27 |
+
messages = [{"role": "user", "content": "OCR"}]
|
| 28 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 29 |
+
inputs = processor(text=[text], images=[image], return_tensors="pt").to(DEVICE)
|
| 30 |
+
|
| 31 |
+
generated = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
| 32 |
+
|
| 33 |
+
resp = processor.batch_decode(generated, skip_special_tokens=True)[0]
|
| 34 |
+
answer = resp.split(text)[-1].strip()
|
| 35 |
+
print(answer)
|
| 36 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,1021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<ecel>": 101308,
|
| 3 |
+
"<fcel>": 101309,
|
| 4 |
+
"<lcel>": 101311,
|
| 5 |
+
"<nl>": 101313,
|
| 6 |
+
"<ucel>": 101312,
|
| 7 |
+
"<xcel>": 101310,
|
| 8 |
+
"<|AUDIO_PLACEHOLDER|>": 100296,
|
| 9 |
+
"<|CROP_COL_SEP|>": 101301,
|
| 10 |
+
"<|CROP_ROW_SEP|>": 101302,
|
| 11 |
+
"<|IMAGE_END|>": 101306,
|
| 12 |
+
"<|IMAGE_PLACEHOLDER|>": 100295,
|
| 13 |
+
"<|IMAGE_SEP|>": 101303,
|
| 14 |
+
"<|IMAGE_START|>": 101305,
|
| 15 |
+
"<|LOC_0|>": 100297,
|
| 16 |
+
"<|LOC_1000|>": 101297,
|
| 17 |
+
"<|LOC_100|>": 100397,
|
| 18 |
+
"<|LOC_101|>": 100398,
|
| 19 |
+
"<|LOC_102|>": 100399,
|
| 20 |
+
"<|LOC_103|>": 100400,
|
| 21 |
+
"<|LOC_104|>": 100401,
|
| 22 |
+
"<|LOC_105|>": 100402,
|
| 23 |
+
"<|LOC_106|>": 100403,
|
| 24 |
+
"<|LOC_107|>": 100404,
|
| 25 |
+
"<|LOC_108|>": 100405,
|
| 26 |
+
"<|LOC_109|>": 100406,
|
| 27 |
+
"<|LOC_10|>": 100307,
|
| 28 |
+
"<|LOC_110|>": 100407,
|
| 29 |
+
"<|LOC_111|>": 100408,
|
| 30 |
+
"<|LOC_112|>": 100409,
|
| 31 |
+
"<|LOC_113|>": 100410,
|
| 32 |
+
"<|LOC_114|>": 100411,
|
| 33 |
+
"<|LOC_115|>": 100412,
|
| 34 |
+
"<|LOC_116|>": 100413,
|
| 35 |
+
"<|LOC_117|>": 100414,
|
| 36 |
+
"<|LOC_118|>": 100415,
|
| 37 |
+
"<|LOC_119|>": 100416,
|
| 38 |
+
"<|LOC_11|>": 100308,
|
| 39 |
+
"<|LOC_120|>": 100417,
|
| 40 |
+
"<|LOC_121|>": 100418,
|
| 41 |
+
"<|LOC_122|>": 100419,
|
| 42 |
+
"<|LOC_123|>": 100420,
|
| 43 |
+
"<|LOC_124|>": 100421,
|
| 44 |
+
"<|LOC_125|>": 100422,
|
| 45 |
+
"<|LOC_126|>": 100423,
|
| 46 |
+
"<|LOC_127|>": 100424,
|
| 47 |
+
"<|LOC_128|>": 100425,
|
| 48 |
+
"<|LOC_129|>": 100426,
|
| 49 |
+
"<|LOC_12|>": 100309,
|
| 50 |
+
"<|LOC_130|>": 100427,
|
| 51 |
+
"<|LOC_131|>": 100428,
|
| 52 |
+
"<|LOC_132|>": 100429,
|
| 53 |
+
"<|LOC_133|>": 100430,
|
| 54 |
+
"<|LOC_134|>": 100431,
|
| 55 |
+
"<|LOC_135|>": 100432,
|
| 56 |
+
"<|LOC_136|>": 100433,
|
| 57 |
+
"<|LOC_137|>": 100434,
|
| 58 |
+
"<|LOC_138|>": 100435,
|
| 59 |
+
"<|LOC_139|>": 100436,
|
| 60 |
+
"<|LOC_13|>": 100310,
|
| 61 |
+
"<|LOC_140|>": 100437,
|
| 62 |
+
"<|LOC_141|>": 100438,
|
| 63 |
+
"<|LOC_142|>": 100439,
|
| 64 |
+
"<|LOC_143|>": 100440,
|
| 65 |
+
"<|LOC_144|>": 100441,
|
| 66 |
+
"<|LOC_145|>": 100442,
|
| 67 |
+
"<|LOC_146|>": 100443,
|
| 68 |
+
"<|LOC_147|>": 100444,
|
| 69 |
+
"<|LOC_148|>": 100445,
|
| 70 |
+
"<|LOC_149|>": 100446,
|
| 71 |
+
"<|LOC_14|>": 100311,
|
| 72 |
+
"<|LOC_150|>": 100447,
|
| 73 |
+
"<|LOC_151|>": 100448,
|
| 74 |
+
"<|LOC_152|>": 100449,
|
| 75 |
+
"<|LOC_153|>": 100450,
|
| 76 |
+
"<|LOC_154|>": 100451,
|
| 77 |
+
"<|LOC_155|>": 100452,
|
| 78 |
+
"<|LOC_156|>": 100453,
|
| 79 |
+
"<|LOC_157|>": 100454,
|
| 80 |
+
"<|LOC_158|>": 100455,
|
| 81 |
+
"<|LOC_159|>": 100456,
|
| 82 |
+
"<|LOC_15|>": 100312,
|
| 83 |
+
"<|LOC_160|>": 100457,
|
| 84 |
+
"<|LOC_161|>": 100458,
|
| 85 |
+
"<|LOC_162|>": 100459,
|
| 86 |
+
"<|LOC_163|>": 100460,
|
| 87 |
+
"<|LOC_164|>": 100461,
|
| 88 |
+
"<|LOC_165|>": 100462,
|
| 89 |
+
"<|LOC_166|>": 100463,
|
| 90 |
+
"<|LOC_167|>": 100464,
|
| 91 |
+
"<|LOC_168|>": 100465,
|
| 92 |
+
"<|LOC_169|>": 100466,
|
| 93 |
+
"<|LOC_16|>": 100313,
|
| 94 |
+
"<|LOC_170|>": 100467,
|
| 95 |
+
"<|LOC_171|>": 100468,
|
| 96 |
+
"<|LOC_172|>": 100469,
|
| 97 |
+
"<|LOC_173|>": 100470,
|
| 98 |
+
"<|LOC_174|>": 100471,
|
| 99 |
+
"<|LOC_175|>": 100472,
|
| 100 |
+
"<|LOC_176|>": 100473,
|
| 101 |
+
"<|LOC_177|>": 100474,
|
| 102 |
+
"<|LOC_178|>": 100475,
|
| 103 |
+
"<|LOC_179|>": 100476,
|
| 104 |
+
"<|LOC_17|>": 100314,
|
| 105 |
+
"<|LOC_180|>": 100477,
|
| 106 |
+
"<|LOC_181|>": 100478,
|
| 107 |
+
"<|LOC_182|>": 100479,
|
| 108 |
+
"<|LOC_183|>": 100480,
|
| 109 |
+
"<|LOC_184|>": 100481,
|
| 110 |
+
"<|LOC_185|>": 100482,
|
| 111 |
+
"<|LOC_186|>": 100483,
|
| 112 |
+
"<|LOC_187|>": 100484,
|
| 113 |
+
"<|LOC_188|>": 100485,
|
| 114 |
+
"<|LOC_189|>": 100486,
|
| 115 |
+
"<|LOC_18|>": 100315,
|
| 116 |
+
"<|LOC_190|>": 100487,
|
| 117 |
+
"<|LOC_191|>": 100488,
|
| 118 |
+
"<|LOC_192|>": 100489,
|
| 119 |
+
"<|LOC_193|>": 100490,
|
| 120 |
+
"<|LOC_194|>": 100491,
|
| 121 |
+
"<|LOC_195|>": 100492,
|
| 122 |
+
"<|LOC_196|>": 100493,
|
| 123 |
+
"<|LOC_197|>": 100494,
|
| 124 |
+
"<|LOC_198|>": 100495,
|
| 125 |
+
"<|LOC_199|>": 100496,
|
| 126 |
+
"<|LOC_19|>": 100316,
|
| 127 |
+
"<|LOC_1|>": 100298,
|
| 128 |
+
"<|LOC_200|>": 100497,
|
| 129 |
+
"<|LOC_201|>": 100498,
|
| 130 |
+
"<|LOC_202|>": 100499,
|
| 131 |
+
"<|LOC_203|>": 100500,
|
| 132 |
+
"<|LOC_204|>": 100501,
|
| 133 |
+
"<|LOC_205|>": 100502,
|
| 134 |
+
"<|LOC_206|>": 100503,
|
| 135 |
+
"<|LOC_207|>": 100504,
|
| 136 |
+
"<|LOC_208|>": 100505,
|
| 137 |
+
"<|LOC_209|>": 100506,
|
| 138 |
+
"<|LOC_20|>": 100317,
|
| 139 |
+
"<|LOC_210|>": 100507,
|
| 140 |
+
"<|LOC_211|>": 100508,
|
| 141 |
+
"<|LOC_212|>": 100509,
|
| 142 |
+
"<|LOC_213|>": 100510,
|
| 143 |
+
"<|LOC_214|>": 100511,
|
| 144 |
+
"<|LOC_215|>": 100512,
|
| 145 |
+
"<|LOC_216|>": 100513,
|
| 146 |
+
"<|LOC_217|>": 100514,
|
| 147 |
+
"<|LOC_218|>": 100515,
|
| 148 |
+
"<|LOC_219|>": 100516,
|
| 149 |
+
"<|LOC_21|>": 100318,
|
| 150 |
+
"<|LOC_220|>": 100517,
|
| 151 |
+
"<|LOC_221|>": 100518,
|
| 152 |
+
"<|LOC_222|>": 100519,
|
| 153 |
+
"<|LOC_223|>": 100520,
|
| 154 |
+
"<|LOC_224|>": 100521,
|
| 155 |
+
"<|LOC_225|>": 100522,
|
| 156 |
+
"<|LOC_226|>": 100523,
|
| 157 |
+
"<|LOC_227|>": 100524,
|
| 158 |
+
"<|LOC_228|>": 100525,
|
| 159 |
+
"<|LOC_229|>": 100526,
|
| 160 |
+
"<|LOC_22|>": 100319,
|
| 161 |
+
"<|LOC_230|>": 100527,
|
| 162 |
+
"<|LOC_231|>": 100528,
|
| 163 |
+
"<|LOC_232|>": 100529,
|
| 164 |
+
"<|LOC_233|>": 100530,
|
| 165 |
+
"<|LOC_234|>": 100531,
|
| 166 |
+
"<|LOC_235|>": 100532,
|
| 167 |
+
"<|LOC_236|>": 100533,
|
| 168 |
+
"<|LOC_237|>": 100534,
|
| 169 |
+
"<|LOC_238|>": 100535,
|
| 170 |
+
"<|LOC_239|>": 100536,
|
| 171 |
+
"<|LOC_23|>": 100320,
|
| 172 |
+
"<|LOC_240|>": 100537,
|
| 173 |
+
"<|LOC_241|>": 100538,
|
| 174 |
+
"<|LOC_242|>": 100539,
|
| 175 |
+
"<|LOC_243|>": 100540,
|
| 176 |
+
"<|LOC_244|>": 100541,
|
| 177 |
+
"<|LOC_245|>": 100542,
|
| 178 |
+
"<|LOC_246|>": 100543,
|
| 179 |
+
"<|LOC_247|>": 100544,
|
| 180 |
+
"<|LOC_248|>": 100545,
|
| 181 |
+
"<|LOC_249|>": 100546,
|
| 182 |
+
"<|LOC_24|>": 100321,
|
| 183 |
+
"<|LOC_250|>": 100547,
|
| 184 |
+
"<|LOC_251|>": 100548,
|
| 185 |
+
"<|LOC_252|>": 100549,
|
| 186 |
+
"<|LOC_253|>": 100550,
|
| 187 |
+
"<|LOC_254|>": 100551,
|
| 188 |
+
"<|LOC_255|>": 100552,
|
| 189 |
+
"<|LOC_256|>": 100553,
|
| 190 |
+
"<|LOC_257|>": 100554,
|
| 191 |
+
"<|LOC_258|>": 100555,
|
| 192 |
+
"<|LOC_259|>": 100556,
|
| 193 |
+
"<|LOC_25|>": 100322,
|
| 194 |
+
"<|LOC_260|>": 100557,
|
| 195 |
+
"<|LOC_261|>": 100558,
|
| 196 |
+
"<|LOC_262|>": 100559,
|
| 197 |
+
"<|LOC_263|>": 100560,
|
| 198 |
+
"<|LOC_264|>": 100561,
|
| 199 |
+
"<|LOC_265|>": 100562,
|
| 200 |
+
"<|LOC_266|>": 100563,
|
| 201 |
+
"<|LOC_267|>": 100564,
|
| 202 |
+
"<|LOC_268|>": 100565,
|
| 203 |
+
"<|LOC_269|>": 100566,
|
| 204 |
+
"<|LOC_26|>": 100323,
|
| 205 |
+
"<|LOC_270|>": 100567,
|
| 206 |
+
"<|LOC_271|>": 100568,
|
| 207 |
+
"<|LOC_272|>": 100569,
|
| 208 |
+
"<|LOC_273|>": 100570,
|
| 209 |
+
"<|LOC_274|>": 100571,
|
| 210 |
+
"<|LOC_275|>": 100572,
|
| 211 |
+
"<|LOC_276|>": 100573,
|
| 212 |
+
"<|LOC_277|>": 100574,
|
| 213 |
+
"<|LOC_278|>": 100575,
|
| 214 |
+
"<|LOC_279|>": 100576,
|
| 215 |
+
"<|LOC_27|>": 100324,
|
| 216 |
+
"<|LOC_280|>": 100577,
|
| 217 |
+
"<|LOC_281|>": 100578,
|
| 218 |
+
"<|LOC_282|>": 100579,
|
| 219 |
+
"<|LOC_283|>": 100580,
|
| 220 |
+
"<|LOC_284|>": 100581,
|
| 221 |
+
"<|LOC_285|>": 100582,
|
| 222 |
+
"<|LOC_286|>": 100583,
|
| 223 |
+
"<|LOC_287|>": 100584,
|
| 224 |
+
"<|LOC_288|>": 100585,
|
| 225 |
+
"<|LOC_289|>": 100586,
|
| 226 |
+
"<|LOC_28|>": 100325,
|
| 227 |
+
"<|LOC_290|>": 100587,
|
| 228 |
+
"<|LOC_291|>": 100588,
|
| 229 |
+
"<|LOC_292|>": 100589,
|
| 230 |
+
"<|LOC_293|>": 100590,
|
| 231 |
+
"<|LOC_294|>": 100591,
|
| 232 |
+
"<|LOC_295|>": 100592,
|
| 233 |
+
"<|LOC_296|>": 100593,
|
| 234 |
+
"<|LOC_297|>": 100594,
|
| 235 |
+
"<|LOC_298|>": 100595,
|
| 236 |
+
"<|LOC_299|>": 100596,
|
| 237 |
+
"<|LOC_29|>": 100326,
|
| 238 |
+
"<|LOC_2|>": 100299,
|
| 239 |
+
"<|LOC_300|>": 100597,
|
| 240 |
+
"<|LOC_301|>": 100598,
|
| 241 |
+
"<|LOC_302|>": 100599,
|
| 242 |
+
"<|LOC_303|>": 100600,
|
| 243 |
+
"<|LOC_304|>": 100601,
|
| 244 |
+
"<|LOC_305|>": 100602,
|
| 245 |
+
"<|LOC_306|>": 100603,
|
| 246 |
+
"<|LOC_307|>": 100604,
|
| 247 |
+
"<|LOC_308|>": 100605,
|
| 248 |
+
"<|LOC_309|>": 100606,
|
| 249 |
+
"<|LOC_30|>": 100327,
|
| 250 |
+
"<|LOC_310|>": 100607,
|
| 251 |
+
"<|LOC_311|>": 100608,
|
| 252 |
+
"<|LOC_312|>": 100609,
|
| 253 |
+
"<|LOC_313|>": 100610,
|
| 254 |
+
"<|LOC_314|>": 100611,
|
| 255 |
+
"<|LOC_315|>": 100612,
|
| 256 |
+
"<|LOC_316|>": 100613,
|
| 257 |
+
"<|LOC_317|>": 100614,
|
| 258 |
+
"<|LOC_318|>": 100615,
|
| 259 |
+
"<|LOC_319|>": 100616,
|
| 260 |
+
"<|LOC_31|>": 100328,
|
| 261 |
+
"<|LOC_320|>": 100617,
|
| 262 |
+
"<|LOC_321|>": 100618,
|
| 263 |
+
"<|LOC_322|>": 100619,
|
| 264 |
+
"<|LOC_323|>": 100620,
|
| 265 |
+
"<|LOC_324|>": 100621,
|
| 266 |
+
"<|LOC_325|>": 100622,
|
| 267 |
+
"<|LOC_326|>": 100623,
|
| 268 |
+
"<|LOC_327|>": 100624,
|
| 269 |
+
"<|LOC_328|>": 100625,
|
| 270 |
+
"<|LOC_329|>": 100626,
|
| 271 |
+
"<|LOC_32|>": 100329,
|
| 272 |
+
"<|LOC_330|>": 100627,
|
| 273 |
+
"<|LOC_331|>": 100628,
|
| 274 |
+
"<|LOC_332|>": 100629,
|
| 275 |
+
"<|LOC_333|>": 100630,
|
| 276 |
+
"<|LOC_334|>": 100631,
|
| 277 |
+
"<|LOC_335|>": 100632,
|
| 278 |
+
"<|LOC_336|>": 100633,
|
| 279 |
+
"<|LOC_337|>": 100634,
|
| 280 |
+
"<|LOC_338|>": 100635,
|
| 281 |
+
"<|LOC_339|>": 100636,
|
| 282 |
+
"<|LOC_33|>": 100330,
|
| 283 |
+
"<|LOC_340|>": 100637,
|
| 284 |
+
"<|LOC_341|>": 100638,
|
| 285 |
+
"<|LOC_342|>": 100639,
|
| 286 |
+
"<|LOC_343|>": 100640,
|
| 287 |
+
"<|LOC_344|>": 100641,
|
| 288 |
+
"<|LOC_345|>": 100642,
|
| 289 |
+
"<|LOC_346|>": 100643,
|
| 290 |
+
"<|LOC_347|>": 100644,
|
| 291 |
+
"<|LOC_348|>": 100645,
|
| 292 |
+
"<|LOC_349|>": 100646,
|
| 293 |
+
"<|LOC_34|>": 100331,
|
| 294 |
+
"<|LOC_350|>": 100647,
|
| 295 |
+
"<|LOC_351|>": 100648,
|
| 296 |
+
"<|LOC_352|>": 100649,
|
| 297 |
+
"<|LOC_353|>": 100650,
|
| 298 |
+
"<|LOC_354|>": 100651,
|
| 299 |
+
"<|LOC_355|>": 100652,
|
| 300 |
+
"<|LOC_356|>": 100653,
|
| 301 |
+
"<|LOC_357|>": 100654,
|
| 302 |
+
"<|LOC_358|>": 100655,
|
| 303 |
+
"<|LOC_359|>": 100656,
|
| 304 |
+
"<|LOC_35|>": 100332,
|
| 305 |
+
"<|LOC_360|>": 100657,
|
| 306 |
+
"<|LOC_361|>": 100658,
|
| 307 |
+
"<|LOC_362|>": 100659,
|
| 308 |
+
"<|LOC_363|>": 100660,
|
| 309 |
+
"<|LOC_364|>": 100661,
|
| 310 |
+
"<|LOC_365|>": 100662,
|
| 311 |
+
"<|LOC_366|>": 100663,
|
| 312 |
+
"<|LOC_367|>": 100664,
|
| 313 |
+
"<|LOC_368|>": 100665,
|
| 314 |
+
"<|LOC_369|>": 100666,
|
| 315 |
+
"<|LOC_36|>": 100333,
|
| 316 |
+
"<|LOC_370|>": 100667,
|
| 317 |
+
"<|LOC_371|>": 100668,
|
| 318 |
+
"<|LOC_372|>": 100669,
|
| 319 |
+
"<|LOC_373|>": 100670,
|
| 320 |
+
"<|LOC_374|>": 100671,
|
| 321 |
+
"<|LOC_375|>": 100672,
|
| 322 |
+
"<|LOC_376|>": 100673,
|
| 323 |
+
"<|LOC_377|>": 100674,
|
| 324 |
+
"<|LOC_378|>": 100675,
|
| 325 |
+
"<|LOC_379|>": 100676,
|
| 326 |
+
"<|LOC_37|>": 100334,
|
| 327 |
+
"<|LOC_380|>": 100677,
|
| 328 |
+
"<|LOC_381|>": 100678,
|
| 329 |
+
"<|LOC_382|>": 100679,
|
| 330 |
+
"<|LOC_383|>": 100680,
|
| 331 |
+
"<|LOC_384|>": 100681,
|
| 332 |
+
"<|LOC_385|>": 100682,
|
| 333 |
+
"<|LOC_386|>": 100683,
|
| 334 |
+
"<|LOC_387|>": 100684,
|
| 335 |
+
"<|LOC_388|>": 100685,
|
| 336 |
+
"<|LOC_389|>": 100686,
|
| 337 |
+
"<|LOC_38|>": 100335,
|
| 338 |
+
"<|LOC_390|>": 100687,
|
| 339 |
+
"<|LOC_391|>": 100688,
|
| 340 |
+
"<|LOC_392|>": 100689,
|
| 341 |
+
"<|LOC_393|>": 100690,
|
| 342 |
+
"<|LOC_394|>": 100691,
|
| 343 |
+
"<|LOC_395|>": 100692,
|
| 344 |
+
"<|LOC_396|>": 100693,
|
| 345 |
+
"<|LOC_397|>": 100694,
|
| 346 |
+
"<|LOC_398|>": 100695,
|
| 347 |
+
"<|LOC_399|>": 100696,
|
| 348 |
+
"<|LOC_39|>": 100336,
|
| 349 |
+
"<|LOC_3|>": 100300,
|
| 350 |
+
"<|LOC_400|>": 100697,
|
| 351 |
+
"<|LOC_401|>": 100698,
|
| 352 |
+
"<|LOC_402|>": 100699,
|
| 353 |
+
"<|LOC_403|>": 100700,
|
| 354 |
+
"<|LOC_404|>": 100701,
|
| 355 |
+
"<|LOC_405|>": 100702,
|
| 356 |
+
"<|LOC_406|>": 100703,
|
| 357 |
+
"<|LOC_407|>": 100704,
|
| 358 |
+
"<|LOC_408|>": 100705,
|
| 359 |
+
"<|LOC_409|>": 100706,
|
| 360 |
+
"<|LOC_40|>": 100337,
|
| 361 |
+
"<|LOC_410|>": 100707,
|
| 362 |
+
"<|LOC_411|>": 100708,
|
| 363 |
+
"<|LOC_412|>": 100709,
|
| 364 |
+
"<|LOC_413|>": 100710,
|
| 365 |
+
"<|LOC_414|>": 100711,
|
| 366 |
+
"<|LOC_415|>": 100712,
|
| 367 |
+
"<|LOC_416|>": 100713,
|
| 368 |
+
"<|LOC_417|>": 100714,
|
| 369 |
+
"<|LOC_418|>": 100715,
|
| 370 |
+
"<|LOC_419|>": 100716,
|
| 371 |
+
"<|LOC_41|>": 100338,
|
| 372 |
+
"<|LOC_420|>": 100717,
|
| 373 |
+
"<|LOC_421|>": 100718,
|
| 374 |
+
"<|LOC_422|>": 100719,
|
| 375 |
+
"<|LOC_423|>": 100720,
|
| 376 |
+
"<|LOC_424|>": 100721,
|
| 377 |
+
"<|LOC_425|>": 100722,
|
| 378 |
+
"<|LOC_426|>": 100723,
|
| 379 |
+
"<|LOC_427|>": 100724,
|
| 380 |
+
"<|LOC_428|>": 100725,
|
| 381 |
+
"<|LOC_429|>": 100726,
|
| 382 |
+
"<|LOC_42|>": 100339,
|
| 383 |
+
"<|LOC_430|>": 100727,
|
| 384 |
+
"<|LOC_431|>": 100728,
|
| 385 |
+
"<|LOC_432|>": 100729,
|
| 386 |
+
"<|LOC_433|>": 100730,
|
| 387 |
+
"<|LOC_434|>": 100731,
|
| 388 |
+
"<|LOC_435|>": 100732,
|
| 389 |
+
"<|LOC_436|>": 100733,
|
| 390 |
+
"<|LOC_437|>": 100734,
|
| 391 |
+
"<|LOC_438|>": 100735,
|
| 392 |
+
"<|LOC_439|>": 100736,
|
| 393 |
+
"<|LOC_43|>": 100340,
|
| 394 |
+
"<|LOC_440|>": 100737,
|
| 395 |
+
"<|LOC_441|>": 100738,
|
| 396 |
+
"<|LOC_442|>": 100739,
|
| 397 |
+
"<|LOC_443|>": 100740,
|
| 398 |
+
"<|LOC_444|>": 100741,
|
| 399 |
+
"<|LOC_445|>": 100742,
|
| 400 |
+
"<|LOC_446|>": 100743,
|
| 401 |
+
"<|LOC_447|>": 100744,
|
| 402 |
+
"<|LOC_448|>": 100745,
|
| 403 |
+
"<|LOC_449|>": 100746,
|
| 404 |
+
"<|LOC_44|>": 100341,
|
| 405 |
+
"<|LOC_450|>": 100747,
|
| 406 |
+
"<|LOC_451|>": 100748,
|
| 407 |
+
"<|LOC_452|>": 100749,
|
| 408 |
+
"<|LOC_453|>": 100750,
|
| 409 |
+
"<|LOC_454|>": 100751,
|
| 410 |
+
"<|LOC_455|>": 100752,
|
| 411 |
+
"<|LOC_456|>": 100753,
|
| 412 |
+
"<|LOC_457|>": 100754,
|
| 413 |
+
"<|LOC_458|>": 100755,
|
| 414 |
+
"<|LOC_459|>": 100756,
|
| 415 |
+
"<|LOC_45|>": 100342,
|
| 416 |
+
"<|LOC_460|>": 100757,
|
| 417 |
+
"<|LOC_461|>": 100758,
|
| 418 |
+
"<|LOC_462|>": 100759,
|
| 419 |
+
"<|LOC_463|>": 100760,
|
| 420 |
+
"<|LOC_464|>": 100761,
|
| 421 |
+
"<|LOC_465|>": 100762,
|
| 422 |
+
"<|LOC_466|>": 100763,
|
| 423 |
+
"<|LOC_467|>": 100764,
|
| 424 |
+
"<|LOC_468|>": 100765,
|
| 425 |
+
"<|LOC_469|>": 100766,
|
| 426 |
+
"<|LOC_46|>": 100343,
|
| 427 |
+
"<|LOC_470|>": 100767,
|
| 428 |
+
"<|LOC_471|>": 100768,
|
| 429 |
+
"<|LOC_472|>": 100769,
|
| 430 |
+
"<|LOC_473|>": 100770,
|
| 431 |
+
"<|LOC_474|>": 100771,
|
| 432 |
+
"<|LOC_475|>": 100772,
|
| 433 |
+
"<|LOC_476|>": 100773,
|
| 434 |
+
"<|LOC_477|>": 100774,
|
| 435 |
+
"<|LOC_478|>": 100775,
|
| 436 |
+
"<|LOC_479|>": 100776,
|
| 437 |
+
"<|LOC_47|>": 100344,
|
| 438 |
+
"<|LOC_480|>": 100777,
|
| 439 |
+
"<|LOC_481|>": 100778,
|
| 440 |
+
"<|LOC_482|>": 100779,
|
| 441 |
+
"<|LOC_483|>": 100780,
|
| 442 |
+
"<|LOC_484|>": 100781,
|
| 443 |
+
"<|LOC_485|>": 100782,
|
| 444 |
+
"<|LOC_486|>": 100783,
|
| 445 |
+
"<|LOC_487|>": 100784,
|
| 446 |
+
"<|LOC_488|>": 100785,
|
| 447 |
+
"<|LOC_489|>": 100786,
|
| 448 |
+
"<|LOC_48|>": 100345,
|
| 449 |
+
"<|LOC_490|>": 100787,
|
| 450 |
+
"<|LOC_491|>": 100788,
|
| 451 |
+
"<|LOC_492|>": 100789,
|
| 452 |
+
"<|LOC_493|>": 100790,
|
| 453 |
+
"<|LOC_494|>": 100791,
|
| 454 |
+
"<|LOC_495|>": 100792,
|
| 455 |
+
"<|LOC_496|>": 100793,
|
| 456 |
+
"<|LOC_497|>": 100794,
|
| 457 |
+
"<|LOC_498|>": 100795,
|
| 458 |
+
"<|LOC_499|>": 100796,
|
| 459 |
+
"<|LOC_49|>": 100346,
|
| 460 |
+
"<|LOC_4|>": 100301,
|
| 461 |
+
"<|LOC_500|>": 100797,
|
| 462 |
+
"<|LOC_501|>": 100798,
|
| 463 |
+
"<|LOC_502|>": 100799,
|
| 464 |
+
"<|LOC_503|>": 100800,
|
| 465 |
+
"<|LOC_504|>": 100801,
|
| 466 |
+
"<|LOC_505|>": 100802,
|
| 467 |
+
"<|LOC_506|>": 100803,
|
| 468 |
+
"<|LOC_507|>": 100804,
|
| 469 |
+
"<|LOC_508|>": 100805,
|
| 470 |
+
"<|LOC_509|>": 100806,
|
| 471 |
+
"<|LOC_50|>": 100347,
|
| 472 |
+
"<|LOC_510|>": 100807,
|
| 473 |
+
"<|LOC_511|>": 100808,
|
| 474 |
+
"<|LOC_512|>": 100809,
|
| 475 |
+
"<|LOC_513|>": 100810,
|
| 476 |
+
"<|LOC_514|>": 100811,
|
| 477 |
+
"<|LOC_515|>": 100812,
|
| 478 |
+
"<|LOC_516|>": 100813,
|
| 479 |
+
"<|LOC_517|>": 100814,
|
| 480 |
+
"<|LOC_518|>": 100815,
|
| 481 |
+
"<|LOC_519|>": 100816,
|
| 482 |
+
"<|LOC_51|>": 100348,
|
| 483 |
+
"<|LOC_520|>": 100817,
|
| 484 |
+
"<|LOC_521|>": 100818,
|
| 485 |
+
"<|LOC_522|>": 100819,
|
| 486 |
+
"<|LOC_523|>": 100820,
|
| 487 |
+
"<|LOC_524|>": 100821,
|
| 488 |
+
"<|LOC_525|>": 100822,
|
| 489 |
+
"<|LOC_526|>": 100823,
|
| 490 |
+
"<|LOC_527|>": 100824,
|
| 491 |
+
"<|LOC_528|>": 100825,
|
| 492 |
+
"<|LOC_529|>": 100826,
|
| 493 |
+
"<|LOC_52|>": 100349,
|
| 494 |
+
"<|LOC_530|>": 100827,
|
| 495 |
+
"<|LOC_531|>": 100828,
|
| 496 |
+
"<|LOC_532|>": 100829,
|
| 497 |
+
"<|LOC_533|>": 100830,
|
| 498 |
+
"<|LOC_534|>": 100831,
|
| 499 |
+
"<|LOC_535|>": 100832,
|
| 500 |
+
"<|LOC_536|>": 100833,
|
| 501 |
+
"<|LOC_537|>": 100834,
|
| 502 |
+
"<|LOC_538|>": 100835,
|
| 503 |
+
"<|LOC_539|>": 100836,
|
| 504 |
+
"<|LOC_53|>": 100350,
|
| 505 |
+
"<|LOC_540|>": 100837,
|
| 506 |
+
"<|LOC_541|>": 100838,
|
| 507 |
+
"<|LOC_542|>": 100839,
|
| 508 |
+
"<|LOC_543|>": 100840,
|
| 509 |
+
"<|LOC_544|>": 100841,
|
| 510 |
+
"<|LOC_545|>": 100842,
|
| 511 |
+
"<|LOC_546|>": 100843,
|
| 512 |
+
"<|LOC_547|>": 100844,
|
| 513 |
+
"<|LOC_548|>": 100845,
|
| 514 |
+
"<|LOC_549|>": 100846,
|
| 515 |
+
"<|LOC_54|>": 100351,
|
| 516 |
+
"<|LOC_550|>": 100847,
|
| 517 |
+
"<|LOC_551|>": 100848,
|
| 518 |
+
"<|LOC_552|>": 100849,
|
| 519 |
+
"<|LOC_553|>": 100850,
|
| 520 |
+
"<|LOC_554|>": 100851,
|
| 521 |
+
"<|LOC_555|>": 100852,
|
| 522 |
+
"<|LOC_556|>": 100853,
|
| 523 |
+
"<|LOC_557|>": 100854,
|
| 524 |
+
"<|LOC_558|>": 100855,
|
| 525 |
+
"<|LOC_559|>": 100856,
|
| 526 |
+
"<|LOC_55|>": 100352,
|
| 527 |
+
"<|LOC_560|>": 100857,
|
| 528 |
+
"<|LOC_561|>": 100858,
|
| 529 |
+
"<|LOC_562|>": 100859,
|
| 530 |
+
"<|LOC_563|>": 100860,
|
| 531 |
+
"<|LOC_564|>": 100861,
|
| 532 |
+
"<|LOC_565|>": 100862,
|
| 533 |
+
"<|LOC_566|>": 100863,
|
| 534 |
+
"<|LOC_567|>": 100864,
|
| 535 |
+
"<|LOC_568|>": 100865,
|
| 536 |
+
"<|LOC_569|>": 100866,
|
| 537 |
+
"<|LOC_56|>": 100353,
|
| 538 |
+
"<|LOC_570|>": 100867,
|
| 539 |
+
"<|LOC_571|>": 100868,
|
| 540 |
+
"<|LOC_572|>": 100869,
|
| 541 |
+
"<|LOC_573|>": 100870,
|
| 542 |
+
"<|LOC_574|>": 100871,
|
| 543 |
+
"<|LOC_575|>": 100872,
|
| 544 |
+
"<|LOC_576|>": 100873,
|
| 545 |
+
"<|LOC_577|>": 100874,
|
| 546 |
+
"<|LOC_578|>": 100875,
|
| 547 |
+
"<|LOC_579|>": 100876,
|
| 548 |
+
"<|LOC_57|>": 100354,
|
| 549 |
+
"<|LOC_580|>": 100877,
|
| 550 |
+
"<|LOC_581|>": 100878,
|
| 551 |
+
"<|LOC_582|>": 100879,
|
| 552 |
+
"<|LOC_583|>": 100880,
|
| 553 |
+
"<|LOC_584|>": 100881,
|
| 554 |
+
"<|LOC_585|>": 100882,
|
| 555 |
+
"<|LOC_586|>": 100883,
|
| 556 |
+
"<|LOC_587|>": 100884,
|
| 557 |
+
"<|LOC_588|>": 100885,
|
| 558 |
+
"<|LOC_589|>": 100886,
|
| 559 |
+
"<|LOC_58|>": 100355,
|
| 560 |
+
"<|LOC_590|>": 100887,
|
| 561 |
+
"<|LOC_591|>": 100888,
|
| 562 |
+
"<|LOC_592|>": 100889,
|
| 563 |
+
"<|LOC_593|>": 100890,
|
| 564 |
+
"<|LOC_594|>": 100891,
|
| 565 |
+
"<|LOC_595|>": 100892,
|
| 566 |
+
"<|LOC_596|>": 100893,
|
| 567 |
+
"<|LOC_597|>": 100894,
|
| 568 |
+
"<|LOC_598|>": 100895,
|
| 569 |
+
"<|LOC_599|>": 100896,
|
| 570 |
+
"<|LOC_59|>": 100356,
|
| 571 |
+
"<|LOC_5|>": 100302,
|
| 572 |
+
"<|LOC_600|>": 100897,
|
| 573 |
+
"<|LOC_601|>": 100898,
|
| 574 |
+
"<|LOC_602|>": 100899,
|
| 575 |
+
"<|LOC_603|>": 100900,
|
| 576 |
+
"<|LOC_604|>": 100901,
|
| 577 |
+
"<|LOC_605|>": 100902,
|
| 578 |
+
"<|LOC_606|>": 100903,
|
| 579 |
+
"<|LOC_607|>": 100904,
|
| 580 |
+
"<|LOC_608|>": 100905,
|
| 581 |
+
"<|LOC_609|>": 100906,
|
| 582 |
+
"<|LOC_60|>": 100357,
|
| 583 |
+
"<|LOC_610|>": 100907,
|
| 584 |
+
"<|LOC_611|>": 100908,
|
| 585 |
+
"<|LOC_612|>": 100909,
|
| 586 |
+
"<|LOC_613|>": 100910,
|
| 587 |
+
"<|LOC_614|>": 100911,
|
| 588 |
+
"<|LOC_615|>": 100912,
|
| 589 |
+
"<|LOC_616|>": 100913,
|
| 590 |
+
"<|LOC_617|>": 100914,
|
| 591 |
+
"<|LOC_618|>": 100915,
|
| 592 |
+
"<|LOC_619|>": 100916,
|
| 593 |
+
"<|LOC_61|>": 100358,
|
| 594 |
+
"<|LOC_620|>": 100917,
|
| 595 |
+
"<|LOC_621|>": 100918,
|
| 596 |
+
"<|LOC_622|>": 100919,
|
| 597 |
+
"<|LOC_623|>": 100920,
|
| 598 |
+
"<|LOC_624|>": 100921,
|
| 599 |
+
"<|LOC_625|>": 100922,
|
| 600 |
+
"<|LOC_626|>": 100923,
|
| 601 |
+
"<|LOC_627|>": 100924,
|
| 602 |
+
"<|LOC_628|>": 100925,
|
| 603 |
+
"<|LOC_629|>": 100926,
|
| 604 |
+
"<|LOC_62|>": 100359,
|
| 605 |
+
"<|LOC_630|>": 100927,
|
| 606 |
+
"<|LOC_631|>": 100928,
|
| 607 |
+
"<|LOC_632|>": 100929,
|
| 608 |
+
"<|LOC_633|>": 100930,
|
| 609 |
+
"<|LOC_634|>": 100931,
|
| 610 |
+
"<|LOC_635|>": 100932,
|
| 611 |
+
"<|LOC_636|>": 100933,
|
| 612 |
+
"<|LOC_637|>": 100934,
|
| 613 |
+
"<|LOC_638|>": 100935,
|
| 614 |
+
"<|LOC_639|>": 100936,
|
| 615 |
+
"<|LOC_63|>": 100360,
|
| 616 |
+
"<|LOC_640|>": 100937,
|
| 617 |
+
"<|LOC_641|>": 100938,
|
| 618 |
+
"<|LOC_642|>": 100939,
|
| 619 |
+
"<|LOC_643|>": 100940,
|
| 620 |
+
"<|LOC_644|>": 100941,
|
| 621 |
+
"<|LOC_645|>": 100942,
|
| 622 |
+
"<|LOC_646|>": 100943,
|
| 623 |
+
"<|LOC_647|>": 100944,
|
| 624 |
+
"<|LOC_648|>": 100945,
|
| 625 |
+
"<|LOC_649|>": 100946,
|
| 626 |
+
"<|LOC_64|>": 100361,
|
| 627 |
+
"<|LOC_650|>": 100947,
|
| 628 |
+
"<|LOC_651|>": 100948,
|
| 629 |
+
"<|LOC_652|>": 100949,
|
| 630 |
+
"<|LOC_653|>": 100950,
|
| 631 |
+
"<|LOC_654|>": 100951,
|
| 632 |
+
"<|LOC_655|>": 100952,
|
| 633 |
+
"<|LOC_656|>": 100953,
|
| 634 |
+
"<|LOC_657|>": 100954,
|
| 635 |
+
"<|LOC_658|>": 100955,
|
| 636 |
+
"<|LOC_659|>": 100956,
|
| 637 |
+
"<|LOC_65|>": 100362,
|
| 638 |
+
"<|LOC_660|>": 100957,
|
| 639 |
+
"<|LOC_661|>": 100958,
|
| 640 |
+
"<|LOC_662|>": 100959,
|
| 641 |
+
"<|LOC_663|>": 100960,
|
| 642 |
+
"<|LOC_664|>": 100961,
|
| 643 |
+
"<|LOC_665|>": 100962,
|
| 644 |
+
"<|LOC_666|>": 100963,
|
| 645 |
+
"<|LOC_667|>": 100964,
|
| 646 |
+
"<|LOC_668|>": 100965,
|
| 647 |
+
"<|LOC_669|>": 100966,
|
| 648 |
+
"<|LOC_66|>": 100363,
|
| 649 |
+
"<|LOC_670|>": 100967,
|
| 650 |
+
"<|LOC_671|>": 100968,
|
| 651 |
+
"<|LOC_672|>": 100969,
|
| 652 |
+
"<|LOC_673|>": 100970,
|
| 653 |
+
"<|LOC_674|>": 100971,
|
| 654 |
+
"<|LOC_675|>": 100972,
|
| 655 |
+
"<|LOC_676|>": 100973,
|
| 656 |
+
"<|LOC_677|>": 100974,
|
| 657 |
+
"<|LOC_678|>": 100975,
|
| 658 |
+
"<|LOC_679|>": 100976,
|
| 659 |
+
"<|LOC_67|>": 100364,
|
| 660 |
+
"<|LOC_680|>": 100977,
|
| 661 |
+
"<|LOC_681|>": 100978,
|
| 662 |
+
"<|LOC_682|>": 100979,
|
| 663 |
+
"<|LOC_683|>": 100980,
|
| 664 |
+
"<|LOC_684|>": 100981,
|
| 665 |
+
"<|LOC_685|>": 100982,
|
| 666 |
+
"<|LOC_686|>": 100983,
|
| 667 |
+
"<|LOC_687|>": 100984,
|
| 668 |
+
"<|LOC_688|>": 100985,
|
| 669 |
+
"<|LOC_689|>": 100986,
|
| 670 |
+
"<|LOC_68|>": 100365,
|
| 671 |
+
"<|LOC_690|>": 100987,
|
| 672 |
+
"<|LOC_691|>": 100988,
|
| 673 |
+
"<|LOC_692|>": 100989,
|
| 674 |
+
"<|LOC_693|>": 100990,
|
| 675 |
+
"<|LOC_694|>": 100991,
|
| 676 |
+
"<|LOC_695|>": 100992,
|
| 677 |
+
"<|LOC_696|>": 100993,
|
| 678 |
+
"<|LOC_697|>": 100994,
|
| 679 |
+
"<|LOC_698|>": 100995,
|
| 680 |
+
"<|LOC_699|>": 100996,
|
| 681 |
+
"<|LOC_69|>": 100366,
|
| 682 |
+
"<|LOC_6|>": 100303,
|
| 683 |
+
"<|LOC_700|>": 100997,
|
| 684 |
+
"<|LOC_701|>": 100998,
|
| 685 |
+
"<|LOC_702|>": 100999,
|
| 686 |
+
"<|LOC_703|>": 101000,
|
| 687 |
+
"<|LOC_704|>": 101001,
|
| 688 |
+
"<|LOC_705|>": 101002,
|
| 689 |
+
"<|LOC_706|>": 101003,
|
| 690 |
+
"<|LOC_707|>": 101004,
|
| 691 |
+
"<|LOC_708|>": 101005,
|
| 692 |
+
"<|LOC_709|>": 101006,
|
| 693 |
+
"<|LOC_70|>": 100367,
|
| 694 |
+
"<|LOC_710|>": 101007,
|
| 695 |
+
"<|LOC_711|>": 101008,
|
| 696 |
+
"<|LOC_712|>": 101009,
|
| 697 |
+
"<|LOC_713|>": 101010,
|
| 698 |
+
"<|LOC_714|>": 101011,
|
| 699 |
+
"<|LOC_715|>": 101012,
|
| 700 |
+
"<|LOC_716|>": 101013,
|
| 701 |
+
"<|LOC_717|>": 101014,
|
| 702 |
+
"<|LOC_718|>": 101015,
|
| 703 |
+
"<|LOC_719|>": 101016,
|
| 704 |
+
"<|LOC_71|>": 100368,
|
| 705 |
+
"<|LOC_720|>": 101017,
|
| 706 |
+
"<|LOC_721|>": 101018,
|
| 707 |
+
"<|LOC_722|>": 101019,
|
| 708 |
+
"<|LOC_723|>": 101020,
|
| 709 |
+
"<|LOC_724|>": 101021,
|
| 710 |
+
"<|LOC_725|>": 101022,
|
| 711 |
+
"<|LOC_726|>": 101023,
|
| 712 |
+
"<|LOC_727|>": 101024,
|
| 713 |
+
"<|LOC_728|>": 101025,
|
| 714 |
+
"<|LOC_729|>": 101026,
|
| 715 |
+
"<|LOC_72|>": 100369,
|
| 716 |
+
"<|LOC_730|>": 101027,
|
| 717 |
+
"<|LOC_731|>": 101028,
|
| 718 |
+
"<|LOC_732|>": 101029,
|
| 719 |
+
"<|LOC_733|>": 101030,
|
| 720 |
+
"<|LOC_734|>": 101031,
|
| 721 |
+
"<|LOC_735|>": 101032,
|
| 722 |
+
"<|LOC_736|>": 101033,
|
| 723 |
+
"<|LOC_737|>": 101034,
|
| 724 |
+
"<|LOC_738|>": 101035,
|
| 725 |
+
"<|LOC_739|>": 101036,
|
| 726 |
+
"<|LOC_73|>": 100370,
|
| 727 |
+
"<|LOC_740|>": 101037,
|
| 728 |
+
"<|LOC_741|>": 101038,
|
| 729 |
+
"<|LOC_742|>": 101039,
|
| 730 |
+
"<|LOC_743|>": 101040,
|
| 731 |
+
"<|LOC_744|>": 101041,
|
| 732 |
+
"<|LOC_745|>": 101042,
|
| 733 |
+
"<|LOC_746|>": 101043,
|
| 734 |
+
"<|LOC_747|>": 101044,
|
| 735 |
+
"<|LOC_748|>": 101045,
|
| 736 |
+
"<|LOC_749|>": 101046,
|
| 737 |
+
"<|LOC_74|>": 100371,
|
| 738 |
+
"<|LOC_750|>": 101047,
|
| 739 |
+
"<|LOC_751|>": 101048,
|
| 740 |
+
"<|LOC_752|>": 101049,
|
| 741 |
+
"<|LOC_753|>": 101050,
|
| 742 |
+
"<|LOC_754|>": 101051,
|
| 743 |
+
"<|LOC_755|>": 101052,
|
| 744 |
+
"<|LOC_756|>": 101053,
|
| 745 |
+
"<|LOC_757|>": 101054,
|
| 746 |
+
"<|LOC_758|>": 101055,
|
| 747 |
+
"<|LOC_759|>": 101056,
|
| 748 |
+
"<|LOC_75|>": 100372,
|
| 749 |
+
"<|LOC_760|>": 101057,
|
| 750 |
+
"<|LOC_761|>": 101058,
|
| 751 |
+
"<|LOC_762|>": 101059,
|
| 752 |
+
"<|LOC_763|>": 101060,
|
| 753 |
+
"<|LOC_764|>": 101061,
|
| 754 |
+
"<|LOC_765|>": 101062,
|
| 755 |
+
"<|LOC_766|>": 101063,
|
| 756 |
+
"<|LOC_767|>": 101064,
|
| 757 |
+
"<|LOC_768|>": 101065,
|
| 758 |
+
"<|LOC_769|>": 101066,
|
| 759 |
+
"<|LOC_76|>": 100373,
|
| 760 |
+
"<|LOC_770|>": 101067,
|
| 761 |
+
"<|LOC_771|>": 101068,
|
| 762 |
+
"<|LOC_772|>": 101069,
|
| 763 |
+
"<|LOC_773|>": 101070,
|
| 764 |
+
"<|LOC_774|>": 101071,
|
| 765 |
+
"<|LOC_775|>": 101072,
|
| 766 |
+
"<|LOC_776|>": 101073,
|
| 767 |
+
"<|LOC_777|>": 101074,
|
| 768 |
+
"<|LOC_778|>": 101075,
|
| 769 |
+
"<|LOC_779|>": 101076,
|
| 770 |
+
"<|LOC_77|>": 100374,
|
| 771 |
+
"<|LOC_780|>": 101077,
|
| 772 |
+
"<|LOC_781|>": 101078,
|
| 773 |
+
"<|LOC_782|>": 101079,
|
| 774 |
+
"<|LOC_783|>": 101080,
|
| 775 |
+
"<|LOC_784|>": 101081,
|
| 776 |
+
"<|LOC_785|>": 101082,
|
| 777 |
+
"<|LOC_786|>": 101083,
|
| 778 |
+
"<|LOC_787|>": 101084,
|
| 779 |
+
"<|LOC_788|>": 101085,
|
| 780 |
+
"<|LOC_789|>": 101086,
|
| 781 |
+
"<|LOC_78|>": 100375,
|
| 782 |
+
"<|LOC_790|>": 101087,
|
| 783 |
+
"<|LOC_791|>": 101088,
|
| 784 |
+
"<|LOC_792|>": 101089,
|
| 785 |
+
"<|LOC_793|>": 101090,
|
| 786 |
+
"<|LOC_794|>": 101091,
|
| 787 |
+
"<|LOC_795|>": 101092,
|
| 788 |
+
"<|LOC_796|>": 101093,
|
| 789 |
+
"<|LOC_797|>": 101094,
|
| 790 |
+
"<|LOC_798|>": 101095,
|
| 791 |
+
"<|LOC_799|>": 101096,
|
| 792 |
+
"<|LOC_79|>": 100376,
|
| 793 |
+
"<|LOC_7|>": 100304,
|
| 794 |
+
"<|LOC_800|>": 101097,
|
| 795 |
+
"<|LOC_801|>": 101098,
|
| 796 |
+
"<|LOC_802|>": 101099,
|
| 797 |
+
"<|LOC_803|>": 101100,
|
| 798 |
+
"<|LOC_804|>": 101101,
|
| 799 |
+
"<|LOC_805|>": 101102,
|
| 800 |
+
"<|LOC_806|>": 101103,
|
| 801 |
+
"<|LOC_807|>": 101104,
|
| 802 |
+
"<|LOC_808|>": 101105,
|
| 803 |
+
"<|LOC_809|>": 101106,
|
| 804 |
+
"<|LOC_80|>": 100377,
|
| 805 |
+
"<|LOC_810|>": 101107,
|
| 806 |
+
"<|LOC_811|>": 101108,
|
| 807 |
+
"<|LOC_812|>": 101109,
|
| 808 |
+
"<|LOC_813|>": 101110,
|
| 809 |
+
"<|LOC_814|>": 101111,
|
| 810 |
+
"<|LOC_815|>": 101112,
|
| 811 |
+
"<|LOC_816|>": 101113,
|
| 812 |
+
"<|LOC_817|>": 101114,
|
| 813 |
+
"<|LOC_818|>": 101115,
|
| 814 |
+
"<|LOC_819|>": 101116,
|
| 815 |
+
"<|LOC_81|>": 100378,
|
| 816 |
+
"<|LOC_820|>": 101117,
|
| 817 |
+
"<|LOC_821|>": 101118,
|
| 818 |
+
"<|LOC_822|>": 101119,
|
| 819 |
+
"<|LOC_823|>": 101120,
|
| 820 |
+
"<|LOC_824|>": 101121,
|
| 821 |
+
"<|LOC_825|>": 101122,
|
| 822 |
+
"<|LOC_826|>": 101123,
|
| 823 |
+
"<|LOC_827|>": 101124,
|
| 824 |
+
"<|LOC_828|>": 101125,
|
| 825 |
+
"<|LOC_829|>": 101126,
|
| 826 |
+
"<|LOC_82|>": 100379,
|
| 827 |
+
"<|LOC_830|>": 101127,
|
| 828 |
+
"<|LOC_831|>": 101128,
|
| 829 |
+
"<|LOC_832|>": 101129,
|
| 830 |
+
"<|LOC_833|>": 101130,
|
| 831 |
+
"<|LOC_834|>": 101131,
|
| 832 |
+
"<|LOC_835|>": 101132,
|
| 833 |
+
"<|LOC_836|>": 101133,
|
| 834 |
+
"<|LOC_837|>": 101134,
|
| 835 |
+
"<|LOC_838|>": 101135,
|
| 836 |
+
"<|LOC_839|>": 101136,
|
| 837 |
+
"<|LOC_83|>": 100380,
|
| 838 |
+
"<|LOC_840|>": 101137,
|
| 839 |
+
"<|LOC_841|>": 101138,
|
| 840 |
+
"<|LOC_842|>": 101139,
|
| 841 |
+
"<|LOC_843|>": 101140,
|
| 842 |
+
"<|LOC_844|>": 101141,
|
| 843 |
+
"<|LOC_845|>": 101142,
|
| 844 |
+
"<|LOC_846|>": 101143,
|
| 845 |
+
"<|LOC_847|>": 101144,
|
| 846 |
+
"<|LOC_848|>": 101145,
|
| 847 |
+
"<|LOC_849|>": 101146,
|
| 848 |
+
"<|LOC_84|>": 100381,
|
| 849 |
+
"<|LOC_850|>": 101147,
|
| 850 |
+
"<|LOC_851|>": 101148,
|
| 851 |
+
"<|LOC_852|>": 101149,
|
| 852 |
+
"<|LOC_853|>": 101150,
|
| 853 |
+
"<|LOC_854|>": 101151,
|
| 854 |
+
"<|LOC_855|>": 101152,
|
| 855 |
+
"<|LOC_856|>": 101153,
|
| 856 |
+
"<|LOC_857|>": 101154,
|
| 857 |
+
"<|LOC_858|>": 101155,
|
| 858 |
+
"<|LOC_859|>": 101156,
|
| 859 |
+
"<|LOC_85|>": 100382,
|
| 860 |
+
"<|LOC_860|>": 101157,
|
| 861 |
+
"<|LOC_861|>": 101158,
|
| 862 |
+
"<|LOC_862|>": 101159,
|
| 863 |
+
"<|LOC_863|>": 101160,
|
| 864 |
+
"<|LOC_864|>": 101161,
|
| 865 |
+
"<|LOC_865|>": 101162,
|
| 866 |
+
"<|LOC_866|>": 101163,
|
| 867 |
+
"<|LOC_867|>": 101164,
|
| 868 |
+
"<|LOC_868|>": 101165,
|
| 869 |
+
"<|LOC_869|>": 101166,
|
| 870 |
+
"<|LOC_86|>": 100383,
|
| 871 |
+
"<|LOC_870|>": 101167,
|
| 872 |
+
"<|LOC_871|>": 101168,
|
| 873 |
+
"<|LOC_872|>": 101169,
|
| 874 |
+
"<|LOC_873|>": 101170,
|
| 875 |
+
"<|LOC_874|>": 101171,
|
| 876 |
+
"<|LOC_875|>": 101172,
|
| 877 |
+
"<|LOC_876|>": 101173,
|
| 878 |
+
"<|LOC_877|>": 101174,
|
| 879 |
+
"<|LOC_878|>": 101175,
|
| 880 |
+
"<|LOC_879|>": 101176,
|
| 881 |
+
"<|LOC_87|>": 100384,
|
| 882 |
+
"<|LOC_880|>": 101177,
|
| 883 |
+
"<|LOC_881|>": 101178,
|
| 884 |
+
"<|LOC_882|>": 101179,
|
| 885 |
+
"<|LOC_883|>": 101180,
|
| 886 |
+
"<|LOC_884|>": 101181,
|
| 887 |
+
"<|LOC_885|>": 101182,
|
| 888 |
+
"<|LOC_886|>": 101183,
|
| 889 |
+
"<|LOC_887|>": 101184,
|
| 890 |
+
"<|LOC_888|>": 101185,
|
| 891 |
+
"<|LOC_889|>": 101186,
|
| 892 |
+
"<|LOC_88|>": 100385,
|
| 893 |
+
"<|LOC_890|>": 101187,
|
| 894 |
+
"<|LOC_891|>": 101188,
|
| 895 |
+
"<|LOC_892|>": 101189,
|
| 896 |
+
"<|LOC_893|>": 101190,
|
| 897 |
+
"<|LOC_894|>": 101191,
|
| 898 |
+
"<|LOC_895|>": 101192,
|
| 899 |
+
"<|LOC_896|>": 101193,
|
| 900 |
+
"<|LOC_897|>": 101194,
|
| 901 |
+
"<|LOC_898|>": 101195,
|
| 902 |
+
"<|LOC_899|>": 101196,
|
| 903 |
+
"<|LOC_89|>": 100386,
|
| 904 |
+
"<|LOC_8|>": 100305,
|
| 905 |
+
"<|LOC_900|>": 101197,
|
| 906 |
+
"<|LOC_901|>": 101198,
|
| 907 |
+
"<|LOC_902|>": 101199,
|
| 908 |
+
"<|LOC_903|>": 101200,
|
| 909 |
+
"<|LOC_904|>": 101201,
|
| 910 |
+
"<|LOC_905|>": 101202,
|
| 911 |
+
"<|LOC_906|>": 101203,
|
| 912 |
+
"<|LOC_907|>": 101204,
|
| 913 |
+
"<|LOC_908|>": 101205,
|
| 914 |
+
"<|LOC_909|>": 101206,
|
| 915 |
+
"<|LOC_90|>": 100387,
|
| 916 |
+
"<|LOC_910|>": 101207,
|
| 917 |
+
"<|LOC_911|>": 101208,
|
| 918 |
+
"<|LOC_912|>": 101209,
|
| 919 |
+
"<|LOC_913|>": 101210,
|
| 920 |
+
"<|LOC_914|>": 101211,
|
| 921 |
+
"<|LOC_915|>": 101212,
|
| 922 |
+
"<|LOC_916|>": 101213,
|
| 923 |
+
"<|LOC_917|>": 101214,
|
| 924 |
+
"<|LOC_918|>": 101215,
|
| 925 |
+
"<|LOC_919|>": 101216,
|
| 926 |
+
"<|LOC_91|>": 100388,
|
| 927 |
+
"<|LOC_920|>": 101217,
|
| 928 |
+
"<|LOC_921|>": 101218,
|
| 929 |
+
"<|LOC_922|>": 101219,
|
| 930 |
+
"<|LOC_923|>": 101220,
|
| 931 |
+
"<|LOC_924|>": 101221,
|
| 932 |
+
"<|LOC_925|>": 101222,
|
| 933 |
+
"<|LOC_926|>": 101223,
|
| 934 |
+
"<|LOC_927|>": 101224,
|
| 935 |
+
"<|LOC_928|>": 101225,
|
| 936 |
+
"<|LOC_929|>": 101226,
|
| 937 |
+
"<|LOC_92|>": 100389,
|
| 938 |
+
"<|LOC_930|>": 101227,
|
| 939 |
+
"<|LOC_931|>": 101228,
|
| 940 |
+
"<|LOC_932|>": 101229,
|
| 941 |
+
"<|LOC_933|>": 101230,
|
| 942 |
+
"<|LOC_934|>": 101231,
|
| 943 |
+
"<|LOC_935|>": 101232,
|
| 944 |
+
"<|LOC_936|>": 101233,
|
| 945 |
+
"<|LOC_937|>": 101234,
|
| 946 |
+
"<|LOC_938|>": 101235,
|
| 947 |
+
"<|LOC_939|>": 101236,
|
| 948 |
+
"<|LOC_93|>": 100390,
|
| 949 |
+
"<|LOC_940|>": 101237,
|
| 950 |
+
"<|LOC_941|>": 101238,
|
| 951 |
+
"<|LOC_942|>": 101239,
|
| 952 |
+
"<|LOC_943|>": 101240,
|
| 953 |
+
"<|LOC_944|>": 101241,
|
| 954 |
+
"<|LOC_945|>": 101242,
|
| 955 |
+
"<|LOC_946|>": 101243,
|
| 956 |
+
"<|LOC_947|>": 101244,
|
| 957 |
+
"<|LOC_948|>": 101245,
|
| 958 |
+
"<|LOC_949|>": 101246,
|
| 959 |
+
"<|LOC_94|>": 100391,
|
| 960 |
+
"<|LOC_950|>": 101247,
|
| 961 |
+
"<|LOC_951|>": 101248,
|
| 962 |
+
"<|LOC_952|>": 101249,
|
| 963 |
+
"<|LOC_953|>": 101250,
|
| 964 |
+
"<|LOC_954|>": 101251,
|
| 965 |
+
"<|LOC_955|>": 101252,
|
| 966 |
+
"<|LOC_956|>": 101253,
|
| 967 |
+
"<|LOC_957|>": 101254,
|
| 968 |
+
"<|LOC_958|>": 101255,
|
| 969 |
+
"<|LOC_959|>": 101256,
|
| 970 |
+
"<|LOC_95|>": 100392,
|
| 971 |
+
"<|LOC_960|>": 101257,
|
| 972 |
+
"<|LOC_961|>": 101258,
|
| 973 |
+
"<|LOC_962|>": 101259,
|
| 974 |
+
"<|LOC_963|>": 101260,
|
| 975 |
+
"<|LOC_964|>": 101261,
|
| 976 |
+
"<|LOC_965|>": 101262,
|
| 977 |
+
"<|LOC_966|>": 101263,
|
| 978 |
+
"<|LOC_967|>": 101264,
|
| 979 |
+
"<|LOC_968|>": 101265,
|
| 980 |
+
"<|LOC_969|>": 101266,
|
| 981 |
+
"<|LOC_96|>": 100393,
|
| 982 |
+
"<|LOC_970|>": 101267,
|
| 983 |
+
"<|LOC_971|>": 101268,
|
| 984 |
+
"<|LOC_972|>": 101269,
|
| 985 |
+
"<|LOC_973|>": 101270,
|
| 986 |
+
"<|LOC_974|>": 101271,
|
| 987 |
+
"<|LOC_975|>": 101272,
|
| 988 |
+
"<|LOC_976|>": 101273,
|
| 989 |
+
"<|LOC_977|>": 101274,
|
| 990 |
+
"<|LOC_978|>": 101275,
|
| 991 |
+
"<|LOC_979|>": 101276,
|
| 992 |
+
"<|LOC_97|>": 100394,
|
| 993 |
+
"<|LOC_980|>": 101277,
|
| 994 |
+
"<|LOC_981|>": 101278,
|
| 995 |
+
"<|LOC_982|>": 101279,
|
| 996 |
+
"<|LOC_983|>": 101280,
|
| 997 |
+
"<|LOC_984|>": 101281,
|
| 998 |
+
"<|LOC_985|>": 101282,
|
| 999 |
+
"<|LOC_986|>": 101283,
|
| 1000 |
+
"<|LOC_987|>": 101284,
|
| 1001 |
+
"<|LOC_988|>": 101285,
|
| 1002 |
+
"<|LOC_989|>": 101286,
|
| 1003 |
+
"<|LOC_98|>": 100395,
|
| 1004 |
+
"<|LOC_990|>": 101287,
|
| 1005 |
+
"<|LOC_991|>": 101288,
|
| 1006 |
+
"<|LOC_992|>": 101289,
|
| 1007 |
+
"<|LOC_993|>": 101290,
|
| 1008 |
+
"<|LOC_994|>": 101291,
|
| 1009 |
+
"<|LOC_995|>": 101292,
|
| 1010 |
+
"<|LOC_996|>": 101293,
|
| 1011 |
+
"<|LOC_997|>": 101294,
|
| 1012 |
+
"<|LOC_998|>": 101295,
|
| 1013 |
+
"<|LOC_999|>": 101296,
|
| 1014 |
+
"<|LOC_99|>": 100396,
|
| 1015 |
+
"<|LOC_9|>": 100306,
|
| 1016 |
+
"<|LOC_BEGIN|>": 101298,
|
| 1017 |
+
"<|LOC_END|>": 101299,
|
| 1018 |
+
"<|LOC_SEP|>": 101300,
|
| 1019 |
+
"<|image_pad|>": 101304,
|
| 1020 |
+
"<|video_pad|>": 101307
|
| 1021 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if not add_generation_prompt is defined -%}
|
| 2 |
+
{%- set add_generation_prompt = true -%}
|
| 3 |
+
{%- endif -%}
|
| 4 |
+
{%- if not cls_token is defined -%}
|
| 5 |
+
{%- set cls_token = "<|begin_of_sentence|>" -%}
|
| 6 |
+
{%- endif -%}
|
| 7 |
+
{%- if not sep_token is defined -%}
|
| 8 |
+
{%- set sep_token = "<|end_of_sentence|>" -%}
|
| 9 |
+
{%- endif -%}
|
| 10 |
+
{{- cls_token -}}
|
| 11 |
+
{%- for message in messages -%}
|
| 12 |
+
{%- if message["role"] == "user" -%}
|
| 13 |
+
{{- "User: <|IMAGE_START|><|IMAGE_PLACEHOLDER|><|IMAGE_END|>" + message["content"] + "\n" -}}
|
| 14 |
+
{%- elif message["role"] == "assistant" -%}
|
| 15 |
+
{{- "Assistant: " + message["content"] + sep_token -}}
|
| 16 |
+
{%- elif message["role"] == "system" -%}
|
| 17 |
+
{{- message["content"] -}}
|
| 18 |
+
{%- endif -%}
|
| 19 |
+
{%- endfor -%}
|
| 20 |
+
{%- if add_generation_prompt -%}
|
| 21 |
+
{{- "Assistant: " -}}
|
| 22 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"PaddleOCRVLForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_paddleocr_vl.PaddleOCRVLConfig",
|
| 8 |
+
"AutoModel": "modeling_paddleocr_vl.PaddleOCRVLForConditionalGeneration",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_paddleocr_vl.PaddleOCRVLForConditionalGeneration"
|
| 10 |
+
},
|
| 11 |
+
"compression_ratio": 1.0,
|
| 12 |
+
"head_dim": 128,
|
| 13 |
+
"hidden_act": "silu",
|
| 14 |
+
"hidden_dropout_prob": 0.0,
|
| 15 |
+
"hidden_size": 1024,
|
| 16 |
+
"ignored_index": -100,
|
| 17 |
+
"image_token_id": 100295,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"max_position_embeddings": 131072,
|
| 20 |
+
"max_sequence_length": null,
|
| 21 |
+
"model_type": "paddleocr_vl",
|
| 22 |
+
"num_attention_heads": 16,
|
| 23 |
+
"num_hidden_layers": 18,
|
| 24 |
+
"num_key_value_heads": 2,
|
| 25 |
+
"pad_token_id": 0,
|
| 26 |
+
"rms_norm_eps": 1e-05,
|
| 27 |
+
"rope_scaling": {
|
| 28 |
+
"mrope_section": [
|
| 29 |
+
16,
|
| 30 |
+
24,
|
| 31 |
+
24
|
| 32 |
+
],
|
| 33 |
+
"rope_type": "default",
|
| 34 |
+
"type": "default"
|
| 35 |
+
},
|
| 36 |
+
"rope_theta": 500000,
|
| 37 |
+
"sliding_window": null,
|
| 38 |
+
"tie_word_embeddings": false,
|
| 39 |
+
"torch_dtype": "bfloat16",
|
| 40 |
+
"transformers_version": "4.55.0",
|
| 41 |
+
"use_bias": false,
|
| 42 |
+
"use_cache": false,
|
| 43 |
+
"use_flash_attention": false,
|
| 44 |
+
"video_token_id": 101307,
|
| 45 |
+
"vision_config": {
|
| 46 |
+
"architectures": [
|
| 47 |
+
"SiglipVisionModel"
|
| 48 |
+
],
|
| 49 |
+
"attention_dropout": 0.0,
|
| 50 |
+
"auto_map": {
|
| 51 |
+
"AutoConfig": "configuration_paddleocr_vl.PaddleOCRVLConfig",
|
| 52 |
+
"AutoModel": "modeling_paddleocr_vl.SiglipVisionModel"
|
| 53 |
+
},
|
| 54 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 55 |
+
"hidden_size": 1152,
|
| 56 |
+
"image_size": 384,
|
| 57 |
+
"intermediate_size": 4304,
|
| 58 |
+
"layer_norm_eps": 1e-06,
|
| 59 |
+
"model_type": "paddleocr_vl",
|
| 60 |
+
"num_attention_heads": 16,
|
| 61 |
+
"num_channels": 3,
|
| 62 |
+
"num_hidden_layers": 27,
|
| 63 |
+
"pad_token_id": 0,
|
| 64 |
+
"patch_size": 14,
|
| 65 |
+
"spatial_merge_size": 2,
|
| 66 |
+
"temporal_patch_size": 2,
|
| 67 |
+
"tokens_per_second": 2,
|
| 68 |
+
"torch_dtype": "bfloat16"
|
| 69 |
+
},
|
| 70 |
+
"vision_start_token_id": 101305,
|
| 71 |
+
"vocab_size": 103424,
|
| 72 |
+
"weight_share_add_bias": true,
|
| 73 |
+
"use_3d_rope": true,
|
| 74 |
+
"rope_is_neox_style": true
|
| 75 |
+
}
|
configuration_paddleocr_vl.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 16 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 17 |
+
|
| 18 |
+
class PaddleOCRVisionConfig(PretrainedConfig):
|
| 19 |
+
model_type = "paddleocr_vl"
|
| 20 |
+
base_config_key = "vision_config"
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
hidden_size=768,
|
| 25 |
+
intermediate_size=3072,
|
| 26 |
+
num_hidden_layers=12,
|
| 27 |
+
num_attention_heads=12,
|
| 28 |
+
num_channels=3,
|
| 29 |
+
image_size=224,
|
| 30 |
+
patch_size=14,
|
| 31 |
+
hidden_act="gelu_pytorch_tanh",
|
| 32 |
+
layer_norm_eps=1e-6,
|
| 33 |
+
attention_dropout=0.0,
|
| 34 |
+
spatial_merge_size=2,
|
| 35 |
+
temporal_patch_size=2,
|
| 36 |
+
tokens_per_second=2,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
self.hidden_size = hidden_size
|
| 42 |
+
self.intermediate_size = intermediate_size
|
| 43 |
+
self.num_hidden_layers = num_hidden_layers
|
| 44 |
+
self.num_attention_heads = num_attention_heads
|
| 45 |
+
self.num_channels = num_channels
|
| 46 |
+
self.patch_size = patch_size
|
| 47 |
+
self.image_size = image_size
|
| 48 |
+
self.attention_dropout = attention_dropout
|
| 49 |
+
self.layer_norm_eps = layer_norm_eps
|
| 50 |
+
self.hidden_act = hidden_act
|
| 51 |
+
self.spatial_merge_size = spatial_merge_size
|
| 52 |
+
self.temporal_patch_size = temporal_patch_size
|
| 53 |
+
self.tokens_per_second = tokens_per_second
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class PaddleOCRVLConfig(PretrainedConfig):
|
| 58 |
+
"""
|
| 59 |
+
Configuration class.
|
| 60 |
+
|
| 61 |
+
This class stores the configuration of an Ernie model, defining the model architecture.
|
| 62 |
+
It inherits from PretrainedConfig and can be used to control model outputs.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
model_type = "paddleocr_vl"
|
| 66 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 67 |
+
sub_configs = {"vision_config": PaddleOCRVisionConfig}
|
| 68 |
+
|
| 69 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 70 |
+
base_model_tp_plan = {
|
| 71 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 72 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 73 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 74 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 75 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 76 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 77 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 78 |
+
}
|
| 79 |
+
base_model_pp_plan = {
|
| 80 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 81 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 82 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
vocab_size=32000,
|
| 88 |
+
hidden_size=768,
|
| 89 |
+
intermediate_size=11008,
|
| 90 |
+
max_position_embeddings=32768,
|
| 91 |
+
num_hidden_layers=2,
|
| 92 |
+
num_attention_heads=2,
|
| 93 |
+
image_token_id=101304,
|
| 94 |
+
video_token_id=101305,
|
| 95 |
+
vision_start_token_id=101306,
|
| 96 |
+
rms_norm_eps=1e-6,
|
| 97 |
+
use_cache=False,
|
| 98 |
+
use_flash_attention=False,
|
| 99 |
+
pad_token_id=0,
|
| 100 |
+
bos_token_id=1,
|
| 101 |
+
eos_token_id=2,
|
| 102 |
+
head_dim=128,
|
| 103 |
+
hidden_act="silu",
|
| 104 |
+
use_bias=False,
|
| 105 |
+
rope_theta=10000,
|
| 106 |
+
weight_share_add_bias=True,
|
| 107 |
+
ignored_index=-100,
|
| 108 |
+
attention_probs_dropout_prob=0.0,
|
| 109 |
+
hidden_dropout_prob=0.0,
|
| 110 |
+
compression_ratio: float = 1.0,
|
| 111 |
+
num_key_value_heads=None,
|
| 112 |
+
max_sequence_length=None,
|
| 113 |
+
tie_word_embeddings=False,
|
| 114 |
+
vision_config=None,
|
| 115 |
+
rope_scaling=None,
|
| 116 |
+
**kwargs,
|
| 117 |
+
):
|
| 118 |
+
"""
|
| 119 |
+
Initialize configuration with default or specified parameters.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
vocab_size (int): Size of the vocabulary (number of unique tokens)
|
| 123 |
+
hidden_size (int): Dimensionality of the encoder layers and the pooler layer
|
| 124 |
+
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
|
| 125 |
+
max_position_embeddings (int): Maximum sequence length the model can handle
|
| 126 |
+
num_hidden_layers (int): Number of hidden layers in the Transformer encoder
|
| 127 |
+
num_attention_heads (int): Number of attention heads for each attention layer
|
| 128 |
+
rms_norm_eps (float): The epsilon used by the RMS normalization layers
|
| 129 |
+
use_cache (bool): Whether to use caching for faster generation (decoding)
|
| 130 |
+
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
|
| 131 |
+
pad_token_id (int): Token ID used for padding sequences
|
| 132 |
+
bos_token_id (int): Token ID used for beginning-of-sequence
|
| 133 |
+
eos_token_id (int): Token ID used for end-of-sequence
|
| 134 |
+
use_bias (bool): Whether to use bias terms in linear layers
|
| 135 |
+
rope_theta (float): The base period of the RoPE embeddings
|
| 136 |
+
weight_share_add_bias (bool): Whether to share bias weights in certain layers
|
| 137 |
+
ignored_index (int): Target value that is ignored during loss computation
|
| 138 |
+
attention_probs_dropout_prob (float): Dropout probability for attention weights
|
| 139 |
+
hidden_dropout_prob (float): Dropout probability for hidden layers
|
| 140 |
+
compression_ratio (float): Ratio for KV cache compression (1.0 = no compression)
|
| 141 |
+
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
|
| 142 |
+
max_sequence_length (int): Maximum sequence length for positional embeddings
|
| 143 |
+
**kwargs: Additional keyword arguments passed to parent class
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
# Set default for tied embeddings if not specified.
|
| 147 |
+
super().__init__(
|
| 148 |
+
pad_token_id=pad_token_id,
|
| 149 |
+
bos_token_id=bos_token_id,
|
| 150 |
+
eos_token_id=eos_token_id,
|
| 151 |
+
**kwargs,
|
| 152 |
+
)
|
| 153 |
+
if isinstance(vision_config, dict):
|
| 154 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
| 155 |
+
elif vision_config is None:
|
| 156 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
| 157 |
+
self.vocab_size = vocab_size
|
| 158 |
+
self.hidden_size = hidden_size
|
| 159 |
+
self.intermediate_size = intermediate_size
|
| 160 |
+
self.max_position_embeddings = max_position_embeddings
|
| 161 |
+
self.num_hidden_layers = num_hidden_layers
|
| 162 |
+
self.num_attention_heads = num_attention_heads
|
| 163 |
+
self.rms_norm_eps = rms_norm_eps
|
| 164 |
+
self.use_cache = use_cache
|
| 165 |
+
self.use_flash_attention = use_flash_attention
|
| 166 |
+
self.pad_token_id = pad_token_id
|
| 167 |
+
self.bos_token_id = bos_token_id
|
| 168 |
+
self.eos_token_id = eos_token_id
|
| 169 |
+
self.image_token_id = image_token_id
|
| 170 |
+
self.video_token_id = video_token_id
|
| 171 |
+
self.vision_start_token_id = vision_start_token_id
|
| 172 |
+
self.head_dim = head_dim
|
| 173 |
+
self.hidden_act=hidden_act
|
| 174 |
+
self.sliding_window = None
|
| 175 |
+
self.hidden_size = hidden_size
|
| 176 |
+
self.use_bias = use_bias
|
| 177 |
+
self.weight_share_add_bias = weight_share_add_bias
|
| 178 |
+
self.rope_theta = rope_theta
|
| 179 |
+
self.ignored_index = ignored_index
|
| 180 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 181 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 182 |
+
self.compression_ratio = compression_ratio
|
| 183 |
+
self.num_key_value_heads = num_key_value_heads
|
| 184 |
+
self.max_sequence_length = max_sequence_length
|
| 185 |
+
self.rope_scaling = rope_scaling
|
| 186 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 187 |
+
if self.rope_scaling["type"] == "mrope":
|
| 188 |
+
self.rope_scaling["type"] = "default"
|
| 189 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 190 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
| 191 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"eos_token_id": 2,
|
| 4 |
+
"transformers_version": "4.55.0",
|
| 5 |
+
"use_cache": false
|
| 6 |
+
}
|
image_processing.py
ADDED
|
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""Image processor class for PaddleOCR-VL."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from typing import Dict, List, Optional, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 23 |
+
from torchvision.transforms import functional as TF
|
| 24 |
+
from transformers.image_transforms import (
|
| 25 |
+
convert_to_rgb,
|
| 26 |
+
resize,
|
| 27 |
+
to_channel_dimension_format,
|
| 28 |
+
)
|
| 29 |
+
from transformers.image_utils import (
|
| 30 |
+
OPENAI_CLIP_MEAN,
|
| 31 |
+
OPENAI_CLIP_STD,
|
| 32 |
+
ChannelDimension,
|
| 33 |
+
PILImageResampling,
|
| 34 |
+
get_image_size,
|
| 35 |
+
infer_channel_dimension_format,
|
| 36 |
+
is_scaled_image,
|
| 37 |
+
is_valid_image,
|
| 38 |
+
make_list_of_images,
|
| 39 |
+
to_numpy_array,
|
| 40 |
+
valid_images,
|
| 41 |
+
validate_preprocess_arguments,
|
| 42 |
+
)
|
| 43 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
logger = logging.get_logger(__name__)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if is_vision_available():
|
| 50 |
+
from PIL import Image
|
| 51 |
+
|
| 52 |
+
ImageInput = Union[
|
| 53 |
+
"PIL.Image.Image",
|
| 54 |
+
np.ndarray,
|
| 55 |
+
"torch.Tensor",
|
| 56 |
+
List["PIL.Image.Image"],
|
| 57 |
+
List[np.ndarray],
|
| 58 |
+
List["torch.Tensor"],
|
| 59 |
+
] # noqa
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
VideoInput = Union[
|
| 63 |
+
List["PIL.Image.Image"],
|
| 64 |
+
"np.ndarray",
|
| 65 |
+
"torch.Tensor",
|
| 66 |
+
List["np.ndarray"],
|
| 67 |
+
List["torch.Tensor"],
|
| 68 |
+
List[List["PIL.Image.Image"]],
|
| 69 |
+
List[List["np.ndarrray"]],
|
| 70 |
+
List[List["torch.Tensor"]],
|
| 71 |
+
] # noqa
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 75 |
+
"""
|
| 76 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 80 |
+
The input image.
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
list: A list of images.
|
| 84 |
+
"""
|
| 85 |
+
if (
|
| 86 |
+
isinstance(images, (list, tuple))
|
| 87 |
+
and isinstance(images[0], (list, tuple))
|
| 88 |
+
and is_valid_image(images[0][0])
|
| 89 |
+
):
|
| 90 |
+
return [img for img_list in images for img in img_list]
|
| 91 |
+
|
| 92 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 93 |
+
return images
|
| 94 |
+
|
| 95 |
+
elif is_valid_image(images):
|
| 96 |
+
return [images]
|
| 97 |
+
|
| 98 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def adjust_size(size, patch_size):
|
| 102 |
+
num_patches = size // patch_size
|
| 103 |
+
if num_patches % 2 != 0: # 如果是奇数,减1
|
| 104 |
+
num_patches -= 1
|
| 105 |
+
return num_patches * patch_size
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
| 109 |
+
if (
|
| 110 |
+
isinstance(videos, (list, tuple))
|
| 111 |
+
and isinstance(videos[0], (list, tuple))
|
| 112 |
+
and is_valid_image(videos[0][0])
|
| 113 |
+
):
|
| 114 |
+
return videos
|
| 115 |
+
|
| 116 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
| 117 |
+
if isinstance(videos[0], Image.Image):
|
| 118 |
+
return [videos]
|
| 119 |
+
elif len(videos[0].shape) == 4:
|
| 120 |
+
return [list(video) for video in videos]
|
| 121 |
+
|
| 122 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
| 123 |
+
return [list(videos)]
|
| 124 |
+
|
| 125 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def smart_resize(
|
| 129 |
+
height: int,
|
| 130 |
+
width: int,
|
| 131 |
+
factor: int = 28,
|
| 132 |
+
min_pixels: int = 28 * 28 * 130,
|
| 133 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 134 |
+
):
|
| 135 |
+
"""Rescales the image so that the following conditions are met:
|
| 136 |
+
|
| 137 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 138 |
+
|
| 139 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 140 |
+
|
| 141 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 142 |
+
|
| 143 |
+
"""
|
| 144 |
+
# if height < factor or width < factor:
|
| 145 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 146 |
+
# if int(height < factor//4) + int(width < factor//4):
|
| 147 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor//4}")
|
| 148 |
+
|
| 149 |
+
if height < factor:
|
| 150 |
+
print(f"smart_resize: height={height} < factor={factor}, reset height=factor")
|
| 151 |
+
width = round((width * factor) / height)
|
| 152 |
+
height = factor
|
| 153 |
+
|
| 154 |
+
if width < factor:
|
| 155 |
+
print(f"smart_resize: width={width} < factor={factor}, reset width=factor")
|
| 156 |
+
height = round((height * factor) / width)
|
| 157 |
+
width = factor
|
| 158 |
+
|
| 159 |
+
if max(height, width) / min(height, width) > 200:
|
| 160 |
+
raise ValueError(
|
| 161 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 162 |
+
)
|
| 163 |
+
h_bar = round(height / factor) * factor
|
| 164 |
+
w_bar = round(width / factor) * factor
|
| 165 |
+
if h_bar * w_bar > max_pixels:
|
| 166 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 167 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 168 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 169 |
+
elif h_bar * w_bar < min_pixels:
|
| 170 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 171 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 172 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 173 |
+
return h_bar, w_bar
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class SiglipImageProcessor(BaseImageProcessor):
|
| 177 |
+
r"""
|
| 178 |
+
Constructs a Siglip image processor that dynamically resizes images based on the original images.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 182 |
+
Whether to resize the image's (height, width) dimensions.
|
| 183 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 184 |
+
Resampling filter to use when resizing the image.
|
| 185 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 186 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 187 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 188 |
+
Scale factor to use if rescaling the image.
|
| 189 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 190 |
+
Whether to normalize the image.
|
| 191 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 192 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 193 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 194 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 195 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 196 |
+
Whether to convert the image to RGB.
|
| 197 |
+
min_pixels (`int`, *optional*, defaults to `28 * 28 * 130`):
|
| 198 |
+
The min pixels of the image to resize the image.
|
| 199 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1670`):
|
| 200 |
+
The max pixels of the image to resize the image.
|
| 201 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 202 |
+
The spacial patch size of the vision encoder.
|
| 203 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
| 204 |
+
The temporal patch size of the vision encoder.
|
| 205 |
+
merge_size (`int`, *optional*, defaults to 2):
|
| 206 |
+
The merge size of the vision encoder to llm encoder.
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
model_input_names = [
|
| 210 |
+
"pixel_values",
|
| 211 |
+
"image_grid_thw",
|
| 212 |
+
"pixel_values_videos",
|
| 213 |
+
"video_grid_thw",
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
do_resize: bool = True,
|
| 219 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 220 |
+
do_rescale: bool = True,
|
| 221 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 222 |
+
do_normalize: bool = True,
|
| 223 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 224 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 225 |
+
do_convert_rgb: bool = True,
|
| 226 |
+
min_pixels: int = 28 * 28 * 130,
|
| 227 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 228 |
+
patch_size: int = 14,
|
| 229 |
+
temporal_patch_size: int = 1,
|
| 230 |
+
merge_size: int = 2,
|
| 231 |
+
**kwargs,
|
| 232 |
+
) -> None:
|
| 233 |
+
super().__init__(**kwargs)
|
| 234 |
+
self.do_resize = do_resize
|
| 235 |
+
self.resample = resample
|
| 236 |
+
self.do_rescale = do_rescale
|
| 237 |
+
self.rescale_factor = rescale_factor
|
| 238 |
+
self.do_normalize = do_normalize
|
| 239 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 240 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 241 |
+
self.min_pixels = min_pixels
|
| 242 |
+
self.max_pixels = max_pixels
|
| 243 |
+
self.patch_size = patch_size
|
| 244 |
+
self.temporal_patch_size = temporal_patch_size
|
| 245 |
+
self.merge_size = merge_size
|
| 246 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} # not used
|
| 247 |
+
self.do_convert_rgb = do_convert_rgb
|
| 248 |
+
|
| 249 |
+
def mvit_rescale(self, image: Image.Image, merge_size: int = 2) -> Image.Image:
|
| 250 |
+
try:
|
| 251 |
+
w, h = image.size
|
| 252 |
+
except:
|
| 253 |
+
raise ValueError(str((type(image), image)))
|
| 254 |
+
patch_size = self.patch_size
|
| 255 |
+
|
| 256 |
+
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
|
| 257 |
+
scale = math.sqrt(
|
| 258 |
+
self.in_token_limit / ((w // patch_size) * (h // patch_size))
|
| 259 |
+
)
|
| 260 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
| 261 |
+
|
| 262 |
+
image = image.resize((new_w, new_h), Image.Resampling.BICUBIC)
|
| 263 |
+
if self.pad_input:
|
| 264 |
+
new_w, new_h = image.size
|
| 265 |
+
pad_size_h = merge_size * patch_size
|
| 266 |
+
pad_size_w = merge_size * patch_size
|
| 267 |
+
|
| 268 |
+
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
|
| 269 |
+
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
|
| 270 |
+
|
| 271 |
+
image = TF.pad(image, (0, 0, pad_w, pad_h))
|
| 272 |
+
else:
|
| 273 |
+
new_w, new_h = image.size
|
| 274 |
+
new_w = new_w - new_w % patch_size
|
| 275 |
+
new_h = new_h - new_h % patch_size
|
| 276 |
+
|
| 277 |
+
new_w = adjust_size(new_w, patch_size)
|
| 278 |
+
new_h = adjust_size(new_h, patch_size)
|
| 279 |
+
|
| 280 |
+
image = TF.center_crop(image, (new_h, new_w))
|
| 281 |
+
|
| 282 |
+
w, h = image.size
|
| 283 |
+
if w // patch_size >= 512 or h // patch_size >= 512:
|
| 284 |
+
new_h = min(patch_size * 510, h)
|
| 285 |
+
new_w = min(patch_size * 510, w)
|
| 286 |
+
image = TF.center_crop(image, (new_h, new_w))
|
| 287 |
+
# raise ValueError("Exceed pos emb")
|
| 288 |
+
return image
|
| 289 |
+
|
| 290 |
+
def _preprocess(
|
| 291 |
+
self,
|
| 292 |
+
images: Union[ImageInput, VideoInput],
|
| 293 |
+
do_resize: bool = None,
|
| 294 |
+
resample: PILImageResampling = None,
|
| 295 |
+
do_rescale: bool = None,
|
| 296 |
+
rescale_factor: float = None,
|
| 297 |
+
do_normalize: bool = None,
|
| 298 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 299 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 300 |
+
do_convert_rgb: bool = None,
|
| 301 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 302 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 303 |
+
):
|
| 304 |
+
"""
|
| 305 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 306 |
+
|
| 307 |
+
Args:
|
| 308 |
+
images (`ImageInput`):
|
| 309 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 310 |
+
vision_info (`List[Dict]`, *optional*):
|
| 311 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
| 312 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 313 |
+
Whether to resize the image.
|
| 314 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 315 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 316 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 317 |
+
Whether to rescale the image.
|
| 318 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 319 |
+
Scale factor to use if rescaling the image.
|
| 320 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 321 |
+
Whether to normalize the image.
|
| 322 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 323 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 324 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 325 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 326 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 327 |
+
Whether to convert the image to RGB.
|
| 328 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 329 |
+
The channel dimension format for the output image. Can be one of:
|
| 330 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 331 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 332 |
+
- Unset: Use the channel dimension format of the input image.
|
| 333 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 334 |
+
The channel dimension format for the input image. Can be one of:
|
| 335 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 336 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 337 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 338 |
+
"""
|
| 339 |
+
images = make_list_of_images(images)
|
| 340 |
+
|
| 341 |
+
if do_convert_rgb:
|
| 342 |
+
images = [convert_to_rgb(image) for image in images]
|
| 343 |
+
|
| 344 |
+
# All transformations expect numpy arrays.
|
| 345 |
+
images = [to_numpy_array(image) for image in images]
|
| 346 |
+
|
| 347 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 348 |
+
logger.warning_once(
|
| 349 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 350 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 351 |
+
)
|
| 352 |
+
if input_data_format is None:
|
| 353 |
+
# We assume that all images have the same channel dimension format.
|
| 354 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 355 |
+
|
| 356 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 357 |
+
resized_height, resized_width = height, width
|
| 358 |
+
processed_images = []
|
| 359 |
+
|
| 360 |
+
for image in images:
|
| 361 |
+
if do_resize:
|
| 362 |
+
resized_height, resized_width = smart_resize(
|
| 363 |
+
height,
|
| 364 |
+
width,
|
| 365 |
+
factor=self.patch_size * self.merge_size,
|
| 366 |
+
min_pixels=self.min_pixels,
|
| 367 |
+
max_pixels=self.max_pixels,
|
| 368 |
+
)
|
| 369 |
+
image = resize(
|
| 370 |
+
image,
|
| 371 |
+
size=(resized_height, resized_width),
|
| 372 |
+
resample=resample,
|
| 373 |
+
input_data_format=input_data_format,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if do_rescale:
|
| 377 |
+
image = self.rescale(
|
| 378 |
+
image, scale=rescale_factor, input_data_format=input_data_format
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
if do_normalize:
|
| 382 |
+
image = self.normalize(
|
| 383 |
+
image=image,
|
| 384 |
+
mean=image_mean,
|
| 385 |
+
std=image_std,
|
| 386 |
+
input_data_format=input_data_format,
|
| 387 |
+
)
|
| 388 |
+
image = to_channel_dimension_format(
|
| 389 |
+
image, data_format, input_channel_dim=input_data_format
|
| 390 |
+
)
|
| 391 |
+
processed_images.append(image)
|
| 392 |
+
|
| 393 |
+
patches = np.array(processed_images)
|
| 394 |
+
if data_format == ChannelDimension.LAST:
|
| 395 |
+
patches = patches.transpose(0, 3, 1, 2)
|
| 396 |
+
if patches.shape[0] == 1:
|
| 397 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
| 398 |
+
init_patches = patches
|
| 399 |
+
channel = patches.shape[1]
|
| 400 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
| 401 |
+
grid_h, grid_w = (
|
| 402 |
+
resized_height // self.patch_size,
|
| 403 |
+
resized_width // self.patch_size,
|
| 404 |
+
)
|
| 405 |
+
patches = patches.reshape(
|
| 406 |
+
grid_t,
|
| 407 |
+
self.temporal_patch_size,
|
| 408 |
+
channel,
|
| 409 |
+
grid_h,
|
| 410 |
+
self.patch_size,
|
| 411 |
+
grid_w,
|
| 412 |
+
self.patch_size,
|
| 413 |
+
)
|
| 414 |
+
patches = patches.transpose(0, 3, 5, 2, 1, 4, 6)
|
| 415 |
+
assert self.temporal_patch_size == 1
|
| 416 |
+
flatten_patches = patches.reshape(
|
| 417 |
+
grid_t * grid_h * grid_w, channel, self.patch_size, self.patch_size
|
| 418 |
+
)
|
| 419 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
| 420 |
+
|
| 421 |
+
def preprocess(
|
| 422 |
+
self,
|
| 423 |
+
images: ImageInput,
|
| 424 |
+
videos: VideoInput = None,
|
| 425 |
+
do_resize: bool = None,
|
| 426 |
+
size: Dict[str, int] = None,
|
| 427 |
+
resample: PILImageResampling = None,
|
| 428 |
+
do_rescale: bool = None,
|
| 429 |
+
rescale_factor: float = None,
|
| 430 |
+
do_normalize: bool = None,
|
| 431 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 432 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 433 |
+
do_convert_rgb: bool = None,
|
| 434 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 435 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 436 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 437 |
+
):
|
| 438 |
+
"""
|
| 439 |
+
Args:
|
| 440 |
+
images (`ImageInput`):
|
| 441 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 442 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 443 |
+
videos (`VideoInput`):
|
| 444 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
| 445 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
| 446 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 447 |
+
Whether to resize the image.
|
| 448 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 449 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 450 |
+
the longest edge resized to keep the input aspect ratio.
|
| 451 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 452 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 453 |
+
has an effect if `do_resize` is set to `True`.
|
| 454 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 455 |
+
Whether to rescale the image.
|
| 456 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 457 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 458 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 459 |
+
Whether to normalize the image.
|
| 460 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 461 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 462 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 463 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 464 |
+
`True`.
|
| 465 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 466 |
+
Whether to convert the image to RGB.
|
| 467 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 468 |
+
The type of tensors to return. Can be one of:
|
| 469 |
+
- Unset: Return a list of `np.ndarray`.
|
| 470 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 471 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 472 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 473 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 474 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 475 |
+
The channel dimension format for the output image. Can be one of:
|
| 476 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 477 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 478 |
+
- Unset: Use the channel dimension format of the input image.
|
| 479 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 480 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 481 |
+
from the input image. Can be one of:
|
| 482 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 483 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 484 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 485 |
+
|
| 486 |
+
"""
|
| 487 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 488 |
+
size = size if size is not None else self.size
|
| 489 |
+
resample = resample if resample is not None else self.resample
|
| 490 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 491 |
+
rescale_factor = (
|
| 492 |
+
rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 493 |
+
)
|
| 494 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 495 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 496 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 497 |
+
do_convert_rgb = (
|
| 498 |
+
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
if images is not None:
|
| 502 |
+
images = make_batched_images(images)
|
| 503 |
+
if videos is not None:
|
| 504 |
+
videos = make_batched_videos(videos)
|
| 505 |
+
|
| 506 |
+
if images is not None and not valid_images(images):
|
| 507 |
+
raise ValueError(
|
| 508 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 509 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
validate_preprocess_arguments(
|
| 513 |
+
rescale_factor=rescale_factor,
|
| 514 |
+
do_normalize=do_normalize,
|
| 515 |
+
image_mean=image_mean,
|
| 516 |
+
image_std=image_std,
|
| 517 |
+
do_resize=do_resize,
|
| 518 |
+
size=size,
|
| 519 |
+
resample=resample,
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
if images is not None:
|
| 523 |
+
pixel_values, vision_grid_thws = [], []
|
| 524 |
+
for image in images:
|
| 525 |
+
patches, image_grid_thw = self._preprocess(
|
| 526 |
+
image,
|
| 527 |
+
do_resize=do_resize,
|
| 528 |
+
resample=resample,
|
| 529 |
+
do_rescale=do_rescale,
|
| 530 |
+
rescale_factor=rescale_factor,
|
| 531 |
+
do_normalize=do_normalize,
|
| 532 |
+
image_mean=image_mean,
|
| 533 |
+
image_std=image_std,
|
| 534 |
+
data_format=data_format,
|
| 535 |
+
do_convert_rgb=do_convert_rgb,
|
| 536 |
+
input_data_format=input_data_format,
|
| 537 |
+
)
|
| 538 |
+
pixel_values.extend(patches)
|
| 539 |
+
vision_grid_thws.append(image_grid_thw)
|
| 540 |
+
pixel_values = np.array(pixel_values)
|
| 541 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 542 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
| 543 |
+
|
| 544 |
+
if videos is not None:
|
| 545 |
+
pixel_values, vision_grid_thws = [], []
|
| 546 |
+
for images in videos:
|
| 547 |
+
patches, video_grid_thw = self._preprocess(
|
| 548 |
+
images,
|
| 549 |
+
do_resize=do_resize,
|
| 550 |
+
resample=resample,
|
| 551 |
+
do_rescale=do_rescale,
|
| 552 |
+
rescale_factor=rescale_factor,
|
| 553 |
+
do_normalize=do_normalize,
|
| 554 |
+
image_mean=image_mean,
|
| 555 |
+
image_std=image_std,
|
| 556 |
+
data_format=data_format,
|
| 557 |
+
do_convert_rgb=do_convert_rgb,
|
| 558 |
+
input_data_format=input_data_format,
|
| 559 |
+
)
|
| 560 |
+
pixel_values.extend(patches)
|
| 561 |
+
vision_grid_thws.append(video_grid_thw)
|
| 562 |
+
pixel_values = np.array(pixel_values)
|
| 563 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 564 |
+
data = {
|
| 565 |
+
"pixel_values_videos": pixel_values,
|
| 566 |
+
"video_grid_thw": vision_grid_thws,
|
| 567 |
+
}
|
| 568 |
+
|
| 569 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
inference.yml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Global:
|
| 2 |
+
model_name: PaddleOCR-VL-0.9B
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f44d521755d0244e0231ee24db67a2099bb0d977cb9a2105d1ff4375fb605d8
|
| 3 |
+
size 1917253739
|
modeling_paddleocr_vl.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing.SiglipImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_paddleocr_vl.PaddleOCRVLProcessor"
|
| 5 |
+
},
|
| 6 |
+
"do_convert_rgb": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.5,
|
| 12 |
+
0.5,
|
| 13 |
+
0.5
|
| 14 |
+
],
|
| 15 |
+
"image_processor_type": "SiglipImageProcessor",
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"max_pixels": 2822400,
|
| 22 |
+
"merge_size": 2,
|
| 23 |
+
"min_pixels": 147384,
|
| 24 |
+
"patch_size": 14,
|
| 25 |
+
"processor_class": "PaddleOCRVLProcessor",
|
| 26 |
+
"resample": 3,
|
| 27 |
+
"rescale_factor": 0.00392156862745098,
|
| 28 |
+
"size": {
|
| 29 |
+
"max_pixels": 2822400,
|
| 30 |
+
"min_pixels": 147384
|
| 31 |
+
},
|
| 32 |
+
"temporal_patch_size": 1
|
| 33 |
+
}
|
processing_paddleocr_vl.py
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import List, Union
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 19 |
+
from transformers.processing_utils import (
|
| 20 |
+
ProcessingKwargs,
|
| 21 |
+
ProcessorMixin,
|
| 22 |
+
Unpack,
|
| 23 |
+
VideosKwargs,
|
| 24 |
+
)
|
| 25 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
ImageInput = Union[
|
| 29 |
+
"PIL.Image.Image",
|
| 30 |
+
np.ndarray,
|
| 31 |
+
"torch.Tensor",
|
| 32 |
+
List["PIL.Image.Image"],
|
| 33 |
+
List[np.ndarray],
|
| 34 |
+
List["torch.Tensor"],
|
| 35 |
+
] # noqa
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
VideoInput = Union[
|
| 39 |
+
List["PIL.Image.Image"],
|
| 40 |
+
"np.ndarray",
|
| 41 |
+
"torch.Tensor",
|
| 42 |
+
List["np.ndarray"],
|
| 43 |
+
List["torch.Tensor"],
|
| 44 |
+
List[List["PIL.Image.Image"]],
|
| 45 |
+
List[List["np.ndarrray"]],
|
| 46 |
+
List[List["torch.Tensor"]],
|
| 47 |
+
] # noqa
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class PaddleOCRVLVideosProcessorKwargs(VideosKwargs, total=False):
|
| 51 |
+
fps: Union[List[float], float]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class PaddleOCRVLProcessorKwargs(ProcessingKwargs, total=False):
|
| 55 |
+
videos_kwargs: PaddleOCRVLVideosProcessorKwargs
|
| 56 |
+
_defaults = {
|
| 57 |
+
"text_kwargs": {
|
| 58 |
+
"padding": False,
|
| 59 |
+
},
|
| 60 |
+
"videos_kwargs": {"fps": 2.0},
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class PaddleOCRVLProcessor(ProcessorMixin):
|
| 65 |
+
r"""
|
| 66 |
+
[`PaddleOCRVLProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
| 67 |
+
[`~PaddleOCRVLProcessor.__call__`] and [`~PaddleOCRVLProcessor.decode`] for more information.
|
| 68 |
+
Args:
|
| 69 |
+
image_processor ([`SiglipImageProcessor`], *optional*):
|
| 70 |
+
The image processor is a required input.
|
| 71 |
+
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
| 72 |
+
The tokenizer is a required input.
|
| 73 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
| 74 |
+
in a chat into a tokenizable string.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
attributes = ["image_processor", "tokenizer"]
|
| 78 |
+
valid_kwargs = [
|
| 79 |
+
"chat_template",
|
| 80 |
+
"image_std",
|
| 81 |
+
"min_pixels",
|
| 82 |
+
"image_mean",
|
| 83 |
+
"merge_size",
|
| 84 |
+
"image_processor_type",
|
| 85 |
+
"temporal_patch_size",
|
| 86 |
+
"patch_size",
|
| 87 |
+
"max_pixels",
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
image_processor_class = "AutoImageProcessor"
|
| 91 |
+
tokenizer_class = "AutoTokenizer"
|
| 92 |
+
|
| 93 |
+
def __init__(
|
| 94 |
+
self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
|
| 95 |
+
):
|
| 96 |
+
self.image_token = (
|
| 97 |
+
"<|IMAGE_PLACEHOLDER|>"
|
| 98 |
+
if not hasattr(tokenizer, "image_token")
|
| 99 |
+
else tokenizer.image_token
|
| 100 |
+
)
|
| 101 |
+
self.video_token = (
|
| 102 |
+
"<|video_pad|>"
|
| 103 |
+
if not hasattr(tokenizer, "video_token")
|
| 104 |
+
else tokenizer.video_token
|
| 105 |
+
)
|
| 106 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 107 |
+
|
| 108 |
+
def __call__(
|
| 109 |
+
self,
|
| 110 |
+
images: ImageInput = None,
|
| 111 |
+
text: Union[
|
| 112 |
+
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
| 113 |
+
] = None,
|
| 114 |
+
videos: VideoInput = None,
|
| 115 |
+
**kwargs: Unpack[PaddleOCRVLProcessorKwargs],
|
| 116 |
+
) -> BatchFeature:
|
| 117 |
+
"""
|
| 118 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 119 |
+
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
| 120 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
| 121 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `vision_infos` is not `None`.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 125 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 126 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 127 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 128 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 129 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 130 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 131 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 132 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
| 133 |
+
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
| 134 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 135 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 136 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 137 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 138 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 139 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 143 |
+
|
| 144 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 145 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 146 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 147 |
+
`None`).
|
| 148 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 149 |
+
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
| 150 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
| 151 |
+
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
| 152 |
+
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
|
| 153 |
+
"""
|
| 154 |
+
output_kwargs = self._merge_kwargs(
|
| 155 |
+
PaddleOCRVLProcessorKwargs,
|
| 156 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 157 |
+
**kwargs,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
if images is not None:
|
| 161 |
+
image_inputs = self.image_processor(images=images, return_tensors="pt")
|
| 162 |
+
image_inputs["pixel_values"] = image_inputs["pixel_values"]
|
| 163 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
| 164 |
+
|
| 165 |
+
else:
|
| 166 |
+
image_inputs = {}
|
| 167 |
+
image_grid_thw = None
|
| 168 |
+
|
| 169 |
+
if videos is not None:
|
| 170 |
+
# TODO: add video processing
|
| 171 |
+
videos_inputs = self.image_processor(
|
| 172 |
+
images=None, videos=videos, **output_kwargs["images_kwargs"]
|
| 173 |
+
)
|
| 174 |
+
video_grid_thw = videos_inputs["video_grid_thw"]
|
| 175 |
+
|
| 176 |
+
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
|
| 177 |
+
if isinstance(fps, (int, float)):
|
| 178 |
+
second_per_grid_ts = [
|
| 179 |
+
self.image_processor.temporal_patch_size / fps
|
| 180 |
+
] * len(video_grid_thw)
|
| 181 |
+
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
|
| 182 |
+
second_per_grid_ts = [
|
| 183 |
+
self.image_processor.temporal_patch_size / tmp for tmp in fps
|
| 184 |
+
]
|
| 185 |
+
else:
|
| 186 |
+
raise ValueError(
|
| 187 |
+
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
|
| 188 |
+
)
|
| 189 |
+
videos_inputs.update(
|
| 190 |
+
{"second_per_grid_ts": torch.tensor(second_per_grid_ts)}
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
else:
|
| 194 |
+
videos_inputs = {}
|
| 195 |
+
video_grid_thw = None
|
| 196 |
+
|
| 197 |
+
if not isinstance(text, list):
|
| 198 |
+
text = [text]
|
| 199 |
+
|
| 200 |
+
if image_grid_thw is not None:
|
| 201 |
+
index = 0
|
| 202 |
+
for i in range(len(text)):
|
| 203 |
+
while self.image_token in text[i]:
|
| 204 |
+
text[i] = text[i].replace(
|
| 205 |
+
self.image_token,
|
| 206 |
+
"<|placeholder|>"
|
| 207 |
+
* (
|
| 208 |
+
image_grid_thw[index].prod()
|
| 209 |
+
// self.image_processor.merge_size
|
| 210 |
+
// self.image_processor.merge_size
|
| 211 |
+
),
|
| 212 |
+
1,
|
| 213 |
+
)
|
| 214 |
+
index += 1
|
| 215 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
| 216 |
+
|
| 217 |
+
if video_grid_thw is not None:
|
| 218 |
+
index = 0
|
| 219 |
+
for i in range(len(text)):
|
| 220 |
+
while self.video_token in text[i]:
|
| 221 |
+
text[i] = text[i].replace(
|
| 222 |
+
self.video_token,
|
| 223 |
+
"<|placeholder|>"
|
| 224 |
+
* (
|
| 225 |
+
video_grid_thw[index].prod()
|
| 226 |
+
// self.image_processor.merge_size
|
| 227 |
+
// self.image_processor.merge_size
|
| 228 |
+
),
|
| 229 |
+
1,
|
| 230 |
+
)
|
| 231 |
+
index += 1
|
| 232 |
+
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
| 233 |
+
|
| 234 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 235 |
+
|
| 236 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
| 237 |
+
|
| 238 |
+
def batch_decode(self, *args, **kwargs):
|
| 239 |
+
"""
|
| 240 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 241 |
+
refer to the docstring of this method for more information.
|
| 242 |
+
"""
|
| 243 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 244 |
+
|
| 245 |
+
def decode(self, *args, **kwargs):
|
| 246 |
+
"""
|
| 247 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 248 |
+
the docstring of this method for more information.
|
| 249 |
+
"""
|
| 250 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 251 |
+
|
| 252 |
+
def post_process_image_text_to_text(
|
| 253 |
+
self,
|
| 254 |
+
generated_outputs,
|
| 255 |
+
skip_special_tokens=True,
|
| 256 |
+
clean_up_tokenization_spaces=False,
|
| 257 |
+
**kwargs,
|
| 258 |
+
):
|
| 259 |
+
"""
|
| 260 |
+
Post-process the output of the model to decode the text.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
| 264 |
+
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
| 265 |
+
or `(sequence_length,)`.
|
| 266 |
+
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
| 267 |
+
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
| 268 |
+
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 269 |
+
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
| 270 |
+
**kwargs:
|
| 271 |
+
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
| 272 |
+
|
| 273 |
+
Returns:
|
| 274 |
+
`List[str]`: The decoded text.
|
| 275 |
+
"""
|
| 276 |
+
return self.tokenizer.batch_decode(
|
| 277 |
+
generated_outputs,
|
| 278 |
+
skip_special_tokens=skip_special_tokens,
|
| 279 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 280 |
+
**kwargs,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
@property
|
| 284 |
+
def model_input_names(self):
|
| 285 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 286 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 287 |
+
names_from_processor = list(
|
| 288 |
+
dict.fromkeys(tokenizer_input_names + image_processor_input_names)
|
| 289 |
+
)
|
| 290 |
+
return names_from_processor + ["second_per_grid_ts"]
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
__all__ = ["PaddleOCRVLProcessor", "PaddleOCRVLProcessor"]
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_paddleocr_vl.PaddleOCRVLProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "PaddleOCRVLProcessor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|IMAGE_PLACEHOLDER|>",
|
| 4 |
+
"<|image_pad|>",
|
| 5 |
+
"<|IMAGE_START|>",
|
| 6 |
+
"<|IMAGE_END|>",
|
| 7 |
+
"<|video_pad|>"
|
| 8 |
+
],
|
| 9 |
+
"bos_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"cls_token": {
|
| 17 |
+
"content": "<|begin_of_sentence|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"eos_token": {
|
| 24 |
+
"content": "</s>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"mask_token": {
|
| 31 |
+
"content": "<mask:1>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"pad_token": {
|
| 38 |
+
"content": "<unk>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"sep_token": {
|
| 45 |
+
"content": "<|end_of_sentence|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
},
|
| 51 |
+
"unk_token": {
|
| 52 |
+
"content": "<unk>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false
|
| 57 |
+
}
|
| 58 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f90f04fd8e5eb6dfa380f37d10c87392de8438dccb6768a2486b5a96ee76dba6
|
| 3 |
+
size 11187679
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34ef7db83df785924fb83d7b887b6e822a031c56e15cff40aaf9b982988180df
|
| 3 |
+
size 1614363
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|