Usage example (#1)
Browse files- Usage example (408f754095bcc387fa989d12d3c55ef26a3e8da4)
README.md
CHANGED
|
@@ -11,10 +11,33 @@ inference: true
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora
|
| 14 |
-
These are LoRA adaption weights
|
| 15 |
|
| 16 |

|
| 17 |

|
| 18 |

|
| 19 |

|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora
|
| 14 |
+
These are LoRA adaption weights trained on base model https://huggingface.co/runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following.
|
| 15 |
|
| 16 |

|
| 17 |

|
| 18 |

|
| 19 |

|
| 20 |
|
| 21 |
+
## How to Use
|
| 22 |
+
|
| 23 |
+
The script below loads the base model, then applies the LoRA weights and performs inference:
|
| 24 |
+
|
| 25 |
+
```Python
|
| 26 |
+
import torch
|
| 27 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
| 28 |
+
from huggingface_hub import model_info
|
| 29 |
+
|
| 30 |
+
# LoRA weights ~3 MB
|
| 31 |
+
model_path = "pcuenq/pokemon-lora"
|
| 32 |
+
|
| 33 |
+
info = model_info(model_path)
|
| 34 |
+
model_base = info.cardData["base_model"]
|
| 35 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
|
| 36 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 37 |
+
|
| 38 |
+
pipe.unet.load_attn_procs(model_path)
|
| 39 |
+
pipe.to("cuda")
|
| 40 |
+
|
| 41 |
+
image = pipe("Green pokemon with menacing face", num_inference_steps=25).images[0]
|
| 42 |
+
image.save("green_pokemon.png")
|
| 43 |
+
```
|