File size: 2,136 Bytes
8c0c7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language: en
tags:
- cryptocurrency
- litecoin
- price-prediction
- machine-learning
- time-series
license: mit
---

# Litecoin (LTC) Price Prediction Models

Trained ML models for predicting Litecoin (LTC) cryptocurrency prices.

## πŸ“Š Model Performance

| Model | RMSE | MAE |
|-------|------|-----|
| Random Forest | 2.8486 | 1.5753 |
| Gradient Boosting | 2.8719 | 1.8564 |
| Linear Regression | 0.5089 | 0.3495 |
| LSTM | 8.5453 | 7.3874 |

## 🎯 Training Details

- **Trained on**: 2025-10-24 07:47:36
- **Data Source**: CoinGecko API
- **Historical Days**: 365
- **Features**: 23 technical indicators
- **GPU**: Accelerated with TensorFlow

## πŸ“¦ Files Included

- `litecoin_sklearn_models.pkl`: Scikit-learn models (RF, GB, LR)
- `litecoin_scaler.pkl`: Feature scaler
- `litecoin_lstm_model.h5`: LSTM neural network
- `litecoin_metadata.json`: Training metadata

## πŸš€ Usage

```python
from huggingface_hub import hf_hub_download
import joblib
from tensorflow.keras.models import load_model

# Download models
sklearn_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="litecoin_sklearn_models.pkl"
)
scaler_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="litecoin_scaler.pkl"
)
lstm_path = hf_hub_download(
    repo_id="YOUR_USERNAME/YOUR_REPO",
    filename="litecoin_lstm_model.h5"
)

# Load models
models = joblib.load(sklearn_path)
scaler = joblib.load(scaler_path)
lstm = load_model(lstm_path)

# Make predictions
# (prepare your features first)
predictions = models['RandomForest'].predict(scaled_features)
```

## πŸ“ˆ Features

The models use 23 technical indicators including:
- Moving Averages (SMA 7, 25, 99)
- Exponential Moving Averages (EMA 12, 26)
- RSI (Relative Strength Index)
- MACD & Signal Line
- Bollinger Bands
- Stochastic Oscillator
- Volatility measures
- Lag features

## ⚠️ Disclaimer

These models are for educational and research purposes only. Cryptocurrency markets are highly volatile and unpredictable. Do not use these predictions for actual trading decisions without proper risk management.

## πŸ“„ License

MIT License