---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6476190476190476
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6476190476190476
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5061904761904762
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.30647619047619057
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.1858095238095238
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.13250793650793652
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10247619047619047
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06690172806447445
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5391510592522911
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7199711948587544
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8253770621157605
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8719997123512196
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9006382758109558
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6476190476190476
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6822066814233797
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6975329548006446
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7519637922809941
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7724946802449859
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7827357067553371
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6476190476190476
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7999999999999998
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7999999999999998
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7999999999999998
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7999999999999998
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7999999999999998
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6476190476190476
name: Cosine Map@1
- type: cosine_map@20
value: 0.5391784054866918
name: Cosine Map@20
- type: cosine_map@50
value: 0.5258287715484311
name: Cosine Map@50
- type: cosine_map@100
value: 0.5580109313638075
name: Cosine Map@100
- type: cosine_map@150
value: 0.5665715227835532
name: Cosine Map@150
- type: cosine_map@200
value: 0.569529009182472
name: Cosine Map@200
- type: cosine_map@500
value: 0.5743595458034346
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.11351351351351352
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1.0
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1.0
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1.0
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1.0
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1.0
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.11351351351351352
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5667567567567567
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3902702702702703
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.25254054054054054
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.19005405405405407
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1507837837837838
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0035155918996302815
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.37958552840441906
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5635730197468752
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.672698242387141
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7360036980055802
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7697561816436992
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.11351351351351352
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6136401766234348
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5908459924766464
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.6168063266629416
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6488575731321932
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.665316090087272
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.11351351351351352
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5536036036036036
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5536036036036036
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5536036036036036
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5536036036036036
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5536036036036036
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.11351351351351352
name: Cosine Map@1
- type: cosine_map@20
value: 0.48095830339282386
name: Cosine Map@20
- type: cosine_map@50
value: 0.43038606337879926
name: Cosine Map@50
- type: cosine_map@100
value: 0.4335284717646407
name: Cosine Map@100
- type: cosine_map@150
value: 0.44851036812148526
name: Cosine Map@150
- type: cosine_map@200
value: 0.4550924585301385
name: Cosine Map@200
- type: cosine_map@500
value: 0.4677023132311536
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9852216748768473
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9901477832512315
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901477832512315
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9901477832512315
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5403940886699506
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.38275862068965516
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2503448275862069
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.187816091954023
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.15027093596059116
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3432684453555553
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5339871522541048
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6498636280219438
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7100921836539074
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7513351913056898
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5647628262992046
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5522057083055792
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5796033728499559
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6111851705889818
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6309313367878393
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5164425017655958
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.516559790060224
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.516559790060224
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.516559790060224
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.516559790060224
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.4221760589983628
name: Cosine Map@20
- type: cosine_map@50
value: 0.37913413777890953
name: Cosine Map@50
- type: cosine_map@100
value: 0.3829298798486122
name: Cosine Map@100
- type: cosine_map@150
value: 0.39811624371681004
name: Cosine Map@150
- type: cosine_map@200
value: 0.40559711033541546
name: Cosine Map@200
- type: cosine_map@500
value: 0.4188841643667456
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6796116504854369
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9902912621359223
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9902912621359223
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6796116504854369
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.470873786407767
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.28038834951456315
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17320388349514557
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12394822006472495
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09766990291262137
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06427555485009323
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5119331913488326
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.6726577129232287
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.788021792964523
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8328962977521837
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8687397875786594
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6796116504854369
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6515292076635256
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6598571989751485
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7157338182976709
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7357126940189814
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7500853808896866
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6796116504854369
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8216828478964402
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8216828478964402
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8216828478964402
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8216828478964402
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8216828478964402
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6796116504854369
name: Cosine Map@1
- type: cosine_map@20
value: 0.5012149610968577
name: Cosine Map@20
- type: cosine_map@50
value: 0.48128476255481567
name: Cosine Map@50
- type: cosine_map@100
value: 0.5105374388587102
name: Cosine Map@100
- type: cosine_map@150
value: 0.518381647971727
name: Cosine Map@150
- type: cosine_map@200
value: 0.5228375783347256
name: Cosine Map@200
- type: cosine_map@500
value: 0.52765377953199
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.7394695787831513
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9635985439417577
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.982839313572543
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9927197087883516
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9947997919916797
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9963598543941757
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7394695787831513
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12488299531981278
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05174206968278733
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02629225169006761
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017635638758883684
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013281331253250133
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.28537503404898107
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9225949037961519
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9548015253943491
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.970532154619518
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9766337320159473
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9810747096550528
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7394695787831513
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.8119072371250002
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8208055075822587
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.8242798548838444
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8254601712767063
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.826231823086538
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7394695787831513
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8059183822863336
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8065662458714291
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8067209669800003
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8067371899834064
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8067455244059942
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7394695787831513
name: Cosine Map@1
- type: cosine_map@20
value: 0.7439811728319751
name: Cosine Map@20
- type: cosine_map@50
value: 0.7464542457655368
name: Cosine Map@50
- type: cosine_map@100
value: 0.7469341154545359
name: Cosine Map@100
- type: cosine_map@150
value: 0.7470471963812441
name: Cosine Map@150
- type: cosine_map@200
value: 0.7471010455519603
name: Cosine Map@200
- type: cosine_map@500
value: 0.7471920688836787
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.6926677067082684
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9641185647425897
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.983879355174207
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9921996879875195
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9932397295891836
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9942797711908476
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6926677067082684
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12797711908476336
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.053281331253250144
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.027051482059282376
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.018110591090310275
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013619344773790953
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2603830819899463
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.928479805858901
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9650286011440458
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9796325186340786
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9837060149072628
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9862194487779511
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6926677067082684
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7967328692326251
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8068705787791701
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.810158579950017
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8109641919896999
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8114360342473703
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6926677067082684
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7766838069642311
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7773792960985305
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7775026273925645
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7775124036000293
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7775182983569378
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6926677067082684
name: Cosine Map@1
- type: cosine_map@20
value: 0.7210301157895639
name: Cosine Map@20
- type: cosine_map@50
value: 0.7237555751939095
name: Cosine Map@50
- type: cosine_map@100
value: 0.7242426468613273
name: Cosine Map@100
- type: cosine_map@150
value: 0.7243265313145111
name: Cosine Map@150
- type: cosine_map@200
value: 0.7243628241480395
name: Cosine Map@200
- type: cosine_map@500
value: 0.7244144669299598
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.17888715548621945
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1.0
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1.0
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1.0
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1.0
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1.0
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.17888715548621945
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.15439417576703063
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.0617576703068123
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.03087883515340615
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.020585890102270757
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.015439417576703075
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.05768764083896689
name: Cosine Recall@1
- type: cosine_recall@20
value: 1.0
name: Cosine Recall@20
- type: cosine_recall@50
value: 1.0
name: Cosine Recall@50
- type: cosine_recall@100
value: 1.0
name: Cosine Recall@100
- type: cosine_recall@150
value: 1.0
name: Cosine Recall@150
- type: cosine_recall@200
value: 1.0
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.17888715548621945
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.5443156532634228
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5443156532634228
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5443156532634228
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5443156532634228
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.5443156532634228
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.17888715548621945
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.4002437442375043
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.4002437442375043
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.4002437442375043
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.4002437442375043
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.4002437442375043
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.17888715548621945
name: Cosine Map@1
- type: cosine_map@20
value: 0.32718437256695937
name: Cosine Map@20
- type: cosine_map@50
value: 0.32718437256695937
name: Cosine Map@50
- type: cosine_map@100
value: 0.32718437256695937
name: Cosine Map@100
- type: cosine_map@150
value: 0.32718437256695937
name: Cosine Map@150
- type: cosine_map@200
value: 0.32718437256695937
name: Cosine Map@200
- type: cosine_map@500
value: 0.32718437256695937
name: Cosine Map@500
---
# Job - Job matching finetuned BAAI/bge-m3
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- full_en
- full_de
- full_es
- full_zh
- mix
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobBGE-m3")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9636 | 0.9641 | 1.0 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9828 | 0.9839 | 1.0 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9927 | 0.9922 | 1.0 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9943 | 1.0 |
| cosine_precision@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
| cosine_precision@20 | 0.5062 | 0.5668 | 0.5404 | 0.4709 | 0.1249 | 0.128 | 0.1544 |
| cosine_precision@50 | 0.3065 | 0.3903 | 0.3828 | 0.2804 | 0.0517 | 0.0533 | 0.0618 |
| cosine_precision@100 | 0.1858 | 0.2525 | 0.2503 | 0.1732 | 0.0263 | 0.0271 | 0.0309 |
| cosine_precision@150 | 0.1325 | 0.1901 | 0.1878 | 0.1239 | 0.0176 | 0.0181 | 0.0206 |
| cosine_precision@200 | 0.1025 | 0.1508 | 0.1503 | 0.0977 | 0.0133 | 0.0136 | 0.0154 |
| cosine_recall@1 | 0.0669 | 0.0035 | 0.0111 | 0.0643 | 0.2854 | 0.2604 | 0.0577 |
| cosine_recall@20 | 0.5392 | 0.3796 | 0.3433 | 0.5119 | 0.9226 | 0.9285 | 1.0 |
| cosine_recall@50 | 0.72 | 0.5636 | 0.534 | 0.6727 | 0.9548 | 0.965 | 1.0 |
| cosine_recall@100 | 0.8254 | 0.6727 | 0.6499 | 0.788 | 0.9705 | 0.9796 | 1.0 |
| cosine_recall@150 | 0.872 | 0.736 | 0.7101 | 0.8329 | 0.9766 | 0.9837 | 1.0 |
| cosine_recall@200 | 0.9006 | 0.7698 | 0.7513 | 0.8687 | 0.9811 | 0.9862 | 1.0 |
| cosine_ndcg@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
| cosine_ndcg@20 | 0.6822 | 0.6136 | 0.5648 | 0.6515 | 0.8119 | 0.7967 | 0.5443 |
| cosine_ndcg@50 | 0.6975 | 0.5908 | 0.5522 | 0.6599 | 0.8208 | 0.8069 | 0.5443 |
| cosine_ndcg@100 | 0.752 | 0.6168 | 0.5796 | 0.7157 | 0.8243 | 0.8102 | 0.5443 |
| cosine_ndcg@150 | 0.7725 | 0.6489 | 0.6112 | 0.7357 | 0.8255 | 0.811 | 0.5443 |
| **cosine_ndcg@200** | **0.7827** | **0.6653** | **0.6309** | **0.7501** | **0.8262** | **0.8114** | **0.5443** |
| cosine_mrr@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
| cosine_mrr@20 | 0.8 | 0.5536 | 0.5164 | 0.8217 | 0.8059 | 0.7767 | 0.4002 |
| cosine_mrr@50 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8066 | 0.7774 | 0.4002 |
| cosine_mrr@100 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
| cosine_mrr@150 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
| cosine_mrr@200 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 |
| cosine_map@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 |
| cosine_map@20 | 0.5392 | 0.481 | 0.4222 | 0.5012 | 0.744 | 0.721 | 0.3272 |
| cosine_map@50 | 0.5258 | 0.4304 | 0.3791 | 0.4813 | 0.7465 | 0.7238 | 0.3272 |
| cosine_map@100 | 0.558 | 0.4335 | 0.3829 | 0.5105 | 0.7469 | 0.7242 | 0.3272 |
| cosine_map@150 | 0.5666 | 0.4485 | 0.3981 | 0.5184 | 0.747 | 0.7243 | 0.3272 |
| cosine_map@200 | 0.5695 | 0.4551 | 0.4056 | 0.5228 | 0.7471 | 0.7244 | 0.3272 |
| cosine_map@500 | 0.5744 | 0.4677 | 0.4189 | 0.5277 | 0.7472 | 0.7244 | 0.3272 |
## Training Details
### Training Datasets
full_en
#### full_en
* Dataset: full_en
* Size: 28,880 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
| - min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
|
* Samples:
| anchor | positive |
|:-----------------------------------------|:-----------------------------------------|
| air commodore | flight lieutenant |
| command and control officer | flight officer |
| air commodore | command and control officer |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_de
#### full_de
* Dataset: full_de
* Size: 23,023 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
| - min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
|
* Samples:
| anchor | positive |
|:----------------------------------|:-----------------------------------------------------|
| Staffelkommandantin | Kommodore |
| Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin |
| Staffelkommandantin | Luftwaffenoffizierin |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_es
#### full_es
* Dataset: full_es
* Size: 20,724 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
| - min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------|:-------------------------------------------|
| jefe de escuadrón | instructor |
| comandante de aeronave | instructor de simulador |
| instructor | oficial del Ejército del Aire |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_zh
#### full_zh
* Dataset: full_zh
* Size: 30,401 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
| - min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
|
* Samples:
| anchor | positive |
|:------------------|:---------------------|
| 技术总监 | 技术和运营总监 |
| 技术总监 | 技术主管 |
| 技术总监 | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
mix
#### mix
* Dataset: mix
* Size: 21,760 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
| - min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------------|:----------------------------------------------------------------|
| technical manager | Technischer Direktor für Bühne, Film und Fernsehen |
| head of technical | directora técnica |
| head of technical department | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 |
| 0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - |
| 0.1027 | 100 | 2.665 | - | - | - | - | - | - | - |
| 0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 |
| 0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - |
| 0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 |
| 0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - |
| 0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 |
| 0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - |
| 0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 |
| 0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - |
| 1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 |
| 1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - |
| 1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 |
| 1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - |
| 1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 |
| 1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - |
| 1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 |
| 1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - |
| 1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 |
| 1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - |
| 2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 |
| 2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - |
| 2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 |
| 2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - |
| 2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 |
| 2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - |
| 2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 |
| 2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - |
| 2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 |
| 2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - |
| 3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 |
| 3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - |
| 3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 |
| 3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - |
| 3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 |
| 3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - |
| 3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 |
| 3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - |
| 3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 |
| 4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - |
| 4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 |
| 4.2115 | 4100 | 0.2385 | - | - | - | - | - | - | - |
| 4.3142 | 4200 | 0.231 | 0.7811 | 0.6608 | 0.6254 | 0.7463 | 0.8226 | 0.8051 | 0.5442 |
| 4.4168 | 4300 | 0.2115 | - | - | - | - | - | - | - |
| 4.5195 | 4400 | 0.2151 | 0.7815 | 0.6634 | 0.6301 | 0.7489 | 0.8251 | 0.8101 | 0.5450 |
| 4.6222 | 4500 | 0.2496 | - | - | - | - | - | - | - |
| 4.7248 | 4600 | 0.2146 | 0.7814 | 0.6654 | 0.6294 | 0.7523 | 0.8258 | 0.8104 | 0.5436 |
| 4.8275 | 4700 | 0.2535 | - | - | - | - | - | - | - |
| 4.9302 | 4800 | 0.2058 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```