--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: BAAI/bge-m3 widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5061904761904762 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.30647619047619057 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.1858095238095238 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13250793650793652 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10247619047619047 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06690172806447445 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5391510592522911 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7199711948587544 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8253770621157605 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8719997123512196 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9006382758109558 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6822066814233797 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6975329548006446 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7519637922809941 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7724946802449859 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7827357067553371 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7999999999999998 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7999999999999998 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7999999999999998 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7999999999999998 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7999999999999998 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5391784054866918 name: Cosine Map@20 - type: cosine_map@50 value: 0.5258287715484311 name: Cosine Map@50 - type: cosine_map@100 value: 0.5580109313638075 name: Cosine Map@100 - type: cosine_map@150 value: 0.5665715227835532 name: Cosine Map@150 - type: cosine_map@200 value: 0.569529009182472 name: Cosine Map@200 - type: cosine_map@500 value: 0.5743595458034346 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.11351351351351352 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.11351351351351352 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5667567567567567 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3902702702702703 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25254054054054054 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19005405405405407 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1507837837837838 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0035155918996302815 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.37958552840441906 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5635730197468752 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.672698242387141 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7360036980055802 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7697561816436992 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.11351351351351352 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6136401766234348 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5908459924766464 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6168063266629416 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6488575731321932 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.665316090087272 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.11351351351351352 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5536036036036036 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5536036036036036 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5536036036036036 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5536036036036036 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5536036036036036 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.11351351351351352 name: Cosine Map@1 - type: cosine_map@20 value: 0.48095830339282386 name: Cosine Map@20 - type: cosine_map@50 value: 0.43038606337879926 name: Cosine Map@50 - type: cosine_map@100 value: 0.4335284717646407 name: Cosine Map@100 - type: cosine_map@150 value: 0.44851036812148526 name: Cosine Map@150 - type: cosine_map@200 value: 0.4550924585301385 name: Cosine Map@200 - type: cosine_map@500 value: 0.4677023132311536 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9852216748768473 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9901477832512315 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5403940886699506 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.38275862068965516 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2503448275862069 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.187816091954023 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.15027093596059116 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3432684453555553 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5339871522541048 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6498636280219438 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7100921836539074 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7513351913056898 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5647628262992046 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5522057083055792 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5796033728499559 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6111851705889818 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6309313367878393 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5164425017655958 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.516559790060224 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.516559790060224 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.516559790060224 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.516559790060224 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.4221760589983628 name: Cosine Map@20 - type: cosine_map@50 value: 0.37913413777890953 name: Cosine Map@50 - type: cosine_map@100 value: 0.3829298798486122 name: Cosine Map@100 - type: cosine_map@150 value: 0.39811624371681004 name: Cosine Map@150 - type: cosine_map@200 value: 0.40559711033541546 name: Cosine Map@200 - type: cosine_map@500 value: 0.4188841643667456 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6796116504854369 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9902912621359223 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6796116504854369 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.470873786407767 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28038834951456315 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17320388349514557 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12394822006472495 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09766990291262137 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06427555485009323 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5119331913488326 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6726577129232287 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.788021792964523 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8328962977521837 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8687397875786594 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6796116504854369 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6515292076635256 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6598571989751485 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7157338182976709 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7357126940189814 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7500853808896866 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6796116504854369 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8216828478964402 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8216828478964402 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8216828478964402 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8216828478964402 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8216828478964402 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6796116504854369 name: Cosine Map@1 - type: cosine_map@20 value: 0.5012149610968577 name: Cosine Map@20 - type: cosine_map@50 value: 0.48128476255481567 name: Cosine Map@50 - type: cosine_map@100 value: 0.5105374388587102 name: Cosine Map@100 - type: cosine_map@150 value: 0.518381647971727 name: Cosine Map@150 - type: cosine_map@200 value: 0.5228375783347256 name: Cosine Map@200 - type: cosine_map@500 value: 0.52765377953199 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7394695787831513 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9635985439417577 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.982839313572543 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9927197087883516 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9947997919916797 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9963598543941757 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7394695787831513 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12488299531981278 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05174206968278733 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02629225169006761 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017635638758883684 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013281331253250133 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.28537503404898107 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9225949037961519 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9548015253943491 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.970532154619518 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9766337320159473 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9810747096550528 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7394695787831513 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8119072371250002 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8208055075822587 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8242798548838444 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8254601712767063 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.826231823086538 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7394695787831513 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8059183822863336 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8065662458714291 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8067209669800003 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8067371899834064 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8067455244059942 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7394695787831513 name: Cosine Map@1 - type: cosine_map@20 value: 0.7439811728319751 name: Cosine Map@20 - type: cosine_map@50 value: 0.7464542457655368 name: Cosine Map@50 - type: cosine_map@100 value: 0.7469341154545359 name: Cosine Map@100 - type: cosine_map@150 value: 0.7470471963812441 name: Cosine Map@150 - type: cosine_map@200 value: 0.7471010455519603 name: Cosine Map@200 - type: cosine_map@500 value: 0.7471920688836787 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6926677067082684 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9641185647425897 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.983879355174207 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9921996879875195 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9932397295891836 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9942797711908476 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6926677067082684 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12797711908476336 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.053281331253250144 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.027051482059282376 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.018110591090310275 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013619344773790953 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2603830819899463 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.928479805858901 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9650286011440458 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9796325186340786 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9837060149072628 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9862194487779511 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6926677067082684 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7967328692326251 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8068705787791701 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.810158579950017 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8109641919896999 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8114360342473703 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6926677067082684 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7766838069642311 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7773792960985305 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7775026273925645 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7775124036000293 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7775182983569378 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6926677067082684 name: Cosine Map@1 - type: cosine_map@20 value: 0.7210301157895639 name: Cosine Map@20 - type: cosine_map@50 value: 0.7237555751939095 name: Cosine Map@50 - type: cosine_map@100 value: 0.7242426468613273 name: Cosine Map@100 - type: cosine_map@150 value: 0.7243265313145111 name: Cosine Map@150 - type: cosine_map@200 value: 0.7243628241480395 name: Cosine Map@200 - type: cosine_map@500 value: 0.7244144669299598 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.17888715548621945 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.17888715548621945 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.05768764083896689 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.17888715548621945 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5443156532634228 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5443156532634228 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5443156532634228 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5443156532634228 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5443156532634228 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.17888715548621945 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4002437442375043 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4002437442375043 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4002437442375043 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4002437442375043 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4002437442375043 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.17888715548621945 name: Cosine Map@1 - type: cosine_map@20 value: 0.32718437256695937 name: Cosine Map@20 - type: cosine_map@50 value: 0.32718437256695937 name: Cosine Map@50 - type: cosine_map@100 value: 0.32718437256695937 name: Cosine Map@100 - type: cosine_map@150 value: 0.32718437256695937 name: Cosine Map@150 - type: cosine_map@200 value: 0.32718437256695937 name: Cosine Map@200 - type: cosine_map@500 value: 0.32718437256695937 name: Cosine Map@500 --- # Job - Job matching finetuned BAAI/bge-m3 Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pj-mathematician/JobBGE-m3") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9636 | 0.9641 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9828 | 0.9839 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9927 | 0.9922 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9943 | 1.0 | | cosine_precision@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_precision@20 | 0.5062 | 0.5668 | 0.5404 | 0.4709 | 0.1249 | 0.128 | 0.1544 | | cosine_precision@50 | 0.3065 | 0.3903 | 0.3828 | 0.2804 | 0.0517 | 0.0533 | 0.0618 | | cosine_precision@100 | 0.1858 | 0.2525 | 0.2503 | 0.1732 | 0.0263 | 0.0271 | 0.0309 | | cosine_precision@150 | 0.1325 | 0.1901 | 0.1878 | 0.1239 | 0.0176 | 0.0181 | 0.0206 | | cosine_precision@200 | 0.1025 | 0.1508 | 0.1503 | 0.0977 | 0.0133 | 0.0136 | 0.0154 | | cosine_recall@1 | 0.0669 | 0.0035 | 0.0111 | 0.0643 | 0.2854 | 0.2604 | 0.0577 | | cosine_recall@20 | 0.5392 | 0.3796 | 0.3433 | 0.5119 | 0.9226 | 0.9285 | 1.0 | | cosine_recall@50 | 0.72 | 0.5636 | 0.534 | 0.6727 | 0.9548 | 0.965 | 1.0 | | cosine_recall@100 | 0.8254 | 0.6727 | 0.6499 | 0.788 | 0.9705 | 0.9796 | 1.0 | | cosine_recall@150 | 0.872 | 0.736 | 0.7101 | 0.8329 | 0.9766 | 0.9837 | 1.0 | | cosine_recall@200 | 0.9006 | 0.7698 | 0.7513 | 0.8687 | 0.9811 | 0.9862 | 1.0 | | cosine_ndcg@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_ndcg@20 | 0.6822 | 0.6136 | 0.5648 | 0.6515 | 0.8119 | 0.7967 | 0.5443 | | cosine_ndcg@50 | 0.6975 | 0.5908 | 0.5522 | 0.6599 | 0.8208 | 0.8069 | 0.5443 | | cosine_ndcg@100 | 0.752 | 0.6168 | 0.5796 | 0.7157 | 0.8243 | 0.8102 | 0.5443 | | cosine_ndcg@150 | 0.7725 | 0.6489 | 0.6112 | 0.7357 | 0.8255 | 0.811 | 0.5443 | | **cosine_ndcg@200** | **0.7827** | **0.6653** | **0.6309** | **0.7501** | **0.8262** | **0.8114** | **0.5443** | | cosine_mrr@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_mrr@20 | 0.8 | 0.5536 | 0.5164 | 0.8217 | 0.8059 | 0.7767 | 0.4002 | | cosine_mrr@50 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8066 | 0.7774 | 0.4002 | | cosine_mrr@100 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@150 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@200 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_map@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_map@20 | 0.5392 | 0.481 | 0.4222 | 0.5012 | 0.744 | 0.721 | 0.3272 | | cosine_map@50 | 0.5258 | 0.4304 | 0.3791 | 0.4813 | 0.7465 | 0.7238 | 0.3272 | | cosine_map@100 | 0.558 | 0.4335 | 0.3829 | 0.5105 | 0.7469 | 0.7242 | 0.3272 | | cosine_map@150 | 0.5666 | 0.4485 | 0.3981 | 0.5184 | 0.747 | 0.7243 | 0.3272 | | cosine_map@200 | 0.5695 | 0.4551 | 0.4056 | 0.5228 | 0.7471 | 0.7244 | 0.3272 | | cosine_map@500 | 0.5744 | 0.4677 | 0.4189 | 0.5277 | 0.7472 | 0.7244 | 0.3272 | ## Training Details ### Training Datasets
full_en #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | air commodore | flight lieutenant | | command and control officer | flight officer | | air commodore | command and control officer | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_de #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | Staffelkommandantin | Kommodore | | Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin | | Staffelkommandantin | Luftwaffenoffizierin | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_es #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | jefe de escuadrón | instructor | | comandante de aeronave | instructor de simulador | | instructor | oficial del Ejército del Aire | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_zh #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:---------------------| | 技术总监 | 技术和运营总监 | | 技术总监 | 技术主管 | | 技术总监 | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
mix #### mix * Dataset: mix * Size: 21,760 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | technical manager | Technischer Direktor für Bühne, Film und Fernsehen | | head of technical | directora técnica | | head of technical department | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 | | 0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.665 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 | | 0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 | | 0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 | | 0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 | | 0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 | | 1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 | | 1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 | | 1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 | | 1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 | | 1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 | | 2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 | | 2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 | | 2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 | | 2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 | | 2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 | | 3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 | | 3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 | | 3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 | | 3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 | | 4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 | | 4.2115 | 4100 | 0.2385 | - | - | - | - | - | - | - | | 4.3142 | 4200 | 0.231 | 0.7811 | 0.6608 | 0.6254 | 0.7463 | 0.8226 | 0.8051 | 0.5442 | | 4.4168 | 4300 | 0.2115 | - | - | - | - | - | - | - | | 4.5195 | 4400 | 0.2151 | 0.7815 | 0.6634 | 0.6301 | 0.7489 | 0.8251 | 0.8101 | 0.5450 | | 4.6222 | 4500 | 0.2496 | - | - | - | - | - | - | - | | 4.7248 | 4600 | 0.2146 | 0.7814 | 0.6654 | 0.6294 | 0.7523 | 0.8258 | 0.8104 | 0.5436 | | 4.8275 | 4700 | 0.2535 | - | - | - | - | - | - | - | | 4.9302 | 4800 | 0.2058 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```