pj-mathematician commited on
Commit
48d168a
·
verified ·
1 Parent(s): 919e655

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. README.md +1444 -3
  3. checkpoint-4000/README.md +1436 -0
  4. checkpoint-4000/modules.json +20 -0
  5. checkpoint-4000/scaler.pt +3 -0
  6. checkpoint-4000/sentence_bert_config.json +4 -0
  7. checkpoint-4200/1_Pooling/config.json +10 -0
  8. checkpoint-4200/README.md +1438 -0
  9. checkpoint-4200/config.json +49 -0
  10. checkpoint-4200/rng_state.pth +3 -0
  11. checkpoint-4200/scaler.pt +3 -0
  12. checkpoint-4200/scheduler.pt +3 -0
  13. checkpoint-4200/special_tokens_map.json +51 -0
  14. checkpoint-4200/tokenizer_config.json +55 -0
  15. checkpoint-4200/trainer_state.json +0 -0
  16. checkpoint-4200/training_args.bin +3 -0
  17. checkpoint-4400/config.json +49 -0
  18. checkpoint-4400/config_sentence_transformers.json +10 -0
  19. checkpoint-4400/modules.json +20 -0
  20. checkpoint-4400/sentence_bert_config.json +4 -0
  21. checkpoint-4400/special_tokens_map.json +51 -0
  22. checkpoint-4400/tokenizer.json +3 -0
  23. checkpoint-4400/tokenizer_config.json +55 -0
  24. checkpoint-4600/1_Pooling/config.json +10 -0
  25. checkpoint-4600/README.md +1442 -0
  26. checkpoint-4600/config.json +49 -0
  27. checkpoint-4600/config_sentence_transformers.json +10 -0
  28. checkpoint-4600/modules.json +20 -0
  29. checkpoint-4600/sentence_bert_config.json +4 -0
  30. checkpoint-4600/special_tokens_map.json +51 -0
  31. checkpoint-4600/tokenizer.json +3 -0
  32. checkpoint-4600/tokenizer_config.json +55 -0
  33. checkpoint-4600/trainer_state.json +0 -0
  34. checkpoint-4800/1_Pooling/config.json +10 -0
  35. checkpoint-4800/README.md +1444 -0
  36. checkpoint-4800/config.json +49 -0
  37. checkpoint-4800/config_sentence_transformers.json +10 -0
  38. checkpoint-4800/modules.json +20 -0
  39. checkpoint-4800/rng_state.pth +3 -0
  40. checkpoint-4800/scaler.pt +3 -0
  41. checkpoint-4800/scheduler.pt +3 -0
  42. checkpoint-4800/sentence_bert_config.json +4 -0
  43. checkpoint-4800/special_tokens_map.json +51 -0
  44. checkpoint-4800/tokenizer.json +3 -0
  45. checkpoint-4800/tokenizer_config.json +55 -0
  46. checkpoint-4800/trainer_state.json +0 -0
  47. checkpoint-4800/training_args.bin +3 -0
  48. eval/Information-Retrieval_evaluation_full_es_results.csv +25 -0
  49. eval/Information-Retrieval_evaluation_mix_de_results.csv +25 -0
  50. eval/Information-Retrieval_evaluation_mix_es_results.csv +25 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-4800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-4400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-4600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,1444 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-base
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5171428571428571
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.316
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18895238095238095
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13384126984126984
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10433333333333335
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0678253733846715
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5470006025464504
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7399645316315758
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8452891149669638
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8838497168796887
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9109269128757174
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6953571805621692
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7150421121165462
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7679394555495317
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7856911059911225
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7969632777290026
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8138095238095239
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8138095238095239
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8138095238095239
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8138095238095239
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8138095238095239
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5578605627627369
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5471407389299809
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5795933384755297
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5874505508842796
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5912226659397186
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5952587557760031
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.5718918918918919
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.3885405405405405
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.25172972972972973
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.1904864864864865
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.1521891891891892
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.0036619075252531876
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3842245968041533
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.5640822196868902
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.6741986120580108
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.7463851968088967
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.7825399601398452
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.6139182209948354
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5873893466818746
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.6144038475288277
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.6498632077214272
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.6680602466150343
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5581081081081081
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5581081081081081
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5581081081081081
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5581081081081081
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5581081081081081
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.47988875190050484
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.4249833337950364
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.430155652024808
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.4458862132745998
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.45334655744992447
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.4656066165331343
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9704433497536946
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9852216748768473
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9852216748768473
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9901477832512315
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9901477832512315
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.5083743842364532
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.3654187192118227
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.24133004926108376
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.18036124794745487
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.14467980295566504
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.3221185941380065
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.5024502430161547
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.6247617904371989
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.6829583450315939
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.7216293640715983
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.5393376062142305
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.5267125529267169
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.55793511917882
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.5879547828450983
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.6071252185389439
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.5104381157401634
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.5109752961295605
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.5109752961295605
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.5110222114474118
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.5110222114474118
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.40097257642946377
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.35882787401455
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.3633182590941781
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.3776727961080201
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.3848401555555339
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.3978065874082948
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.6601941747572816
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.9805825242718447
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.9902912621359223
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.9902912621359223
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9902912621359223
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9902912621359223
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.6601941747572816
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.4781553398058253
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.28951456310679613
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.17572815533980585
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.12595469255663433
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.09815533980582528
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.06151358631979527
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.5107966412908705
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.6922746152164951
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.8004152884148357
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.8465065661615649
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.8770990926698364
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.6601941747572816
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.6539867858378715
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.6707332209240133
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.72342020484322
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.7437750875502527
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.7553648453187212
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.6601941747572816
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.8037216828478965
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.8040950958426687
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.8040950958426687
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.8040950958426687
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.8040950958426687
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.6601941747572816
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.5087334164702914
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.49260246320797585
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.5217412166882693
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.529859818130126
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.533378795921413
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.5386011712914499
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.7280291211648466
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.9599583983359334
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.9791991679667187
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9942797711908476
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9958398335933437
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9973998959958398
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.7280291211648466
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.12433697347893914
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.05145085803432139
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.02625065002600105
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.017621771537528162
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.013283931357254294
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.28133620582918556
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.9183394002426764
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.9499306638932224
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.9700901369388107
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.9767724042295025
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9818166059975733
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.7280291211648466
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.8043549768911603
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.81295852465432
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.817339429558165
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.8186380742931886
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.8195485984235017
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.7280291211648466
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.7968549154271433
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.7974653825839162
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.7976914864910069
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.7977044635908871
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.7977139196654446
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.7280291211648466
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.7350836192117531
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.7374205090112232
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.737988888492803
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.7381133157945164
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.7381788581828236
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.7382854440643231
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.6703068122724909
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.9505980239209568
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.9776391055642226
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.9864794591783671
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.9932397295891836
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9947997919916797
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.6703068122724909
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.1251690067602704
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.052282891315652634
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.026729069162766517
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.01799965331946611
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.013541341653666149
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.25235742763043856
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.9095857167620037
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.9482405962905183
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.96845207141619
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.9781591263650546
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.9810192407696308
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.6703068122724909
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.7735712514376322
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.7843644592705362
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.7889444470773866
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.7908660087982327
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.791403470160319
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.6703068122724909
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.7520307321055828
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.7529374175534339
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.7530616872072472
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.7531202644382351
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.7531293951311296
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.6703068122724909
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.6967639778693541
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.699575457224443
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.70027844357658
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.7004487000056766
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.7004863395843564
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.7005835771389989
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.19084763390535622
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 1.0
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 1.0
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 1.0
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 1.0
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 1.0
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.19084763390535622
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.15439417576703063
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.0617576703068123
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.03087883515340615
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.020585890102270757
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.015439417576703075
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.06137978852487433
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 1.0
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 1.0
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 1.0
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 1.0
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 1.0
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.19084763390535622
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.5474303590499686
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.5474303590499686
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.5474303590499686
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.5474303590499686
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.5474303590499686
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.19084763390535622
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.4093433087972877
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.4093433087972877
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.4093433087972877
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.4093433087972877
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.4093433087972877
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.19084763390535622
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.32981711891302556
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.32981711891302556
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.32981711891302556
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.32981711891302556
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.32981711891302556
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.32981711891302556
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)
908
+
909
+ Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 768 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
939
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 768]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1018
+ | cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 |
1019
+ | cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 |
1020
+ | cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 |
1021
+ | cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
1022
+ | cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
1023
+ | cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 |
1024
+ | cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 |
1025
+ | cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 |
1026
+ | cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 |
1027
+ | cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 |
1028
+ | cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1030
+ | cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 |
1031
+ | cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 |
1032
+ | cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 |
1033
+ | cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 |
1034
+ | **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1036
+ | cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 |
1037
+ | cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 |
1038
+ | cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1039
+ | cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1040
+ | cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1042
+ | cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 |
1043
+ | cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 |
1044
+ | cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 |
1045
+ | cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 |
1046
+ | cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 |
1047
+ | cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 64
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 64
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
1339
+ | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
1340
+ | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
1341
+ | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
1342
+ | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
1343
+ | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
1344
+ | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
1345
+ | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
1346
+ | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
1347
+ | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
1348
+ | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
1349
+ | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
1350
+ | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
1351
+ | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
1352
+ | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
1353
+ | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
1354
+ | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
1355
+ | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
1356
+ | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
1357
+ | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
1358
+ | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
1359
+ | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
1360
+ | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
1361
+ | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
1362
+ | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
1363
+ | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
1364
+ | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
1365
+ | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
1366
+ | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
1367
+ | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
1368
+ | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
1369
+ | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
1370
+ | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
1371
+ | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
1372
+ | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
1373
+ | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
1374
+ | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
1375
+ | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
1376
+ | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
1377
+ | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
1378
+ | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
1379
+ | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
1380
+ | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
1381
+ | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
1382
+ | 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
1383
+ | 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
1384
+ | 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
1385
+ | 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
1386
+ | 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - |
1387
+ | 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 |
1388
+
1389
+
1390
+ ### Framework Versions
1391
+ - Python: 3.11.11
1392
+ - Sentence Transformers: 4.1.0
1393
+ - Transformers: 4.51.2
1394
+ - PyTorch: 2.6.0+cu124
1395
+ - Accelerate: 1.6.0
1396
+ - Datasets: 3.5.0
1397
+ - Tokenizers: 0.21.1
1398
+
1399
+ ## Citation
1400
+
1401
+ ### BibTeX
1402
+
1403
+ #### Sentence Transformers
1404
+ ```bibtex
1405
+ @inproceedings{reimers-2019-sentence-bert,
1406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1407
+ author = "Reimers, Nils and Gurevych, Iryna",
1408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1409
+ month = "11",
1410
+ year = "2019",
1411
+ publisher = "Association for Computational Linguistics",
1412
+ url = "https://arxiv.org/abs/1908.10084",
1413
+ }
1414
+ ```
1415
+
1416
+ #### GISTEmbedLoss
1417
+ ```bibtex
1418
+ @misc{solatorio2024gistembed,
1419
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1420
+ author={Aivin V. Solatorio},
1421
+ year={2024},
1422
+ eprint={2402.16829},
1423
+ archivePrefix={arXiv},
1424
+ primaryClass={cs.LG}
1425
+ }
1426
+ ```
1427
+
1428
+ <!--
1429
+ ## Glossary
1430
+
1431
+ *Clearly define terms in order to be accessible across audiences.*
1432
+ -->
1433
+
1434
+ <!--
1435
+ ## Model Card Authors
1436
+
1437
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1438
+ -->
1439
+
1440
+ <!--
1441
+ ## Model Card Contact
1442
+
1443
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1444
+ -->
checkpoint-4000/README.md ADDED
@@ -0,0 +1,1436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-base
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6476190476190476
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6476190476190476
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5133333333333332
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.3165714285714285
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18857142857142858
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13396825396825396
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10433333333333335
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.06742481608756247
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5411228142559339
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7397482609380314
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8429667985290079
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8856357375498775
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9091330295382077
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6476190476190476
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6917131025478591
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.71478335831634
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7666819432677721
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7855970749692088
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7960468614602451
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6476190476190476
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8090476190476191
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8090476190476191
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8090476190476191
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8090476190476191
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8090476190476191
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6476190476190476
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5561135670751935
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5477711353289022
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5791852239372863
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5872469517518495
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5908784036739082
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5948564356607342
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12972972972972974
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12972972972972974
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.5705405405405405
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.38962162162162167
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.25140540540540546
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.19012612612612612
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.15154054054054056
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.0037413987812150314
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.38432915927625627
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.5663097940153319
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.6710180189388714
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.7443549924512646
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.7804985217049148
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12972972972972974
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.6133809590566169
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5888378318443163
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.613553130716134
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.6492700673561147
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.6672020616803231
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12972972972972974
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5608108108108109
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5608108108108109
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5608108108108109
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5608108108108109
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5608108108108109
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12972972972972974
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.47928087268629077
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.4265150109477007
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.4308614258675324
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.446315567522346
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.45361884446786194
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.46587892353181215
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9704433497536946
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9852216748768473
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9852216748768473
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9901477832512315
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9901477832512315
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.5120689655172413
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.3664039408866995
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.2411330049261084
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.180623973727422
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.1453448275862069
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.3229666331805043
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.5039915991834915
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.6239950018657238
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.6837127628220585
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.724182886190782
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.5416271120841382
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.5273905187096658
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.5573943264798527
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.5882759422186796
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.6082376029646045
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.510702296647636
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.5111935025343795
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.5111935025343795
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.5112378818891037
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.5112378818891037
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.4032624181455029
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.35929856113701575
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.3633301227599498
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.3779770424201306
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.38546911827821406
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.3983960288142158
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.6504854368932039
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.9805825242718447
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.9902912621359223
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.9902912621359223
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9902912621359223
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9902912621359223
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.6504854368932039
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.47815533980582525
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.28699029126213593
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.17563106796116504
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.12543689320388354
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.09786407766990295
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.06122803520614593
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.512665335199255
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.6880766978766553
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.8002784995071653
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.8453144636093844
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.8773140543871931
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.6504854368932039
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.6531212612064398
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.6669362863744952
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.7218911998936125
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.7415597018345085
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.7535751066625261
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.6504854368932039
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.7993527508090615
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.7997572815533981
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.7997572815533981
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.7997572815533981
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.7997572815533981
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.6504854368932039
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.5072300500933464
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.4897274345176646
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.5196798622563865
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.5276837053538445
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.5311205359244624
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.5365056842045905
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.7243889755590224
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.9609984399375975
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.9797191887675507
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9937597503900156
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9958398335933437
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9973998959958398
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.7243889755590224
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.12428497139885596
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.05134685387415497
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.026214248569942804
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.017597503900156002
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.013281331253250133
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.2802961642275215
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.9183394002426764
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.9482665973305597
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.9692234356040907
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.9756023574276305
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9821892875715027
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.7243889755590224
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.8023352815755668
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.8104895152869938
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.8150081000806421
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.8162651648802736
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.8174362445077372
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.7243889755590224
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.7938466413093047
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.7944053350960067
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.794613049565821
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.7946306448507517
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.7946402095756717
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.7243889755590224
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.7324440771234734
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.734716178743038
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.7353155432601859
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.735429453970343
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.7355154445871764
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.7356208832908805
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.6697867914716589
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.9505980239209568
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.9771190847633905
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.9859594383775351
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.9921996879875195
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9942797711908476
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.6697867914716589
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.12470098803952159
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.05225169006760271
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.026708268330733236
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.01798231929277171
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.01353874154966199
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.2517940717628705
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.9059022360894435
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.9474345640492287
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.967932050615358
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.9771190847633905
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.9807592303692148
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.6697867914716589
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.770344092734726
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.7819450345813985
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.7865455025019679
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.7883807621544129
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.7890604802329748
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.6697867914716589
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.7504302722692131
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.7513280223222801
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.7514573016845009
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.7515108675350354
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.7515238522218625
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.6697867914716589
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.6929705838065172
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.696080766802269
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.6967651580129317
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.6969258122016383
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.6969715581100935
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.6970655432634698
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.19760790431617264
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 1.0
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 1.0
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 1.0
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 1.0
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 1.0
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.19760790431617264
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.15439417576703063
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.0617576703068123
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.03087883515340615
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.020585890102270757
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.015439417576703075
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.06371492954956293
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 1.0
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 1.0
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 1.0
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 1.0
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 1.0
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.19760790431617264
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.5478938300274205
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.5478938300274205
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.5478938300274205
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.5478938300274205
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.5478938300274205
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.19760790431617264
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.4124442798779788
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.4124442798779788
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.4124442798779788
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.4124442798779788
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.4124442798779788
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.19760790431617264
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.32993583709540925
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.32993583709540925
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.32993583709540925
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.32993583709540925
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.32993583709540925
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.32993583709540925
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 768 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
939
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 768]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.961 | 0.9506 | 1.0 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9797 | 0.9771 | 1.0 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9938 | 0.986 | 1.0 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9922 | 1.0 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9943 | 1.0 |
1017
+ | cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
1018
+ | cosine_precision@20 | 0.5133 | 0.5705 | 0.5121 | 0.4782 | 0.1243 | 0.1247 | 0.1544 |
1019
+ | cosine_precision@50 | 0.3166 | 0.3896 | 0.3664 | 0.287 | 0.0513 | 0.0523 | 0.0618 |
1020
+ | cosine_precision@100 | 0.1886 | 0.2514 | 0.2411 | 0.1756 | 0.0262 | 0.0267 | 0.0309 |
1021
+ | cosine_precision@150 | 0.134 | 0.1901 | 0.1806 | 0.1254 | 0.0176 | 0.018 | 0.0206 |
1022
+ | cosine_precision@200 | 0.1043 | 0.1515 | 0.1453 | 0.0979 | 0.0133 | 0.0135 | 0.0154 |
1023
+ | cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0612 | 0.2803 | 0.2518 | 0.0637 |
1024
+ | cosine_recall@20 | 0.5411 | 0.3843 | 0.323 | 0.5127 | 0.9183 | 0.9059 | 1.0 |
1025
+ | cosine_recall@50 | 0.7397 | 0.5663 | 0.504 | 0.6881 | 0.9483 | 0.9474 | 1.0 |
1026
+ | cosine_recall@100 | 0.843 | 0.671 | 0.624 | 0.8003 | 0.9692 | 0.9679 | 1.0 |
1027
+ | cosine_recall@150 | 0.8856 | 0.7444 | 0.6837 | 0.8453 | 0.9756 | 0.9771 | 1.0 |
1028
+ | cosine_recall@200 | 0.9091 | 0.7805 | 0.7242 | 0.8773 | 0.9822 | 0.9808 | 1.0 |
1029
+ | cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
1030
+ | cosine_ndcg@20 | 0.6917 | 0.6134 | 0.5416 | 0.6531 | 0.8023 | 0.7703 | 0.5479 |
1031
+ | cosine_ndcg@50 | 0.7148 | 0.5888 | 0.5274 | 0.6669 | 0.8105 | 0.7819 | 0.5479 |
1032
+ | cosine_ndcg@100 | 0.7667 | 0.6136 | 0.5574 | 0.7219 | 0.815 | 0.7865 | 0.5479 |
1033
+ | cosine_ndcg@150 | 0.7856 | 0.6493 | 0.5883 | 0.7416 | 0.8163 | 0.7884 | 0.5479 |
1034
+ | **cosine_ndcg@200** | **0.796** | **0.6672** | **0.6082** | **0.7536** | **0.8174** | **0.7891** | **0.5479** |
1035
+ | cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
1036
+ | cosine_mrr@20 | 0.809 | 0.5608 | 0.5107 | 0.7994 | 0.7938 | 0.7504 | 0.4124 |
1037
+ | cosine_mrr@50 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7944 | 0.7513 | 0.4124 |
1038
+ | cosine_mrr@100 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
1039
+ | cosine_mrr@150 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
1040
+ | cosine_mrr@200 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
1041
+ | cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
1042
+ | cosine_map@20 | 0.5561 | 0.4793 | 0.4033 | 0.5072 | 0.7324 | 0.693 | 0.3299 |
1043
+ | cosine_map@50 | 0.5478 | 0.4265 | 0.3593 | 0.4897 | 0.7347 | 0.6961 | 0.3299 |
1044
+ | cosine_map@100 | 0.5792 | 0.4309 | 0.3633 | 0.5197 | 0.7353 | 0.6968 | 0.3299 |
1045
+ | cosine_map@150 | 0.5872 | 0.4463 | 0.378 | 0.5277 | 0.7354 | 0.6969 | 0.3299 |
1046
+ | cosine_map@200 | 0.5909 | 0.4536 | 0.3855 | 0.5311 | 0.7355 | 0.697 | 0.3299 |
1047
+ | cosine_map@500 | 0.5949 | 0.4659 | 0.3984 | 0.5365 | 0.7356 | 0.6971 | 0.3299 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 64
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 64
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
1339
+ | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
1340
+ | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
1341
+ | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
1342
+ | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
1343
+ | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
1344
+ | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
1345
+ | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
1346
+ | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
1347
+ | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
1348
+ | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
1349
+ | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
1350
+ | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
1351
+ | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
1352
+ | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
1353
+ | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
1354
+ | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
1355
+ | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
1356
+ | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
1357
+ | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
1358
+ | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
1359
+ | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
1360
+ | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
1361
+ | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
1362
+ | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
1363
+ | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
1364
+ | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
1365
+ | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
1366
+ | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
1367
+ | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
1368
+ | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
1369
+ | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
1370
+ | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
1371
+ | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
1372
+ | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
1373
+ | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
1374
+ | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
1375
+ | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
1376
+ | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
1377
+ | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
1378
+ | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
1379
+ | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
1380
+
1381
+
1382
+ ### Framework Versions
1383
+ - Python: 3.11.11
1384
+ - Sentence Transformers: 4.1.0
1385
+ - Transformers: 4.51.2
1386
+ - PyTorch: 2.6.0+cu124
1387
+ - Accelerate: 1.6.0
1388
+ - Datasets: 3.5.0
1389
+ - Tokenizers: 0.21.1
1390
+
1391
+ ## Citation
1392
+
1393
+ ### BibTeX
1394
+
1395
+ #### Sentence Transformers
1396
+ ```bibtex
1397
+ @inproceedings{reimers-2019-sentence-bert,
1398
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1399
+ author = "Reimers, Nils and Gurevych, Iryna",
1400
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1401
+ month = "11",
1402
+ year = "2019",
1403
+ publisher = "Association for Computational Linguistics",
1404
+ url = "https://arxiv.org/abs/1908.10084",
1405
+ }
1406
+ ```
1407
+
1408
+ #### GISTEmbedLoss
1409
+ ```bibtex
1410
+ @misc{solatorio2024gistembed,
1411
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1412
+ author={Aivin V. Solatorio},
1413
+ year={2024},
1414
+ eprint={2402.16829},
1415
+ archivePrefix={arXiv},
1416
+ primaryClass={cs.LG}
1417
+ }
1418
+ ```
1419
+
1420
+ <!--
1421
+ ## Glossary
1422
+
1423
+ *Clearly define terms in order to be accessible across audiences.*
1424
+ -->
1425
+
1426
+ <!--
1427
+ ## Model Card Authors
1428
+
1429
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1430
+ -->
1431
+
1432
+ <!--
1433
+ ## Model Card Contact
1434
+
1435
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1436
+ -->
checkpoint-4000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-4000/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39ade23fee434657c6acaffedd2e5d962324297aaf40cfff792a5b052f09aded
3
+ size 988
checkpoint-4000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-4200/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-4200/README.md ADDED
@@ -0,0 +1,1438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-base
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6476190476190476
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6476190476190476
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5128571428571428
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.315047619047619
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18895238095238098
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.1340952380952381
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10442857142857143
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.06742481608756247
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5405801283990764
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7380563268384144
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8450833938763317
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8854496352730319
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9116090922199359
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6476190476190476
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6921758597708418
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7145715541794455
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7684704586943056
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7869416189606113
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7978715516034123
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6476190476190476
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8090476190476191
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8090476190476191
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8090476190476191
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8090476190476191
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8090476190476191
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6476190476190476
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5574893623656486
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5485611329203299
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5816806877668274
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5898687797086651
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.593482014013077
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5974665649900398
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12972972972972974
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12972972972972974
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.5735135135135134
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.3912432432432432
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.2531351351351352
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.19113513513513514
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.15186486486486486
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.0037413987812150314
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3850053775723816
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.5678708571543062
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.6771132401665688
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.7476366668984507
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.7806646181068078
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12972972972972974
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.6155696219376317
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5902714649088991
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.6166603984916751
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.6514414937889701
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.6681110549873654
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12972972972972974
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5608108108108109
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5608108108108109
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5608108108108109
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5608108108108109
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5608108108108109
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12972972972972974
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.4821585422089324
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.4278073015090324
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.4325091891776662
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.4481236866241766
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.45495240914630236
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.4674583582676571
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9704433497536946
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9852216748768473
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9852216748768473
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9901477832512315
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9901477832512315
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.5118226600985222
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.36640394088669953
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.24108374384236453
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.181247947454844
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.1460591133004926
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.32208430655596165
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.5042827147735226
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.6236391741928202
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.6860046899787209
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.7269946951843458
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.5421464164798184
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.5287112320288665
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.5585547163826412
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.5906267126443239
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.6110534856124217
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.5121285045393612
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.5126572733439921
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.5126572733439921
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.5127050996388891
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.5127050996388891
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.4040566267923372
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.36142610008228787
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.365695506737717
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.38080017460364707
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.3885278636281841
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.40107654023571443
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.6504854368932039
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.9805825242718447
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.9902912621359223
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.9902912621359223
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9902912621359223
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9902912621359223
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.6504854368932039
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.4786407766990292
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.2910679611650486
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.17572815533980585
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.12543689320388351
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.09786407766990295
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.060542712533387485
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.5120181745235721
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.6949930226095598
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.7990376401893455
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.8444978387246413
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.8737742771860034
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.6504854368932039
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.6543043826860687
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.6719601686921535
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.7228108377810673
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.7425317578844268
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.7540053327385158
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.6504854368932039
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.7996763754045308
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.8000497883993031
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.8000497883993031
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.8000497883993031
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.8000497883993031
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.6504854368932039
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.5094084685339617
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.4946470598488666
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.5223997206445464
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.5301660854751861
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.5337279091857492
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.5392657572937102
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.7238689547581904
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.9583983359334374
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.9802392095683827
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9942797711908476
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9953198127925117
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9973998959958398
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.7238689547581904
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.12412896515860634
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.05145085803432139
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.026245449817992726
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.017614837926850403
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.013283931357254293
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.28019216006735503
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.9169353440804299
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.9499306638932224
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.9701768070722828
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.9764690587623505
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9822326226382389
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.7238689547581904
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.8023238060267395
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.8113379258247732
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.8156949679776019
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.816929855500621
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.8179575655343403
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.7238689547581904
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.7934277492682618
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.7941208450339935
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.7943224531588357
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.7943312488289611
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.7943443835009225
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.7238689547581904
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.7331525143106996
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.7355830040348272
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.7361451167677289
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.7362661519275265
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.7363390374447161
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.7364481715630059
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.6666666666666666
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.9479979199167967
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.9760790431617264
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.9859594383775351
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.9927197087883516
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9947997919916797
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.6666666666666666
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.12483099323972958
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.05219968798751951
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.026682267290691637
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.017985786098110586
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.013541341653666149
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.25062402496099845
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.9064222568902757
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.9466805338880222
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.9669786791471658
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.9774657652972785
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.9810192407696308
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.6666666666666666
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.7705186419550625
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.7817408957971655
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.786309170410984
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.7883932008449921
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.7890611279585495
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.6666666666666666
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.7486665934008992
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.7496295288804224
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.74976967024613
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.7498264653686212
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.7498390441909701
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.6666666666666666
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.6933856329177108
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.6963720532834866
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.6970430360365766
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.6972336080548289
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.697279051235347
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.6973750625395665
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.19292771710868434
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 1.0
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 1.0
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 1.0
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 1.0
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 1.0
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.19292771710868434
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.15439417576703063
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.0617576703068123
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.03087883515340615
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.020585890102270757
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.015439417576703075
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.062241537280538835
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 1.0
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 1.0
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 1.0
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 1.0
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 1.0
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.19292771710868434
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.5475590939157456
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.5475590939157456
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.5475590939157456
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.5475590939157456
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.5475590939157456
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.19292771710868434
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.41052639363871923
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.41052639363871923
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.41052639363871923
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.41052639363871923
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.41052639363871923
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.19292771710868434
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.3297429315299459
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.3297429315299459
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.3297429315299459
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.3297429315299459
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.3297429315299459
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.3297429315299459
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 768 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
939
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 768]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:----------|:----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.9584 | 0.948 | 1.0 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9761 | 1.0 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.986 | 1.0 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9953 | 0.9927 | 1.0 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
1017
+ | cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
1018
+ | cosine_precision@20 | 0.5129 | 0.5735 | 0.5118 | 0.4786 | 0.1241 | 0.1248 | 0.1544 |
1019
+ | cosine_precision@50 | 0.315 | 0.3912 | 0.3664 | 0.2911 | 0.0515 | 0.0522 | 0.0618 |
1020
+ | cosine_precision@100 | 0.189 | 0.2531 | 0.2411 | 0.1757 | 0.0262 | 0.0267 | 0.0309 |
1021
+ | cosine_precision@150 | 0.1341 | 0.1911 | 0.1812 | 0.1254 | 0.0176 | 0.018 | 0.0206 |
1022
+ | cosine_precision@200 | 0.1044 | 0.1519 | 0.1461 | 0.0979 | 0.0133 | 0.0135 | 0.0154 |
1023
+ | cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0605 | 0.2802 | 0.2506 | 0.0622 |
1024
+ | cosine_recall@20 | 0.5406 | 0.385 | 0.3221 | 0.512 | 0.9169 | 0.9064 | 1.0 |
1025
+ | cosine_recall@50 | 0.7381 | 0.5679 | 0.5043 | 0.695 | 0.9499 | 0.9467 | 1.0 |
1026
+ | cosine_recall@100 | 0.8451 | 0.6771 | 0.6236 | 0.799 | 0.9702 | 0.967 | 1.0 |
1027
+ | cosine_recall@150 | 0.8854 | 0.7476 | 0.686 | 0.8445 | 0.9765 | 0.9775 | 1.0 |
1028
+ | cosine_recall@200 | 0.9116 | 0.7807 | 0.727 | 0.8738 | 0.9822 | 0.981 | 1.0 |
1029
+ | cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
1030
+ | cosine_ndcg@20 | 0.6922 | 0.6156 | 0.5421 | 0.6543 | 0.8023 | 0.7705 | 0.5476 |
1031
+ | cosine_ndcg@50 | 0.7146 | 0.5903 | 0.5287 | 0.672 | 0.8113 | 0.7817 | 0.5476 |
1032
+ | cosine_ndcg@100 | 0.7685 | 0.6167 | 0.5586 | 0.7228 | 0.8157 | 0.7863 | 0.5476 |
1033
+ | cosine_ndcg@150 | 0.7869 | 0.6514 | 0.5906 | 0.7425 | 0.8169 | 0.7884 | 0.5476 |
1034
+ | **cosine_ndcg@200** | **0.7979** | **0.6681** | **0.6111** | **0.754** | **0.818** | **0.7891** | **0.5476** |
1035
+ | cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
1036
+ | cosine_mrr@20 | 0.809 | 0.5608 | 0.5121 | 0.7997 | 0.7934 | 0.7487 | 0.4105 |
1037
+ | cosine_mrr@50 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7941 | 0.7496 | 0.4105 |
1038
+ | cosine_mrr@100 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
1039
+ | cosine_mrr@150 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
1040
+ | cosine_mrr@200 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
1041
+ | cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
1042
+ | cosine_map@20 | 0.5575 | 0.4822 | 0.4041 | 0.5094 | 0.7332 | 0.6934 | 0.3297 |
1043
+ | cosine_map@50 | 0.5486 | 0.4278 | 0.3614 | 0.4946 | 0.7356 | 0.6964 | 0.3297 |
1044
+ | cosine_map@100 | 0.5817 | 0.4325 | 0.3657 | 0.5224 | 0.7361 | 0.697 | 0.3297 |
1045
+ | cosine_map@150 | 0.5899 | 0.4481 | 0.3808 | 0.5302 | 0.7363 | 0.6972 | 0.3297 |
1046
+ | cosine_map@200 | 0.5935 | 0.455 | 0.3885 | 0.5337 | 0.7363 | 0.6973 | 0.3297 |
1047
+ | cosine_map@500 | 0.5975 | 0.4675 | 0.4011 | 0.5393 | 0.7364 | 0.6974 | 0.3297 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 64
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 64
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
1339
+ | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
1340
+ | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
1341
+ | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
1342
+ | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
1343
+ | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
1344
+ | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
1345
+ | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
1346
+ | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
1347
+ | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
1348
+ | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
1349
+ | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
1350
+ | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
1351
+ | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
1352
+ | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
1353
+ | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
1354
+ | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
1355
+ | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
1356
+ | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
1357
+ | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
1358
+ | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
1359
+ | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
1360
+ | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
1361
+ | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
1362
+ | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
1363
+ | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
1364
+ | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
1365
+ | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
1366
+ | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
1367
+ | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
1368
+ | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
1369
+ | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
1370
+ | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
1371
+ | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
1372
+ | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
1373
+ | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
1374
+ | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
1375
+ | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
1376
+ | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
1377
+ | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
1378
+ | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
1379
+ | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
1380
+ | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
1381
+ | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
1382
+
1383
+
1384
+ ### Framework Versions
1385
+ - Python: 3.11.11
1386
+ - Sentence Transformers: 4.1.0
1387
+ - Transformers: 4.51.2
1388
+ - PyTorch: 2.6.0+cu124
1389
+ - Accelerate: 1.6.0
1390
+ - Datasets: 3.5.0
1391
+ - Tokenizers: 0.21.1
1392
+
1393
+ ## Citation
1394
+
1395
+ ### BibTeX
1396
+
1397
+ #### Sentence Transformers
1398
+ ```bibtex
1399
+ @inproceedings{reimers-2019-sentence-bert,
1400
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1401
+ author = "Reimers, Nils and Gurevych, Iryna",
1402
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1403
+ month = "11",
1404
+ year = "2019",
1405
+ publisher = "Association for Computational Linguistics",
1406
+ url = "https://arxiv.org/abs/1908.10084",
1407
+ }
1408
+ ```
1409
+
1410
+ #### GISTEmbedLoss
1411
+ ```bibtex
1412
+ @misc{solatorio2024gistembed,
1413
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1414
+ author={Aivin V. Solatorio},
1415
+ year={2024},
1416
+ eprint={2402.16829},
1417
+ archivePrefix={arXiv},
1418
+ primaryClass={cs.LG}
1419
+ }
1420
+ ```
1421
+
1422
+ <!--
1423
+ ## Glossary
1424
+
1425
+ *Clearly define terms in order to be accessible across audiences.*
1426
+ -->
1427
+
1428
+ <!--
1429
+ ## Model Card Authors
1430
+
1431
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1432
+ -->
1433
+
1434
+ <!--
1435
+ ## Model Card Contact
1436
+
1437
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1438
+ -->
checkpoint-4200/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "classifier_dropout": 0.0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "LABEL_0"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "layer_norm_type": "layer_norm",
29
+ "logn_attention_clip1": false,
30
+ "logn_attention_scale": false,
31
+ "max_position_embeddings": 8192,
32
+ "model_type": "new",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "pack_qkv": true,
36
+ "pad_token_id": 1,
37
+ "position_embedding_type": "rope",
38
+ "rope_scaling": {
39
+ "factor": 8.0,
40
+ "type": "ntk"
41
+ },
42
+ "rope_theta": 20000,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.51.2",
45
+ "type_vocab_size": 1,
46
+ "unpad_inputs": false,
47
+ "use_memory_efficient_attention": false,
48
+ "vocab_size": 250048
49
+ }
checkpoint-4200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08c3c0eee68a8ed5930442c79d0458d0b34b4e35170a32c2ce1c96f52c462aa6
3
+ size 15958
checkpoint-4200/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9b2d531961e5d2e62f3f04f261cdc73b2f148f446de659eedf81e0be01d4e6
3
+ size 988
checkpoint-4200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aae741f7abaf2255bfeb83a85dae5baa691b92cd252ccff1b44afa573600e43d
3
+ size 1064
checkpoint-4200/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-4200/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }
checkpoint-4200/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-4200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40c33010f3b5232b8f1e5876490b57675597dbc48a2cd0560f16d15d56ebb4e1
3
+ size 5624
checkpoint-4400/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "classifier_dropout": 0.0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "LABEL_0"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "layer_norm_type": "layer_norm",
29
+ "logn_attention_clip1": false,
30
+ "logn_attention_scale": false,
31
+ "max_position_embeddings": 8192,
32
+ "model_type": "new",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "pack_qkv": true,
36
+ "pad_token_id": 1,
37
+ "position_embedding_type": "rope",
38
+ "rope_scaling": {
39
+ "factor": 8.0,
40
+ "type": "ntk"
41
+ },
42
+ "rope_theta": 20000,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.51.2",
45
+ "type_vocab_size": 1,
46
+ "unpad_inputs": false,
47
+ "use_memory_efficient_attention": false,
48
+ "vocab_size": 250048
49
+ }
checkpoint-4400/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-4400/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-4400/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-4400/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-4400/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
checkpoint-4400/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }
checkpoint-4600/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-4600/README.md ADDED
@@ -0,0 +1,1442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-base
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5166666666666666
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.3163809523809524
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18933333333333335
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13390476190476192
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.1043809523809524
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0678253733846715
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5460189311963579
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7403235838789698
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8464627087513951
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8848060278145474
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9111577982544093
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6948532664971591
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7153574898330466
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7686347737859489
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7861125403087321
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7971859934143821
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8130158730158731
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8130158730158731
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8130158730158731
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8130158730158731
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8130158730158731
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5581960070033892
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.547955793387211
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5806457152419001
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5882750787814468
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5920418241592634
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5960343884399482
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.5713513513513514
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.3888648648648649
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.25194594594594594
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.18998198198198196
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.1519189189189189
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.0036619075252531876
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3842833355443445
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.5650012903557396
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.6742574573080582
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.7433217612578467
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.7815387878511015
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.6134037350149425
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.587765249332833
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.6145100789008344
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.6485708474409041
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.6674981723654128
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5576576576576577
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5576576576576577
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5576576576576577
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5576576576576577
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5576576576576577
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.47936111065720205
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.4252592911005701
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.4304825507648424
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.4457575975367371
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.4532981716560443
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.4657478115586777
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9704433497536946
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9852216748768473
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9852216748768473
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9901477832512315
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9901477832512315
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.5103448275862069
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.3654187192118227
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.24152709359605912
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.18039408866995077
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.1444088669950739
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.3232480342404406
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.5030915016290886
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.6249715272880884
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.6832865603922703
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.7220918134235578
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.5410295152452983
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.5272863852084945
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.5583782732060053
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.588398956427303
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.6072311612102843
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.5115567241030488
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.5120878378565168
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.5120878378565168
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.5121352042831936
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.5121352042831936
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.4027772467386738
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.3591245737395942
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.3636915129209065
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.3780389811429104
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.3849915747167181
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.3979586734666635
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.6601941747572816
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.9805825242718447
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.9902912621359223
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.9902912621359223
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9902912621359223
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9902912621359223
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.6601941747572816
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.4805825242718447
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.2900970873786408
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.17592233009708735
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.12601941747572815
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.09815533980582528
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.06151358631979527
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.5137714811644284
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.6926011095977929
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.8015658686430839
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.8498529142376811
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.8756860745010276
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.6601941747572816
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.6561470810556217
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.6713912878037265
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.7242859634217003
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.7450276543061775
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.7555798172662749
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.6601941747572816
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.8042071197411004
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.8045805327358726
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.8045805327358726
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.8045805327358726
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.8045805327358726
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.6601941747572816
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.5106521768718877
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.4936260792000732
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.5228282305505247
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.5309790629236998
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.5343942751177704
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.5396780030153469
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.7243889755590224
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.9594383775351014
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.9791991679667187
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9927197087883516
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9963598543941757
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9973998959958398
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.7243889755590224
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.12423296931877274
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.05144045761830475
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.026235049401976088
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.017628705148205925
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.013283931357254294
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.2801228239605774
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.9177327093083724
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.9498439937597504
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.9693967758710348
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.9772057548968625
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9819032761310452
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.7243889755590224
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.8035653524093836
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.8123465374976416
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.816619783760099
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.8181288168343755
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.8189742580500373
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.7243889755590224
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.7950733254581356
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.7957037061937158
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.7959106624394904
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.795941995568463
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.7959480612399141
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.7243889755590224
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.7344976284540953
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.7369058419409787
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.7374765660485233
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.7376131540231733
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.7376752620519383
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.7377852907056718
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.6687467498699948
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.9495579823192928
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.9776391055642226
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.9864794591783671
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.9932397295891836
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9947997919916797
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.6687467498699948
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.1251430057202288
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.052282891315652634
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.026723868954758197
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.01799965331946611
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.013541341653666149
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.2518374068296065
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.9091090310279077
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.9482405962905183
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.968278731149246
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.9781591263650546
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.9810192407696308
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.6687467498699948
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.7729181248399849
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.7838354251194414
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.78838397650382
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.7903404232459181
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.7908776550064243
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.6687467498699948
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.7511103493630668
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.7520644853972484
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.75218787562777
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.7522459565052304
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.7522551943857011
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.6687467498699948
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.6960508888943099
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.698910694860312
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.699611558838961
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.6997846710668125
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.6998222199397084
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.6999210147339264
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.19240769630785232
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 1.0
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 1.0
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 1.0
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 1.0
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 1.0
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.19240769630785232
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.15439417576703063
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.0617576703068123
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.03087883515340615
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.020585890102270757
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.015439417576703075
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.06189980932570636
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 1.0
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 1.0
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 1.0
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 1.0
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 1.0
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.19240769630785232
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.5477973908226992
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.5477973908226992
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.5477973908226992
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.5477973908226992
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.5477973908226992
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.19240769630785232
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.41054733531332677
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.41054733531332677
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.41054733531332677
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.41054733531332677
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.41054733531332677
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.19240769630785232
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.33014621049351006
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.33014621049351006
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.33014621049351006
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.33014621049351006
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.33014621049351006
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.33014621049351006
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 768 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
939
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 768]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:-----------|:----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.9594 | 0.9496 | 1.0 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9927 | 0.9865 | 1.0 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9932 | 1.0 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
1018
+ | cosine_precision@20 | 0.5167 | 0.5714 | 0.5103 | 0.4806 | 0.1242 | 0.1251 | 0.1544 |
1019
+ | cosine_precision@50 | 0.3164 | 0.3889 | 0.3654 | 0.2901 | 0.0514 | 0.0523 | 0.0618 |
1020
+ | cosine_precision@100 | 0.1893 | 0.2519 | 0.2415 | 0.1759 | 0.0262 | 0.0267 | 0.0309 |
1021
+ | cosine_precision@150 | 0.1339 | 0.19 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
1022
+ | cosine_precision@200 | 0.1044 | 0.1519 | 0.1444 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
1023
+ | cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2801 | 0.2518 | 0.0619 |
1024
+ | cosine_recall@20 | 0.546 | 0.3843 | 0.3232 | 0.5138 | 0.9177 | 0.9091 | 1.0 |
1025
+ | cosine_recall@50 | 0.7403 | 0.565 | 0.5031 | 0.6926 | 0.9498 | 0.9482 | 1.0 |
1026
+ | cosine_recall@100 | 0.8465 | 0.6743 | 0.625 | 0.8016 | 0.9694 | 0.9683 | 1.0 |
1027
+ | cosine_recall@150 | 0.8848 | 0.7433 | 0.6833 | 0.8499 | 0.9772 | 0.9782 | 1.0 |
1028
+ | cosine_recall@200 | 0.9112 | 0.7815 | 0.7221 | 0.8757 | 0.9819 | 0.981 | 1.0 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
1030
+ | cosine_ndcg@20 | 0.6949 | 0.6134 | 0.541 | 0.6561 | 0.8036 | 0.7729 | 0.5478 |
1031
+ | cosine_ndcg@50 | 0.7154 | 0.5878 | 0.5273 | 0.6714 | 0.8123 | 0.7838 | 0.5478 |
1032
+ | cosine_ndcg@100 | 0.7686 | 0.6145 | 0.5584 | 0.7243 | 0.8166 | 0.7884 | 0.5478 |
1033
+ | cosine_ndcg@150 | 0.7861 | 0.6486 | 0.5884 | 0.745 | 0.8181 | 0.7903 | 0.5478 |
1034
+ | **cosine_ndcg@200** | **0.7972** | **0.6675** | **0.6072** | **0.7556** | **0.819** | **0.7909** | **0.5478** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
1036
+ | cosine_mrr@20 | 0.813 | 0.5577 | 0.5116 | 0.8042 | 0.7951 | 0.7511 | 0.4105 |
1037
+ | cosine_mrr@50 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7957 | 0.7521 | 0.4105 |
1038
+ | cosine_mrr@100 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7522 | 0.4105 |
1039
+ | cosine_mrr@150 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7522 | 0.4105 |
1040
+ | cosine_mrr@200 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7523 | 0.4105 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
1042
+ | cosine_map@20 | 0.5582 | 0.4794 | 0.4028 | 0.5107 | 0.7345 | 0.6961 | 0.3301 |
1043
+ | cosine_map@50 | 0.548 | 0.4253 | 0.3591 | 0.4936 | 0.7369 | 0.6989 | 0.3301 |
1044
+ | cosine_map@100 | 0.5806 | 0.4305 | 0.3637 | 0.5228 | 0.7375 | 0.6996 | 0.3301 |
1045
+ | cosine_map@150 | 0.5883 | 0.4458 | 0.378 | 0.531 | 0.7376 | 0.6998 | 0.3301 |
1046
+ | cosine_map@200 | 0.592 | 0.4533 | 0.385 | 0.5344 | 0.7377 | 0.6998 | 0.3301 |
1047
+ | cosine_map@500 | 0.596 | 0.4657 | 0.398 | 0.5397 | 0.7378 | 0.6999 | 0.3301 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 64
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 64
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
1339
+ | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
1340
+ | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
1341
+ | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
1342
+ | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
1343
+ | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
1344
+ | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
1345
+ | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
1346
+ | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
1347
+ | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
1348
+ | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
1349
+ | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
1350
+ | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
1351
+ | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
1352
+ | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
1353
+ | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
1354
+ | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
1355
+ | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
1356
+ | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
1357
+ | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
1358
+ | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
1359
+ | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
1360
+ | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
1361
+ | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
1362
+ | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
1363
+ | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
1364
+ | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
1365
+ | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
1366
+ | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
1367
+ | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
1368
+ | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
1369
+ | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
1370
+ | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
1371
+ | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
1372
+ | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
1373
+ | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
1374
+ | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
1375
+ | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
1376
+ | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
1377
+ | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
1378
+ | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
1379
+ | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
1380
+ | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
1381
+ | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
1382
+ | 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
1383
+ | 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
1384
+ | 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
1385
+ | 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
1386
+
1387
+
1388
+ ### Framework Versions
1389
+ - Python: 3.11.11
1390
+ - Sentence Transformers: 4.1.0
1391
+ - Transformers: 4.51.2
1392
+ - PyTorch: 2.6.0+cu124
1393
+ - Accelerate: 1.6.0
1394
+ - Datasets: 3.5.0
1395
+ - Tokenizers: 0.21.1
1396
+
1397
+ ## Citation
1398
+
1399
+ ### BibTeX
1400
+
1401
+ #### Sentence Transformers
1402
+ ```bibtex
1403
+ @inproceedings{reimers-2019-sentence-bert,
1404
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1405
+ author = "Reimers, Nils and Gurevych, Iryna",
1406
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1407
+ month = "11",
1408
+ year = "2019",
1409
+ publisher = "Association for Computational Linguistics",
1410
+ url = "https://arxiv.org/abs/1908.10084",
1411
+ }
1412
+ ```
1413
+
1414
+ #### GISTEmbedLoss
1415
+ ```bibtex
1416
+ @misc{solatorio2024gistembed,
1417
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1418
+ author={Aivin V. Solatorio},
1419
+ year={2024},
1420
+ eprint={2402.16829},
1421
+ archivePrefix={arXiv},
1422
+ primaryClass={cs.LG}
1423
+ }
1424
+ ```
1425
+
1426
+ <!--
1427
+ ## Glossary
1428
+
1429
+ *Clearly define terms in order to be accessible across audiences.*
1430
+ -->
1431
+
1432
+ <!--
1433
+ ## Model Card Authors
1434
+
1435
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1436
+ -->
1437
+
1438
+ <!--
1439
+ ## Model Card Contact
1440
+
1441
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1442
+ -->
checkpoint-4600/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "classifier_dropout": 0.0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "LABEL_0"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "layer_norm_type": "layer_norm",
29
+ "logn_attention_clip1": false,
30
+ "logn_attention_scale": false,
31
+ "max_position_embeddings": 8192,
32
+ "model_type": "new",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "pack_qkv": true,
36
+ "pad_token_id": 1,
37
+ "position_embedding_type": "rope",
38
+ "rope_scaling": {
39
+ "factor": 8.0,
40
+ "type": "ntk"
41
+ },
42
+ "rope_theta": 20000,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.51.2",
45
+ "type_vocab_size": 1,
46
+ "unpad_inputs": false,
47
+ "use_memory_efficient_attention": false,
48
+ "vocab_size": 250048
49
+ }
checkpoint-4600/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-4600/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-4600/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-4600/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-4600/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
checkpoint-4600/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }
checkpoint-4600/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-4800/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-4800/README.md ADDED
@@ -0,0 +1,1444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-base
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5171428571428571
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.316
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18895238095238095
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13384126984126984
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.10433333333333335
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0678253733846715
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5470006025464504
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7399645316315758
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8452891149669638
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8838497168796887
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9109269128757174
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6953571805621692
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7150421121165462
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7679394555495317
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7856911059911225
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7969632777290026
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8138095238095239
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8138095238095239
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8138095238095239
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8138095238095239
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8138095238095239
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5578605627627369
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5471407389299809
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5795933384755297
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5874505508842796
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5912226659397186
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5952587557760031
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.5718918918918919
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.3885405405405405
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.25172972972972973
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.1904864864864865
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.1521891891891892
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.0036619075252531876
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3842245968041533
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.5640822196868902
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.6741986120580108
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.7463851968088967
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.7825399601398452
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.6139182209948354
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5873893466818746
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.6144038475288277
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.6498632077214272
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.6680602466150343
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5581081081081081
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5581081081081081
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5581081081081081
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5581081081081081
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5581081081081081
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.47988875190050484
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.4249833337950364
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.430155652024808
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.4458862132745998
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.45334655744992447
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.4656066165331343
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9704433497536946
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9852216748768473
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9852216748768473
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9901477832512315
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9901477832512315
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.5083743842364532
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.3654187192118227
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.24133004926108376
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.18036124794745487
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.14467980295566504
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.3221185941380065
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.5024502430161547
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.6247617904371989
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.6829583450315939
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.7216293640715983
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.5393376062142305
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.5267125529267169
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.55793511917882
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.5879547828450983
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.6071252185389439
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.5104381157401634
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.5109752961295605
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.5109752961295605
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.5110222114474118
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.5110222114474118
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.40097257642946377
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.35882787401455
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.3633182590941781
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.3776727961080201
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.3848401555555339
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.3978065874082948
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.6601941747572816
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.9805825242718447
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.9902912621359223
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.9902912621359223
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9902912621359223
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9902912621359223
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.6601941747572816
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.4781553398058253
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.28951456310679613
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.17572815533980585
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.12595469255663433
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.09815533980582528
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.06151358631979527
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.5107966412908705
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.6922746152164951
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.8004152884148357
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.8465065661615649
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.8770990926698364
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.6601941747572816
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.6539867858378715
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.6707332209240133
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.72342020484322
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.7437750875502527
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.7553648453187212
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.6601941747572816
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.8037216828478965
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.8040950958426687
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.8040950958426687
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.8040950958426687
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.8040950958426687
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.6601941747572816
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.5087334164702914
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.49260246320797585
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.5217412166882693
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.529859818130126
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.533378795921413
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.5386011712914499
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.7280291211648466
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.9599583983359334
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.9791991679667187
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9942797711908476
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9958398335933437
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9973998959958398
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.7280291211648466
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.12433697347893914
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.05145085803432139
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.02625065002600105
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.017621771537528162
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.013283931357254294
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.28133620582918556
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.9183394002426764
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.9499306638932224
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.9700901369388107
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.9767724042295025
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9818166059975733
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.7280291211648466
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.8043549768911603
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.81295852465432
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.817339429558165
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.8186380742931886
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.8195485984235017
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.7280291211648466
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.7968549154271433
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.7974653825839162
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.7976914864910069
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.7977044635908871
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.7977139196654446
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.7280291211648466
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.7350836192117531
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.7374205090112232
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.737988888492803
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.7381133157945164
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.7381788581828236
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.7382854440643231
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.6703068122724909
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.9505980239209568
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.9776391055642226
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.9864794591783671
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.9932397295891836
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9947997919916797
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.6703068122724909
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.1251690067602704
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.052282891315652634
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.026729069162766517
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.01799965331946611
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.013541341653666149
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.25235742763043856
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.9095857167620037
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.9482405962905183
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.96845207141619
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.9781591263650546
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.9810192407696308
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.6703068122724909
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.7735712514376322
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.7843644592705362
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.7889444470773866
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.7908660087982327
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.791403470160319
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.6703068122724909
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.7520307321055828
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.7529374175534339
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.7530616872072472
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.7531202644382351
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.7531293951311296
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.6703068122724909
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.6967639778693541
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.699575457224443
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.70027844357658
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.7004487000056766
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.7004863395843564
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.7005835771389989
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.19084763390535622
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 1.0
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 1.0
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 1.0
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 1.0
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 1.0
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.19084763390535622
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.15439417576703063
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.0617576703068123
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.03087883515340615
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.020585890102270757
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.015439417576703075
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.06137978852487433
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 1.0
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 1.0
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 1.0
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 1.0
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 1.0
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.19084763390535622
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.5474303590499686
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.5474303590499686
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.5474303590499686
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.5474303590499686
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.5474303590499686
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.19084763390535622
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.4093433087972877
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.4093433087972877
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.4093433087972877
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.4093433087972877
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.4093433087972877
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.19084763390535622
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.32981711891302556
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.32981711891302556
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.32981711891302556
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.32981711891302556
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.32981711891302556
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.32981711891302556
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)
908
+
909
+ Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 768 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
939
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 768]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1018
+ | cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 |
1019
+ | cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 |
1020
+ | cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 |
1021
+ | cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
1022
+ | cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
1023
+ | cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 |
1024
+ | cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 |
1025
+ | cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 |
1026
+ | cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 |
1027
+ | cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 |
1028
+ | cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1030
+ | cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 |
1031
+ | cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 |
1032
+ | cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 |
1033
+ | cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 |
1034
+ | **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1036
+ | cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 |
1037
+ | cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 |
1038
+ | cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1039
+ | cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1040
+ | cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
1042
+ | cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 |
1043
+ | cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 |
1044
+ | cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 |
1045
+ | cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 |
1046
+ | cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 |
1047
+ | cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 64
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 64
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
1339
+ | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
1340
+ | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
1341
+ | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
1342
+ | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
1343
+ | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
1344
+ | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
1345
+ | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
1346
+ | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
1347
+ | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
1348
+ | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
1349
+ | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
1350
+ | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
1351
+ | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
1352
+ | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
1353
+ | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
1354
+ | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
1355
+ | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
1356
+ | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
1357
+ | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
1358
+ | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
1359
+ | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
1360
+ | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
1361
+ | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
1362
+ | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
1363
+ | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
1364
+ | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
1365
+ | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
1366
+ | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
1367
+ | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
1368
+ | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
1369
+ | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
1370
+ | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
1371
+ | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
1372
+ | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
1373
+ | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
1374
+ | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
1375
+ | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
1376
+ | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
1377
+ | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
1378
+ | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
1379
+ | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
1380
+ | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
1381
+ | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
1382
+ | 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
1383
+ | 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
1384
+ | 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
1385
+ | 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
1386
+ | 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - |
1387
+ | 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 |
1388
+
1389
+
1390
+ ### Framework Versions
1391
+ - Python: 3.11.11
1392
+ - Sentence Transformers: 4.1.0
1393
+ - Transformers: 4.51.2
1394
+ - PyTorch: 2.6.0+cu124
1395
+ - Accelerate: 1.6.0
1396
+ - Datasets: 3.5.0
1397
+ - Tokenizers: 0.21.1
1398
+
1399
+ ## Citation
1400
+
1401
+ ### BibTeX
1402
+
1403
+ #### Sentence Transformers
1404
+ ```bibtex
1405
+ @inproceedings{reimers-2019-sentence-bert,
1406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1407
+ author = "Reimers, Nils and Gurevych, Iryna",
1408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1409
+ month = "11",
1410
+ year = "2019",
1411
+ publisher = "Association for Computational Linguistics",
1412
+ url = "https://arxiv.org/abs/1908.10084",
1413
+ }
1414
+ ```
1415
+
1416
+ #### GISTEmbedLoss
1417
+ ```bibtex
1418
+ @misc{solatorio2024gistembed,
1419
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1420
+ author={Aivin V. Solatorio},
1421
+ year={2024},
1422
+ eprint={2402.16829},
1423
+ archivePrefix={arXiv},
1424
+ primaryClass={cs.LG}
1425
+ }
1426
+ ```
1427
+
1428
+ <!--
1429
+ ## Glossary
1430
+
1431
+ *Clearly define terms in order to be accessible across audiences.*
1432
+ -->
1433
+
1434
+ <!--
1435
+ ## Model Card Authors
1436
+
1437
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1438
+ -->
1439
+
1440
+ <!--
1441
+ ## Model Card Contact
1442
+
1443
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1444
+ -->
checkpoint-4800/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "classifier_dropout": 0.0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "LABEL_0"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "layer_norm_type": "layer_norm",
29
+ "logn_attention_clip1": false,
30
+ "logn_attention_scale": false,
31
+ "max_position_embeddings": 8192,
32
+ "model_type": "new",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "pack_qkv": true,
36
+ "pad_token_id": 1,
37
+ "position_embedding_type": "rope",
38
+ "rope_scaling": {
39
+ "factor": 8.0,
40
+ "type": "ntk"
41
+ },
42
+ "rope_theta": 20000,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.51.2",
45
+ "type_vocab_size": 1,
46
+ "unpad_inputs": false,
47
+ "use_memory_efficient_attention": false,
48
+ "vocab_size": 250048
49
+ }
checkpoint-4800/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-4800/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-4800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f7282ab1794e08c4b4b08e435d1c280f8ffd3b854395a11b620a7472776d29
3
+ size 15958
checkpoint-4800/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c143c5f287168ca43f876b42c855fa8ed58ac53946ea92028d4871161e59c35
3
+ size 988
checkpoint-4800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:771de1c33cd39219f8ff19435c56de0d3d8a374202466259d71fb8e3c5a3e7c4
3
+ size 1064
checkpoint-4800/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-4800/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-4800/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
checkpoint-4800/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizerFast",
54
+ "unk_token": "<unk>"
55
+ }
checkpoint-4800/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-4800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40c33010f3b5232b8f1e5876490b57675597dbc48a2cd0560f16d15d56ebb4e1
3
+ size 5624
eval/Information-Retrieval_evaluation_full_es_results.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.2053388090349076,200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036542148230633313,0.5602702702702703,0.3828077426666972,0.38335135135135134,0.5653252324643432,0.2503783783783784,0.6800221958461447,0.18681081081081083,0.7388915948699079,0.149972972972973,0.7804837951694225,0.12432432432432433,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.12432432432432433,0.6019271564713847,0.5833730603752632,0.6139937306765353,0.6433585312593553,0.6632845626952335,0.12432432432432433,0.4633435867906743,0.4188093941413692,0.42609267111605426,0.44016851054024486,0.4482545851085946,0.4607662221292372
3
+ 0.4106776180698152,400,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0035436931012884127,0.5683783783783785,0.3810462671828017,0.38324324324324327,0.5543993842372753,0.24810810810810813,0.6700411876973422,0.18515315315315314,0.7311788302888577,0.14832432432432432,0.7678363663093309,0.11891891891891893,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.11891891891891893,0.608829799528409,0.5811778113289973,0.6102432927126396,0.6401874966927388,0.6585608274394179,0.11891891891891893,0.4730257073536956,0.4194802635669368,0.4252576537009097,0.4385610105081702,0.44599736870498363,0.4586336991926438
4
+ 0.6160164271047228,600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0035045234969014166,0.5713513513513514,0.3846125291226745,0.3913513513513514,0.5682209903507661,0.2525945945945946,0.6778875140787548,0.1881081081081081,0.738073200978772,0.15154054054054053,0.7822033748058627,0.11351351351351352,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.11351351351351352,0.6120507278465956,0.589300707007821,0.615928427138543,0.6457992728749911,0.667053226562886,0.11351351351351352,0.47819284350499,0.4243332984656309,0.4304507877187128,0.44417898246014825,0.4525438357699329,0.46507797386754063
5
+ 0.8213552361396304,800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0036933844274503265,0.5781081081081081,0.3874647857418556,0.39372972972972975,0.5727008693667749,0.2557837837837838,0.6842591787966371,0.1899099099099099,0.7400278311282196,0.1514594594594595,0.7809088317561025,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6199466914696183,0.5960674362052089,0.6240359667874307,0.6520216816558552,0.6710916559047866,0.12972972972972974,0.4878817205058847,0.4341970857400079,0.4408342359843624,0.45414196691999603,0.4614165994644783,0.47385564807420766
6
+ 1.0266940451745379,1000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036231843572502565,0.5637837837837838,0.37729156169584205,0.3885405405405405,0.5633539830825378,0.25464864864864867,0.6827730159650425,0.18990990990990994,0.7428633667293452,0.15132432432432433,0.7782685040521145,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6057777177642741,0.5867260726659175,0.6183196404646596,0.6481962270281353,0.6659059109179445,0.12432432432432433,0.4687261860511995,0.42180542179418523,0.4308714867841366,0.4446949532622736,0.45192025430903376,0.46527408086342625
7
+ 1.2320328542094456,1200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.577027027027027,0.3847769295694512,0.38789189189189194,0.5614675431439459,0.25416216216216214,0.6788995357226216,0.1912792792792793,0.7447525709656728,0.15318918918918917,0.7841950250873984,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6153010648078737,0.5862024056553702,0.6170116332997596,0.6500916277248869,0.6695594700373524,0.12432432432432433,0.4795409082105716,0.42295585561484256,0.430282617284781,0.4456649970867384,0.4534754614662622,0.46568048911518123
8
+ 1.4373716632443532,1400,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036542148230633313,0.5778378378378378,0.3854462956207493,0.3930810810810811,0.5718241254218704,0.25702702702702707,0.6876874645193202,0.19196396396396398,0.7494223714305853,0.15375675675675676,0.792200813255954,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6183362743387226,0.5942702286222415,0.6245437474082477,0.6553581121410758,0.6756783811750192,0.12432432432432433,0.48462670819493664,0.4313917915592608,0.4396814925285873,0.4540585313589766,0.46184599750190675,0.47440674302762886
9
+ 1.6427104722792607,1600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0035045234969014166,0.5764864864864865,0.3838299041397214,0.3923243243243243,0.5676927670554055,0.2550810810810811,0.6800509517344185,0.19102702702702704,0.7443262071007248,0.15316216216216216,0.7883305977043269,0.11351351351351352,0.551981981981982,0.551981981981982,0.551981981981982,0.551981981981982,0.551981981981982,0.11351351351351352,0.6164256669688939,0.5912816216435999,0.6197132420680798,0.6514620845615328,0.6723348835622636,0.11351351351351352,0.4822334196423875,0.428689300381166,0.4358240738421247,0.45072644527221695,0.45843672035723626,0.47144338596575885
10
+ 1.8480492813141685,1800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5781081081081081,0.3843655271102247,0.39178378378378387,0.5676845000312233,0.2542702702702703,0.6787154918207249,0.18785585585585585,0.7320225875719449,0.15113513513513513,0.7761507059670063,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6185956862201957,0.5911825957843169,0.619072389909614,0.6455432274603132,0.6667655327783534,0.12972972972972974,0.4837965937849941,0.4285331090232545,0.43606519106346137,0.4482049475328162,0.4562691988973938,0.46885714095350695
11
+ 2.0544147843942504,2000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.5754054054054053,0.38145806817133593,0.38724324324324316,0.5609230769799306,0.25313513513513514,0.6732219748754285,0.1890810810810811,0.7352593490969169,0.15135135135135136,0.7750850885027253,0.12432432432432433,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.12432432432432433,0.6150465394619441,0.5856947806997886,0.6145141363648746,0.6453998709917663,0.6647428229280057,0.12432432432432433,0.4825873237596062,0.4233448232888883,0.43062097640739355,0.44500664950380214,0.4524896138305996,0.4654736935141093
12
+ 2.259753593429158,2200,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0035747235671014874,0.5689189189189189,0.37777386748934544,0.3911351351351352,0.5649004100538018,0.25275675675675674,0.6795926106033889,0.18738738738738742,0.732879504902313,0.1511081081081081,0.7801094330153461,0.11891891891891893,0.554954954954955,0.554954954954955,0.554954954954955,0.554954954954955,0.554954954954955,0.11891891891891893,0.6102156454096861,0.5880185911691195,0.6157958581477553,0.6430878006010147,0.6652050601478975,0.11891891891891893,0.47682238898990137,0.42447626539918315,0.4292496912787929,0.4423464730434234,0.4509245941088909,0.46326314665597734
13
+ 2.465092402464066,2400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0036933844274503265,0.5694594594594594,0.37897271285529815,0.38951351351351354,0.564877405689267,0.2525945945945946,0.6775440114898331,0.1889009009009009,0.7399484000008381,0.15232432432432433,0.7852643837938816,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6114452843733574,0.5885739212092884,0.6163707400008701,0.6471826727296124,0.6690296055702684,0.12972972972972974,0.4778421789596433,0.42528298846411233,0.4308215112766512,0.4453858074670597,0.4540712408593371,0.4662322432529058
14
+ 2.6704312114989732,2600,0.13513513513513514,1.0,1.0,1.0,1.0,1.0,0.13513513513513514,0.0037805683856020266,0.5689189189189189,0.37980549211286346,0.39156756756756755,0.5654990665744473,0.2554054054054054,0.6811080928479146,0.1920720720720721,0.7500526739804151,0.15478378378378377,0.7971983411426202,0.13513513513513514,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.13513513513513514,0.6112694350799244,0.5897596950997224,0.6196123237451338,0.653341969847444,0.6757815538442021,0.13513513513513514,0.4768630502305793,0.4268490797781516,0.43438544166855364,0.4498742166248682,0.45867889167253034,0.4703139514013845
15
+ 2.875770020533881,2800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5759459459459461,0.38642757375013415,0.3905945945945946,0.5678636581736557,0.25335135135135134,0.6828369327276755,0.19149549549549547,0.7494392702606744,0.1528108108108108,0.7876309603981632,0.12972972972972974,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.12972972972972974,0.6166342865591007,0.5902204952624381,0.6193734266318873,0.6531118980314357,0.6718916215504982,0.12972972972972974,0.4825471418519291,0.42696486553261526,0.4331297275336443,0.4492308538620596,0.4566434936651272,0.4686210351280788
16
+ 3.082135523613963,3000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.5732432432432432,0.3843298086450538,0.38875675675675686,0.5650294350649707,0.25416216216216214,0.6803318262694354,0.1910630630630631,0.7403401943726319,0.15264864864864863,0.779930588965831,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6143008527055751,0.5877390176744759,0.6177618735749928,0.648977793940304,0.6681685872747991,0.12432432432432433,0.4785583292524849,0.4243560892850918,0.4318640928093425,0.4471005875068474,0.45439053305098065,0.46665216860447767
17
+ 3.2874743326488707,3200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.571081081081081,0.3828514779996719,0.39081081081081087,0.5673342901285358,0.2558378378378378,0.6844506535508201,0.19210810810810813,0.7483366539961698,0.1532972972972973,0.7878739392122067,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6127977853629571,0.5896774300207103,0.6205913187119861,0.652649303380801,0.6717100228964664,0.12432432432432433,0.4776124239982684,0.42680207356106176,0.4345050542016339,0.4495238771603171,0.45698068155359556,0.468967880585077
18
+ 3.4928131416837784,3400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.003701077129640182,0.567027027027027,0.3804982136664571,0.3875675675675676,0.5629699580592333,0.25081081081081086,0.6707062354999778,0.1889009009009009,0.7368379061779298,0.15054054054054056,0.7766992539904688,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6089336440451314,0.5856625822268604,0.6117458478660927,0.6445114367692948,0.6634236875631417,0.12972972972972974,0.4730243382102379,0.4222040964295926,0.427053097765836,0.4419405854099873,0.44898785309975947,0.46116246384135534
19
+ 3.6981519507186857,3600,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5678378378378378,0.3827628869405309,0.3863783783783784,0.5631375966688502,0.24967567567567567,0.6708095319711836,0.18807207207207208,0.7352302478861616,0.1507027027027027,0.7771325965481749,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6104723243523141,0.5851867564637715,0.6111351459739588,0.6434844421459089,0.6635444455655303,0.12972972972972974,0.47463453452331006,0.4217990464159235,0.4265057087682277,0.440835085807051,0.44854541040657625,0.4606477333412848
20
+ 3.9034907597535935,3800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.572972972972973,0.3863687030094713,0.39156756756756755,0.5684964616110271,0.25243243243243246,0.6746797199000947,0.1914234234234234,0.7467802963396935,0.1522972972972973,0.7847156758414823,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6146096492130458,0.5903942165828612,0.6157380431058012,0.6513020633067227,0.6695734441770614,0.12972972972972974,0.47857516088611635,0.42741121568687945,0.43204147433500506,0.44812154826154116,0.45515154391733104,0.467280855272183
21
+ 4.108829568788501,4000,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5705405405405405,0.38432915927625627,0.38962162162162167,0.5663097940153319,0.25140540540540546,0.6710180189388714,0.19012612612612612,0.7443549924512646,0.15154054054054056,0.7804985217049148,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6133809590566169,0.5888378318443163,0.613553130716134,0.6492700673561147,0.6672020616803231,0.12972972972972974,0.47928087268629077,0.4265150109477007,0.4308614258675324,0.446315567522346,0.45361884446786194,0.46587892353181215
22
+ 4.314168377823409,4200,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5735135135135134,0.3850053775723816,0.3912432432432432,0.5678708571543062,0.2531351351351352,0.6771132401665688,0.19113513513513514,0.7476366668984507,0.15186486486486486,0.7806646181068078,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6155696219376317,0.5902714649088991,0.6166603984916751,0.6514414937889701,0.6681110549873654,0.12972972972972974,0.4821585422089324,0.4278073015090324,0.4325091891776662,0.4481236866241766,0.45495240914630236,0.4674583582676571
23
+ 4.519507186858316,4400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5721621621621621,0.38564412906376994,0.3898378378378379,0.56634717829376,0.25248648648648647,0.6751207657229007,0.19001801801801804,0.7429721526766266,0.15216216216216216,0.782741009344735,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6146062832951104,0.5888430944817052,0.6153911974508461,0.6488811790186049,0.668484227215925,0.12972972972972974,0.48065989256661584,0.4260414587944102,0.4313410890675031,0.44627409433309473,0.45409073457648325,0.4664141280463215
24
+ 4.724845995893224,4600,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.5713513513513514,0.3842833355443445,0.3888648648648649,0.5650012903557396,0.25194594594594594,0.6742574573080582,0.18998198198198196,0.7433217612578467,0.1519189189189189,0.7815387878511015,0.12432432432432433,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.12432432432432433,0.6134037350149425,0.587765249332833,0.6145100789008344,0.6485708474409041,0.6674981723654128,0.12432432432432433,0.47936111065720205,0.4252592911005701,0.4304825507648424,0.4457575975367371,0.4532981716560443,0.4657478115586777
25
+ 4.930184804928132,4800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.5718918918918919,0.3842245968041533,0.3885405405405405,0.5640822196868902,0.25172972972972973,0.6741986120580108,0.1904864864864865,0.7463851968088967,0.1521891891891892,0.7825399601398452,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6139182209948354,0.5873893466818746,0.6144038475288277,0.6498632077214272,0.6680602466150343,0.12432432432432433,0.47988875190050484,0.4249833337950364,0.430155652024808,0.4458862132745998,0.45334655744992447,0.4656066165331343
eval/Information-Retrieval_evaluation_mix_de_results.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.2053388090349076,200,0.5824232969318772,0.890795631825273,0.9344773790951638,0.9625585023400937,0.9713988559542381,0.9755590223608944,0.5824232969318772,0.21945744496446523,0.10995839833593343,0.8010140405616224,0.04770670826833075,0.8672560235742762,0.025023400936037447,0.9088503891032834,0.017067082683307328,0.928888523962011,0.013003120124804996,0.9424478382644077,0.5824232969318772,0.6686146655052267,0.6700220401420418,0.6704225963707373,0.6704949320904295,0.6705196374407493,0.5824232969318772,0.6671050419586103,0.6853068462793799,0.6945910686245909,0.6985990036687157,0.7011459404427492,0.5824232969318772,0.5804077947241746,0.5851378642364741,0.5864292325266649,0.5868080085531887,0.5870045172476335,0.587255698964039
3
+ 0.4106776180698152,400,0.6058242329693188,0.9001560062402496,0.9438377535101404,0.9661986479459178,0.9786791471658867,0.984919396775871,0.6058242329693188,0.22767377361761137,0.11453458138325531,0.8328913156526262,0.049277171086843485,0.8950078003120124,0.025501820072802914,0.9252310443294924,0.01738949557982319,0.9456258952112471,0.013208528341133648,0.9575863736303838,0.6058242329693188,0.6916097716264229,0.6930731873244362,0.6933861079128469,0.6934856963760448,0.6935223150466893,0.6058242329693188,0.6978257678791413,0.7148134512905183,0.7215656325178118,0.7256044427041147,0.7278106695507355,0.6058242329693188,0.6136914531088427,0.6180001645069843,0.6189322601089229,0.6193042781784874,0.6194584295615786,0.6196563244482027
4
+ 0.6160164271047228,600,0.6136245449817993,0.9027561102444098,0.9511180447217888,0.9724388975559022,0.9823192927717108,0.9880395215808633,0.6136245449817993,0.2296931877275091,0.1156786271450858,0.8399982665973306,0.04980759230369215,0.9041254983532674,0.025803432137285493,0.9360807765643959,0.01750390015600624,0.9516220999717182,0.013304732189287575,0.9633773070221053,0.6136245449817993,0.6967436196163437,0.6983767208927972,0.6986755582030411,0.6987550736361285,0.6987871879396401,0.6136245449817993,0.7039015030314165,0.7214196598697487,0.7285557386019151,0.731660833854203,0.7338649218512935,0.6136245449817993,0.6199336468860212,0.6243059725986513,0.6252932577240808,0.6255849080363306,0.6257398204144359,0.6259188350215349
5
+ 0.8213552361396304,800,0.6198647945917837,0.9199167966718669,0.9599583983359334,0.9771190847633905,0.984919396775871,0.9890795631825273,0.6198647945917837,0.23226729069162766,0.11835673426937077,0.8603137458831687,0.05055642225689029,0.9172906916276651,0.026058242329693195,0.9446177847113885,0.01765643959091697,0.9596550528687814,0.01338013520540822,0.9689127915993833,0.6198647945917837,0.7067310519072951,0.7080323481502147,0.7082793254956429,0.7083435341245732,0.708367858453663,0.6198647945917837,0.7179147930131626,0.7335369696209415,0.7396898870736865,0.7426721836970417,0.7444074102762905,0.6198647945917837,0.6325265171671292,0.6365112891787109,0.6373788268173515,0.6376617577798908,0.6377881327329524,0.6379357654928159
6
+ 1.0266940451745379,1000,0.641185647425897,0.9261570462818512,0.9641185647425897,0.9817992719708788,0.9875195007800313,0.9932397295891836,0.641185647425897,0.2409169700121338,0.11957878315132604,0.868322066215982,0.05092043681747271,0.9239296238516207,0.026287051482059287,0.953371468192061,0.017784711388455537,0.9668053388802219,0.013426937077483103,0.9728996177390954,0.641185647425897,0.723512152520197,0.7247732383573519,0.7250213151606678,0.7250670172565229,0.725101115499198,0.641185647425897,0.7331582819294082,0.7484853776582061,0.7550159668996201,0.7577049278428191,0.7588390730905107,0.641185647425897,0.6507883293963721,0.6548526090599666,0.6557655896025038,0.6560320335460608,0.6561000390732701,0.6562403086721103
7
+ 1.2320328542094456,1200,0.6469058762350494,0.9292771710868435,0.9625585023400937,0.9812792511700468,0.9895995839833593,0.9927197087883516,0.6469058762350494,0.24236436124111632,0.11991679667186687,0.8719188767550701,0.05069162766510661,0.9197694574449645,0.026261050442017687,0.9518114057895649,0.017791644999133292,0.9665726979956392,0.013450338013520543,0.9738529892072876,0.6469058762350494,0.7269400985028893,0.7280394635287579,0.7283120754443227,0.7283774712480807,0.7283958171968078,0.6469058762350494,0.7376190451778748,0.7508860063210446,0.7580843131044783,0.7610353115310864,0.7623967599316989,0.6469058762350494,0.6568766292733668,0.6603301597824439,0.6613474042139721,0.661638250077651,0.6617378656761332,0.661867663149717
8
+ 1.4373716632443532,1400,0.6531461258450338,0.9308372334893396,0.9651586063442538,0.984399375975039,0.9906396255850234,0.9942797711908476,0.6531461258450338,0.24460045068469405,0.1204368174726989,0.8760703761483793,0.051170046801872086,0.9280464551915409,0.026417056682267296,0.9580083203328134,0.017847113884555378,0.970055468885422,0.013497139885595427,0.9776391055642226,0.6531461258450338,0.7301427290607674,0.73127221921329,0.7315515852685716,0.7316041804827806,0.7316258311778456,0.6531461258450338,0.7400846276876067,0.7544954223077399,0.7611232562936333,0.7635508214909821,0.7649716494639359,0.6531461258450338,0.6582591347527325,0.6620448798560229,0.6629532720507669,0.6631839344942984,0.6632878487109075,0.663394290277717
9
+ 1.6427104722792607,1600,0.6531461258450338,0.9282371294851794,0.9672386895475819,0.984399375975039,0.9916796671866874,0.9927197087883516,0.6531461258450338,0.24526781071242848,0.12061882475299011,0.876269717455365,0.051305252210088415,0.930516553995493,0.026417056682267296,0.9579216501993414,0.017867914716588662,0.9713121858207663,0.013478939157566308,0.9765990639625585,0.6531461258450338,0.7297931034955463,0.7310949829556551,0.7313458635342546,0.7314015672242672,0.7314070148575023,0.6531461258450338,0.7411519844144333,0.7562323464980976,0.7623550920981482,0.7650222597446915,0.7660148980251885,0.6531461258450338,0.6598824970349082,0.6638312074627658,0.6647182775063895,0.6649656128823839,0.6650428618726513,0.6651608439550554
10
+ 1.8480492813141685,1800,0.655746229849194,0.9313572542901716,0.967758710348414,0.984399375975039,0.9901196047841914,0.9927197087883516,0.655746229849194,0.24639452244756457,0.12121684867394694,0.8807245623158259,0.05134685387415497,0.9323799618651413,0.026427457098283938,0.9584850060669092,0.01785404749523314,0.97040214941931,0.013471138845553827,0.9760790431617264,0.655746229849194,0.7359661579803044,0.7371839757004826,0.7374316676183734,0.7374778751542778,0.7374937192664236,0.655746229849194,0.747961593820956,0.7620851284167808,0.7679714384557973,0.7703599291055326,0.7714144528908776,0.655746229849194,0.6682485275594054,0.6718501706313308,0.6726831971840679,0.672906327059626,0.672984318369321,0.6730960459348426
11
+ 2.0544147843942504,2000,0.6547061882475299,0.9365574622984919,0.9713988559542381,0.983879355174207,0.9901196047841914,0.9937597503900156,0.6547061882475299,0.24629051828739817,0.12184087363494539,0.8856474258970358,0.051648465938637554,0.9372248223262264,0.026510660426417063,0.9610417750043336,0.017899115964638588,0.9730022534234704,0.013512740509620388,0.9789824926330386,0.6547061882475299,0.734953306211269,0.7360724461513224,0.7362604762082307,0.736310379668506,0.7363320594909445,0.6547061882475299,0.7501708892155533,0.7643740612112161,0.7697269409372974,0.7720989054331775,0.7732212507206273,0.6547061882475299,0.6706228544587022,0.6742958831841708,0.6750767013506579,0.6753004485993032,0.6753808341815668,0.6754764501239573
12
+ 2.259753593429158,2200,0.6495059802392096,0.9339573582943318,0.9750390015600624,0.9875195007800313,0.9895995839833593,0.9947997919916797,0.6495059802392096,0.24444444444444446,0.1220228809152366,0.8857947651239382,0.051752470098803974,0.9388282197954585,0.026583463338533547,0.9632951984746055,0.017926850407349624,0.9739989599583984,0.013551742069682791,0.9817126018374069,0.6495059802392096,0.7317406351805603,0.7330178506535835,0.7331845752525227,0.7332024734980075,0.7332323545925215,0.6495059802392096,0.749844314932409,0.7643258266456834,0.7698372693681987,0.7719596031454881,0.7733737187427536,0.6495059802392096,0.6710144415214195,0.6745997972154377,0.6754157585321406,0.6756270441179111,0.6757258475913458,0.6758073431120588
13
+ 2.465092402464066,2400,0.6521060842433697,0.9401976079043162,0.9708788351534061,0.9859594383775351,0.9906396255850234,0.9937597503900156,0.6521060842433697,0.2450078003120125,0.12259490379615184,0.891142312359161,0.05174206968278733,0.9381868608077656,0.026562662506500266,0.9625585023400937,0.017919916796671865,0.9740856300918704,0.01352834113364535,0.9802392095683827,0.6521060842433697,0.7349706584794825,0.7360203516763673,0.7362484971298274,0.7362874510511505,0.7363052831644673,0.6521060842433697,0.7514313213364424,0.7645915252490415,0.7700800079311404,0.7723411044676748,0.7734871450981708,0.6521060842433697,0.67003898125552,0.6735751668034196,0.6743691079556863,0.6745756303601855,0.6746624975062249,0.6747632068113166
14
+ 2.6704312114989732,2600,0.6536661466458659,0.9381175247009881,0.9703588143525741,0.9854394175767031,0.9916796671866874,0.9958398335933437,0.6536661466458659,0.24587450164673252,0.12282891315652626,0.8930750563355867,0.05167966718668748,0.9377968452071417,0.026552262090483628,0.9624284971398855,0.017933784018027386,0.9747789911596464,0.013541341653666149,0.9811925810365748,0.6536661466458659,0.7373857427749009,0.7385000464999506,0.738719487795195,0.7387713118408488,0.7387956405134187,0.6536661466458659,0.755149068100915,0.7675543097789403,0.7731235795059239,0.7755614120877131,0.7767483456621986,0.6536661466458659,0.6752645042438818,0.6784554571817863,0.6792712280157911,0.6794904476645582,0.6795751687891997,0.6796700471093178
15
+ 2.875770020533881,2800,0.6651066042641706,0.9412376495059802,0.9734789391575663,0.984399375975039,0.9921996879875195,0.9942797711908476,0.6651066042641706,0.25062402496099845,0.12327093083723348,0.8951118044721789,0.05196047841913678,0.9431270584156699,0.026547061882475305,0.9621251516727336,0.017912983185994102,0.9737389495579823,0.01353614144565783,0.9808459005026867,0.6651066042641706,0.7447057162349396,0.7457938217093175,0.7459476857643497,0.7460107206090002,0.7460226155893531,0.6651066042641706,0.7607569908925185,0.7738642721422997,0.7782002609687475,0.7804702046847336,0.7817818016898852,0.6651066042641706,0.6824310256371793,0.685769301349588,0.6864131853857557,0.6866036842499446,0.6866997216650711,0.6868009169562614
16
+ 3.082135523613963,3000,0.6661466458658346,0.9443577743109725,0.9750390015600624,0.984919396775871,0.9916796671866874,0.9932397295891836,0.6661466458658346,0.25062402496099845,0.1234789391575663,0.896238516207315,0.052054082163286546,0.9445311145779165,0.026604264170566827,0.9641185647425897,0.017926850407349624,0.9743456404922862,0.01352834113364535,0.9801525394349107,0.6661466458658346,0.7464169509265817,0.7474550994157608,0.7476003509741266,0.7476590729610166,0.7476687655877939,0.6661466458658346,0.7640416023030964,0.7772648865502759,0.7817421536267213,0.7837612033967705,0.7848431573634226,0.6661466458658346,0.6873288696219481,0.6907802183912366,0.6914523791132502,0.6916310113321876,0.6917144768814371,0.691810994391746
17
+ 3.2874743326488707,3200,0.6645865834633385,0.9464378575143005,0.9729589183567343,0.9854394175767031,0.9895995839833593,0.9927197087883516,0.6645865834633385,0.2500173340266944,0.12334893395735828,0.896151846073843,0.051939677587103494,0.9423210261743804,0.026578263130525227,0.9635118738082856,0.017906049575316343,0.9733055988906222,0.013507540301612069,0.9787658172993586,0.6645865834633385,0.7433869700558867,0.7442863237155917,0.7444609180222659,0.7444966838015857,0.7445152574695719,0.6645865834633385,0.7619137547756507,0.7746988356255203,0.7794731762785382,0.7814274877816622,0.7824383670746612,0.6645865834633385,0.6847080148910323,0.6881316323671095,0.6888171087483478,0.6890031088980757,0.6890737606322342,0.6891753134206773
18
+ 3.4928131416837784,3400,0.6604264170566823,0.9479979199167967,0.9755590223608944,0.9869994799791991,0.9906396255850234,0.9942797711908476,0.6604264170566823,0.24819726122378227,0.12425897035881435,0.9031287918183393,0.052064482579303184,0.9446004506846941,0.02663026521060843,0.9651586063442538,0.017923383602010744,0.9740856300918702,0.01352314092563703,0.9798925290344946,0.6604264170566823,0.7411957880662449,0.7421341031933468,0.7423013773363349,0.7423339639832182,0.7423549073635346,0.6604264170566823,0.7632817895540933,0.7747278581631409,0.7793739698011521,0.7811638364681455,0.7822324273293833,0.6604264170566823,0.6844940922755857,0.6874343390709853,0.6881070773901289,0.6882828264127825,0.6883575877123549,0.6884625105227826
19
+ 3.6981519507186857,3600,0.6640665626625065,0.9479979199167967,0.9765990639625585,0.9869994799791991,0.9911596463858554,0.9942797711908476,0.6640665626625065,0.2497573236262784,0.12446697867914715,0.9039088230195874,0.05206448257930319,0.9446437857514302,0.026671866874674995,0.9667186687467498,0.017937250823366262,0.9750390015600624,0.013546541861674468,0.9817126018374068,0.6640665626625065,0.7444151495436726,0.7453714641249883,0.7455234088060528,0.7455579756624613,0.7455765617713824,0.6640665626625065,0.7651622845341957,0.7764622150886418,0.7814728174494031,0.783119149591433,0.7843548910978398,0.6640665626625065,0.686265061048045,0.6892551200216643,0.6900189954189452,0.6901706054009246,0.6902620634727198,0.6903466810311089
20
+ 3.9034907597535935,3800,0.6682267290691628,0.9474778991159646,0.9765990639625585,0.9864794591783671,0.9921996879875195,0.9947997919916797,0.6682267290691628,0.2512307158953025,0.12475299011960478,0.9057722308892355,0.05217888715548623,0.9462645172473565,0.026656266250650037,0.966371988212862,0.017982319292771706,0.9772924250303345,0.013538741549661988,0.9808459005026867,0.6682267290691628,0.749539837016351,0.7505835257894989,0.7507225998991089,0.7507702961100938,0.7507859876637466,0.6682267290691628,0.7699298794056397,0.7811815187176623,0.7856773518895132,0.787866276832638,0.7885328568032918,0.6682267290691628,0.6924317728526937,0.6953819295464787,0.6960351508135207,0.6962400021157449,0.6962837979968974,0.6963746897826547
21
+ 4.108829568788501,4000,0.6697867914716589,0.9505980239209568,0.9771190847633905,0.9859594383775351,0.9921996879875195,0.9942797711908476,0.6697867914716589,0.2517940717628705,0.12470098803952159,0.9059022360894435,0.05225169006760271,0.9474345640492287,0.026708268330733236,0.967932050615358,0.01798231929277171,0.9771190847633905,0.01353874154966199,0.9807592303692148,0.6697867914716589,0.7504302722692131,0.7513280223222801,0.7514573016845009,0.7515108675350354,0.7515238522218625,0.6697867914716589,0.770344092734726,0.7819450345813985,0.7865455025019679,0.7883807621544129,0.7890604802329748,0.6697867914716589,0.6929705838065172,0.696080766802269,0.6967651580129317,0.6969258122016383,0.6969715581100935,0.6970655432634698
22
+ 4.314168377823409,4200,0.6666666666666666,0.9479979199167967,0.9760790431617264,0.9859594383775351,0.9927197087883516,0.9947997919916797,0.6666666666666666,0.25062402496099845,0.12483099323972958,0.9064222568902757,0.05219968798751951,0.9466805338880222,0.026682267290691637,0.9669786791471658,0.017985786098110586,0.9774657652972785,0.013541341653666149,0.9810192407696308,0.6666666666666666,0.7486665934008992,0.7496295288804224,0.74976967024613,0.7498264653686212,0.7498390441909701,0.6666666666666666,0.7705186419550625,0.7817408957971655,0.786309170410984,0.7883932008449921,0.7890611279585495,0.6666666666666666,0.6933856329177108,0.6963720532834866,0.6970430360365766,0.6972336080548289,0.697279051235347,0.6973750625395665
23
+ 4.519507186858316,4400,0.6687467498699948,0.9495579823192928,0.9781591263650546,0.9864794591783671,0.9937597503900156,0.9947997919916797,0.6687467498699948,0.2516640665626625,0.1250390015600624,0.9084156699601317,0.05221008840353615,0.9471138845553821,0.026718668746749875,0.9683654012827179,0.017996186514127228,0.9779857860981105,0.013546541861674468,0.9813659213035187,0.6687467498699948,0.7497638732138926,0.7507175554997805,0.7508323831532827,0.7508936641683207,0.7509002910567728,0.6687467498699948,0.771957090473385,0.7827623591767751,0.7875734242708617,0.7894969663782526,0.7901321903376272,0.6687467498699948,0.6950013134615064,0.6978571886056382,0.6985915209847109,0.6987589388742937,0.6988064092994788,0.6989004605248843
24
+ 4.724845995893224,4600,0.6687467498699948,0.9495579823192928,0.9776391055642226,0.9864794591783671,0.9932397295891836,0.9947997919916797,0.6687467498699948,0.2518374068296065,0.1251430057202288,0.9091090310279077,0.052282891315652634,0.9482405962905183,0.026723868954758197,0.968278731149246,0.01799965331946611,0.9781591263650546,0.013541341653666149,0.9810192407696308,0.6687467498699948,0.7511103493630668,0.7520644853972484,0.75218787562777,0.7522459565052304,0.7522551943857011,0.6687467498699948,0.7729181248399849,0.7838354251194414,0.78838397650382,0.7903404232459181,0.7908776550064243,0.6687467498699948,0.6960508888943099,0.698910694860312,0.699611558838961,0.6997846710668125,0.6998222199397084,0.6999210147339264
25
+ 4.930184804928132,4800,0.6703068122724909,0.9505980239209568,0.9776391055642226,0.9864794591783671,0.9932397295891836,0.9947997919916797,0.6703068122724909,0.25235742763043856,0.1251690067602704,0.9095857167620037,0.052282891315652634,0.9482405962905183,0.026729069162766517,0.96845207141619,0.01799965331946611,0.9781591263650546,0.013541341653666149,0.9810192407696308,0.6703068122724909,0.7520307321055828,0.7529374175534339,0.7530616872072472,0.7531202644382351,0.7531293951311296,0.6703068122724909,0.7735712514376322,0.7843644592705362,0.7889444470773866,0.7908660087982327,0.791403470160319,0.6703068122724909,0.6967639778693541,0.699575457224443,0.70027844357658,0.7004487000056766,0.7004863395843564,0.7005835771389989
eval/Information-Retrieval_evaluation_mix_es_results.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
2
+ 0.2053388090349076,200,0.6744669786791472,0.9193967758710349,0.9547581903276131,0.9786791471658867,0.9854394175767031,0.9895995839833593,0.6744669786791472,0.26115073174355546,0.11300052002080084,0.8396169180100536,0.04843473738949559,0.8969578783151325,0.02519500780031202,0.9319847460565089,0.017087883515340612,0.94801872074883,0.01293551742069683,0.9566337320159473,0.6744669786791472,0.741763195639624,0.7429306662309286,0.7432800219034473,0.7433366328877163,0.7433604279356348,0.6744669786791472,0.7283598223719706,0.7441766946642234,0.7519314012572818,0.7550733326720689,0.756655547133677,0.6744669786791472,0.6512370737218736,0.6554344055014282,0.6564948783659126,0.6568034198042897,0.6569158742390337,0.6571132869122711
3
+ 0.4106776180698152,400,0.6879875195007801,0.9386375455018201,0.96931877275091,0.9859594383775351,0.9906396255850234,0.9937597503900156,0.6879875195007801,0.26589158804447416,0.11674466978679147,0.8650286011440458,0.04972438897555903,0.9198127925117004,0.025746229849193975,0.9518460738429537,0.01735829433177327,0.9622239556248916,0.013104524180967242,0.9687588836886808,0.6879875195007801,0.7573600016494716,0.758373082976894,0.7586129872645225,0.7586521805670934,0.7586695865464829,0.6879875195007801,0.7496761044826149,0.7645910592449513,0.771678161894379,0.7737195873568836,0.7748920737782092,0.6879875195007801,0.6723890167478477,0.6763190985720952,0.6773385103067359,0.67753789966102,0.6776180675766235,0.6777703627783342
4
+ 0.6160164271047228,600,0.6916276651066042,0.9386375455018201,0.9698387935517421,0.9859594383775351,0.9901196047841914,0.9927197087883516,0.6916276651066042,0.26777232994081673,0.11757670306812272,0.8705408216328654,0.04999479979199169,0.9244669786791472,0.025767030681227255,0.9522447564569249,0.017354827526434392,0.9622326226382389,0.013112324492979721,0.9691419656786271,0.6916276651066042,0.761342948642869,0.7623647640351301,0.762602306784832,0.762635838698989,0.7626512812607942,0.6916276651066042,0.7551750332158662,0.7699635084903145,0.776150635032849,0.778075100149402,0.7793189303805319,0.6916276651066042,0.6786213376102775,0.6826339651024589,0.6835232286091564,0.683704369370875,0.6837900471429439,0.6839749487471821
5
+ 0.8213552361396304,800,0.7103484139365575,0.9427977119084764,0.96931877275091,0.9869994799791991,0.9911596463858554,0.9953198127925117,0.7103484139365575,0.2754426367530892,0.11874674986999478,0.8783584676720402,0.05051482059282372,0.9327266423990292,0.025917836713468544,0.9576183047321893,0.017431097243889755,0.9668486739469578,0.013151326053042124,0.9724128965158605,0.7103484139365575,0.7746274084028193,0.7755192305203115,0.7757896714286256,0.7758222583986994,0.7758465532110386,0.7103484139365575,0.7667662331766134,0.7817254043804741,0.7871621741197808,0.7889005540486419,0.7899230983968881,0.7103484139365575,0.6919105171080385,0.6960607070870991,0.6968051220833996,0.6969637678097483,0.6970278516736893,0.6971776567635193
6
+ 1.0266940451745379,1000,0.7165886635465418,0.9479979199167967,0.9739989599583984,0.9880395215808633,0.9916796671866874,0.9942797711908476,0.7165886635465418,0.27682935888864124,0.12007280291211647,0.8882821979545847,0.050878835153406146,0.9391315652626105,0.025990639625585028,0.9601750736696135,0.01749003293465072,0.9697607904316173,0.013187727509100368,0.9749609984399376,0.7165886635465418,0.7806461907353381,0.7815205876591033,0.7817330221665041,0.7817632650241372,0.7817790651760725,0.7165886635465418,0.7753874056135623,0.789441581396985,0.7940295021279941,0.7958516238757499,0.7968002112038809,0.7165886635465418,0.7010433442003473,0.7049146489569816,0.7055466305976777,0.7057148420462953,0.7057822673177551,0.70590198422608
7
+ 1.2320328542094456,1200,0.7160686427457098,0.9485179407176287,0.9719188767550702,0.9901196047841914,0.9932397295891836,0.9963598543941757,0.7160686427457098,0.27572864819354675,0.12048881955278211,0.891055642225689,0.05065002600104005,0.935179407176287,0.025995839833593347,0.9607210955104871,0.017496966545328476,0.9699861327786444,0.013200728029121167,0.9756751603397469,0.7160686427457098,0.778609201692751,0.7794068678456314,0.7796779018026971,0.7797046138072552,0.7797225672612155,0.7160686427457098,0.7752959106174916,0.7875021072976487,0.7930929905744307,0.7948936889372247,0.7959269355495714,0.7160686427457098,0.7008047752596147,0.7041474811963291,0.7049135025881823,0.705090223026125,0.7051595169219359,0.7052913750553237
8
+ 1.4373716632443532,1400,0.7103484139365575,0.9542381695267811,0.9719188767550702,0.9911596463858554,0.9937597503900156,0.9953198127925117,0.7103484139365575,0.2750352871257708,0.1219448777951118,0.9020107470965505,0.05075403016120646,0.9373028254463512,0.02602184087363495,0.9614404576183047,0.01747963251863408,0.9688594210435084,0.013190327613104529,0.9750303345467152,0.7103484139365575,0.7768666973118454,0.7774521252326642,0.7777311412628978,0.7777516090311071,0.7777607563891314,0.7103484139365575,0.78029413905518,0.7899589941885002,0.7952340704884101,0.7966711304082723,0.79778241351855,0.7103484139365575,0.7052870437204709,0.7079382732951186,0.7086312147232268,0.7087692465933743,0.7088501950968276,0.7089812352190901
9
+ 1.6427104722792607,1600,0.7129485179407177,0.9516380655226209,0.9750390015600624,0.9885595423816953,0.9932397295891836,0.9958398335933437,0.7129485179407177,0.2756419780600748,0.12184087363494539,0.9002686774137633,0.050847633905356224,0.9389668920090136,0.026021840873634954,0.9618478072456231,0.01752123418270064,0.971780204541515,0.013221528861154448,0.9780377881781938,0.7129485179407177,0.7797205262689477,0.7804857228147521,0.7806846568150605,0.7807244509674673,0.7807398377221492,0.7129485179407177,0.7822618234647495,0.792861555226357,0.7978245182980915,0.799733913298044,0.8008450004390294,0.7129485179407177,0.7087979133181056,0.711693498011822,0.7123657338619016,0.712539507853168,0.7126164453689728,0.7127442669566819
10
+ 1.8480492813141685,1800,0.7103484139365575,0.9537181487259491,0.9739989599583984,0.9911596463858554,0.9942797711908476,0.9958398335933437,0.7103484139365575,0.2744285961914667,0.12176287051482058,0.9000866701334721,0.05087883515340615,0.9393135725429017,0.02601144045761831,0.9613711215115271,0.01753856820939504,0.9723262263823886,0.013205928237129488,0.9761743803085456,0.7103484139365575,0.7797974381169049,0.7804575566096145,0.7807093532180903,0.7807350755839835,0.7807434365267484,0.7103484139365575,0.7816740608933163,0.7925215922661627,0.7973005051810768,0.7994341922334063,0.8001279720825101,0.7103484139365575,0.7075641957576527,0.7106282558269326,0.7112539778654484,0.711456058042057,0.7115072450201507,0.7116370106997361
11
+ 2.0544147843942504,2000,0.7207488299531981,0.9521580863234529,0.9765990639625585,0.9906396255850234,0.9953198127925117,0.9963598543941757,0.7207488299531981,0.278588762598123,0.12223088923556942,0.903111457791645,0.05103484139365575,0.9421216848673946,0.02610504420176808,0.9645779164499912,0.01756630265210608,0.9738342867048015,0.01322412896515861,0.9773877621771538,0.7207488299531981,0.7873743471935627,0.7881759932357659,0.7883771758956241,0.7884149410028269,0.7884208710645908,0.7207488299531981,0.7883196859173041,0.7990932075241108,0.8039489808553328,0.8057371014393404,0.8063877024121885,0.7207488299531981,0.7153993340854142,0.7183155449822083,0.718970651956238,0.7191336515108652,0.7191835345317726,0.7193090898334479
12
+ 2.259753593429158,2200,0.7113884555382215,0.9568382735309412,0.9765990639625585,0.9880395215808633,0.9937597503900156,0.9958398335933437,0.7113884555382215,0.2746712725651883,0.12236089443577743,0.9043508407002947,0.05110764430577225,0.943690414283238,0.026094643785751433,0.9643179060495752,0.017566302652106083,0.9738169526781072,0.013231929277171092,0.9781677933784018,0.7113884555382215,0.7835697215745069,0.7841773605961617,0.7843616437981823,0.7844127842473977,0.7844258102126603,0.7113884555382215,0.7875021890770186,0.798261026605884,0.8027649163643685,0.8046152570766616,0.8054007787239339,0.7113884555382215,0.7148513662990627,0.7178274362599699,0.718458957886724,0.7186233527190637,0.7186803161109593,0.7188227343370103
13
+ 2.465092402464066,2400,0.717628705148206,0.9578783151326054,0.9791991679667187,0.9895995839833593,0.9942797711908476,0.9973998959958398,0.717628705148206,0.27822474803754055,0.12280291211648464,0.9070376148379269,0.05125325013000521,0.945935170740163,0.02613104524180968,0.9652019414109898,0.017555902236089438,0.9730542555035535,0.013242329693187732,0.978696481192581,0.717628705148206,0.7868617407547724,0.7875289660537991,0.7876800412919529,0.7877168093489998,0.7877345598054268,0.717628705148206,0.7908125858745491,0.8013945801409573,0.8055508039227626,0.8070450080965864,0.8080600033148232,0.717628705148206,0.7184433693837136,0.7213309657706507,0.7219024909250962,0.7220323828023852,0.7221006087563977,0.7222437352425529
14
+ 2.6704312114989732,2600,0.7150286011440458,0.9589183567342694,0.9771190847633905,0.9895995839833593,0.9937597503900156,0.9953198127925117,0.7150286011440458,0.27702870019562686,0.12329693187727507,0.9100190674293639,0.05128445137805514,0.9463425203674813,0.026099843993759756,0.9640578956491592,0.017559369041428324,0.9728375801698735,0.013231929277171092,0.9778644479112498,0.7150286011440458,0.785840290964467,0.7864319813601817,0.786619238877732,0.7866537588948767,0.78666313006588,0.7150286011440458,0.7917988390977458,0.8017367449412399,0.8055669404932451,0.8072831931363913,0.8081722728713215,0.7150286011440458,0.7193801183610506,0.7221124339124323,0.7226230549387277,0.7227852441481344,0.722846886494557,0.722968388876534
15
+ 2.875770020533881,2800,0.7228289131565263,0.9594383775351014,0.9776391055642226,0.9901196047841914,0.9947997919916797,0.9968798751950078,0.7228289131565263,0.2794294628928014,0.1235829433177327,0.9124284971398857,0.051263650546021854,0.9463078523140925,0.02614664586583464,0.9660686427457098,0.0175801698734616,0.9742503033454671,0.013276131045241814,0.9815565955971572,0.7228289131565263,0.7899938448272602,0.7905850272789016,0.7907603766340526,0.7907971834013171,0.7908095689840076,0.7228289131565263,0.7959776691032214,0.8052218859556804,0.8094758218085412,0.8110653021951649,0.8123520678935076,0.7228289131565263,0.7247290364038195,0.7272469793121716,0.7278160623638382,0.7279625886901666,0.7280545302821056,0.7281572552607218
16
+ 3.082135523613963,3000,0.7280291211648466,0.9594383775351014,0.9776391055642226,0.9901196047841914,0.9953198127925117,0.9968798751950078,0.7280291211648466,0.2820295668969616,0.12373894955798231,0.9141618998093257,0.05132605304212169,0.9473825619691454,0.026115444617784717,0.9651152712775177,0.01758710348413936,0.9755676893742417,0.013283931357254294,0.9829086496793205,0.7280291211648466,0.7936259077760474,0.7942215768213808,0.7944025637572019,0.7944447704847868,0.794453781113962,0.7280291211648466,0.798946396985741,0.8080660832318841,0.8118764604779153,0.8138708034784832,0.8151668636249689,0.7280291211648466,0.7279941931573798,0.7304749375451067,0.7309842337473567,0.7311641189752125,0.7312553938108709,0.7313554857163891
17
+ 3.2874743326488707,3200,0.7150286011440458,0.9573582943317732,0.9765990639625585,0.9911596463858554,0.9947997919916797,0.9963598543941757,0.7150286011440458,0.2765520144615309,0.12373894955798231,0.913659213035188,0.05123244929797193,0.9459611717802046,0.02612064482579304,0.9655486219448778,0.01755936904142832,0.9737649505980239,0.013263130525221012,0.9807505633558675,0.7150286011440458,0.7853064274912624,0.7859443378814273,0.7861623312440641,0.7861940238062093,0.7862032372379819,0.7150286011440458,0.7951101406060039,0.8039370692571942,0.8081817298513937,0.8097758398379429,0.8110327686440667,0.7150286011440458,0.7242135152783706,0.7266007218222952,0.7271697294824622,0.7273166403120899,0.7274087739403149,0.7275217450212315
18
+ 3.4928131416837784,3400,0.7233489339573583,0.9604784191367655,0.9765990639625585,0.9911596463858554,0.9963598543941757,0.9968798751950078,0.7233489339573583,0.27967213926652307,0.12363494539781592,0.9135898769284104,0.051211648465938654,0.9454411509793724,0.026136245449817998,0.9663286531461258,0.017576703068122722,0.9750476685734096,0.013283931357254293,0.9827959785058069,0.7233489339573583,0.790616300036987,0.7911451755698473,0.791368754766026,0.791414074459704,0.7914169006597087,0.7233489339573583,0.7973298093826647,0.8061926213958046,0.8107203328894771,0.8124096809038343,0.8137923662435536,0.7233489339573583,0.7263932539293092,0.7289821299517589,0.7295971508011626,0.7297494047331623,0.7298530106478077,0.7299587469603714
19
+ 3.6981519507186857,3600,0.7249089963598544,0.9599583983359334,0.9771190847633905,0.9921996879875195,0.9958398335933437,0.9968798751950078,0.7249089963598544,0.28027883020082717,0.12384295371814871,0.9154099497313225,0.051294851794071776,0.9471658866354654,0.026188247529901204,0.968408736349454,0.017611371121511524,0.9763650546021839,0.013281331253250133,0.9824492979719188,0.7249089963598544,0.7931568992440393,0.793715015835792,0.7939504079883869,0.7939819349883227,0.7939883353049277,0.7249089963598544,0.8003506405205896,0.8091193234281266,0.8137121141444412,0.8152921945289446,0.8163523042378167,0.7249089963598544,0.7301955878758443,0.7326872629149596,0.7333037830153952,0.7334498461075301,0.7335264824052321,0.7336333524545813
20
+ 3.9034907597535935,3800,0.7259490379615184,0.9599583983359334,0.9797191887675507,0.9927197087883516,0.9958398335933437,0.9973998959958398,0.7259490379615184,0.2806428447614095,0.12423296931877274,0.9178193794418443,0.051419656786271466,0.9494973132258623,0.026183047321892885,0.9675593690414283,0.017600970705494885,0.9757583636678799,0.013276131045241814,0.9814959265037267,0.7259490379615184,0.7948163472735045,0.7954302623521613,0.7956223667502647,0.7956489127503253,0.7956584389155293,0.7259490379615184,0.8024229430955802,0.8110354092322288,0.8149702827130566,0.8165529751035248,0.8175777108172241,0.7259490379615184,0.7324403090373143,0.7348033703076142,0.7353336579174736,0.7354741697534483,0.7355476089683456,0.7356573413185541
21
+ 4.108829568788501,4000,0.7243889755590224,0.9609984399375975,0.9797191887675507,0.9937597503900156,0.9958398335933437,0.9973998959958398,0.7243889755590224,0.2802961642275215,0.12428497139885596,0.9183394002426764,0.05134685387415497,0.9482665973305597,0.026214248569942804,0.9692234356040907,0.017597503900156002,0.9756023574276305,0.013281331253250133,0.9821892875715027,0.7243889755590224,0.7938466413093047,0.7944053350960067,0.794613049565821,0.7946306448507517,0.7946402095756717,0.7243889755590224,0.8023352815755668,0.8104895152869938,0.8150081000806421,0.8162651648802736,0.8174362445077372,0.7243889755590224,0.7324440771234734,0.734716178743038,0.7353155432601859,0.735429453970343,0.7355154445871764,0.7356208832908805
22
+ 4.314168377823409,4200,0.7238689547581904,0.9583983359334374,0.9802392095683827,0.9942797711908476,0.9953198127925117,0.9973998959958398,0.7238689547581904,0.28019216006735503,0.12412896515860634,0.9169353440804299,0.05145085803432139,0.9499306638932224,0.026245449817992726,0.9701768070722828,0.017614837926850403,0.9764690587623505,0.013283931357254293,0.9822326226382389,0.7238689547581904,0.7934277492682618,0.7941208450339935,0.7943224531588357,0.7943312488289611,0.7943443835009225,0.7238689547581904,0.8023238060267395,0.8113379258247732,0.8156949679776019,0.816929855500621,0.8179575655343403,0.7238689547581904,0.7331525143106996,0.7355830040348272,0.7361451167677289,0.7362661519275265,0.7363390374447161,0.7364481715630059
23
+ 4.519507186858316,4400,0.7264690587623505,0.9589183567342694,0.9791991679667187,0.9942797711908476,0.9963598543941757,0.9973998959958398,0.7264690587623505,0.2809028551618255,0.12420696827873114,0.9175593690414283,0.051430057202288104,0.9495839833593345,0.026245449817992726,0.9700901369388107,0.017621771537528166,0.9768157392962384,0.013286531461258454,0.9820072802912115,0.7264690587623505,0.7950273648815123,0.7956778348360616,0.7959013329165427,0.7959172370306803,0.7959232938160362,0.7264690587623505,0.8030413573056574,0.811796736904274,0.816244308604025,0.8175588810577264,0.8184967672553575,0.7264690587623505,0.7336401935022089,0.7360366435506714,0.7366186564599716,0.7367425141591574,0.7368117834120087,0.7369173075310415
24
+ 4.724845995893224,4600,0.7243889755590224,0.9594383775351014,0.9791991679667187,0.9927197087883516,0.9963598543941757,0.9973998959958398,0.7243889755590224,0.2801228239605774,0.12423296931877274,0.9177327093083724,0.05144045761830475,0.9498439937597504,0.026235049401976088,0.9693967758710348,0.017628705148205925,0.9772057548968625,0.013283931357254294,0.9819032761310452,0.7243889755590224,0.7950733254581356,0.7957037061937158,0.7959106624394904,0.795941995568463,0.7959480612399141,0.7243889755590224,0.8035653524093836,0.8123465374976416,0.816619783760099,0.8181288168343755,0.8189742580500373,0.7243889755590224,0.7344976284540953,0.7369058419409787,0.7374765660485233,0.7376131540231733,0.7376752620519383,0.7377852907056718
25
+ 4.930184804928132,4800,0.7280291211648466,0.9599583983359334,0.9791991679667187,0.9942797711908476,0.9958398335933437,0.9973998959958398,0.7280291211648466,0.28133620582918556,0.12433697347893914,0.9183394002426764,0.05145085803432139,0.9499306638932224,0.02625065002600105,0.9700901369388107,0.017621771537528162,0.9767724042295025,0.013283931357254294,0.9818166059975733,0.7280291211648466,0.7968549154271433,0.7974653825839162,0.7976914864910069,0.7977044635908871,0.7977139196654446,0.7280291211648466,0.8043549768911603,0.81295852465432,0.817339429558165,0.8186380742931886,0.8195485984235017,0.7280291211648466,0.7350836192117531,0.7374205090112232,0.737988888492803,0.7381133157945164,0.7381788581828236,0.7382854440643231