Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- README.md +1444 -3
- checkpoint-4000/README.md +1436 -0
- checkpoint-4000/modules.json +20 -0
- checkpoint-4000/scaler.pt +3 -0
- checkpoint-4000/sentence_bert_config.json +4 -0
- checkpoint-4200/1_Pooling/config.json +10 -0
- checkpoint-4200/README.md +1438 -0
- checkpoint-4200/config.json +49 -0
- checkpoint-4200/rng_state.pth +3 -0
- checkpoint-4200/scaler.pt +3 -0
- checkpoint-4200/scheduler.pt +3 -0
- checkpoint-4200/special_tokens_map.json +51 -0
- checkpoint-4200/tokenizer_config.json +55 -0
- checkpoint-4200/trainer_state.json +0 -0
- checkpoint-4200/training_args.bin +3 -0
- checkpoint-4400/config.json +49 -0
- checkpoint-4400/config_sentence_transformers.json +10 -0
- checkpoint-4400/modules.json +20 -0
- checkpoint-4400/sentence_bert_config.json +4 -0
- checkpoint-4400/special_tokens_map.json +51 -0
- checkpoint-4400/tokenizer.json +3 -0
- checkpoint-4400/tokenizer_config.json +55 -0
- checkpoint-4600/1_Pooling/config.json +10 -0
- checkpoint-4600/README.md +1442 -0
- checkpoint-4600/config.json +49 -0
- checkpoint-4600/config_sentence_transformers.json +10 -0
- checkpoint-4600/modules.json +20 -0
- checkpoint-4600/sentence_bert_config.json +4 -0
- checkpoint-4600/special_tokens_map.json +51 -0
- checkpoint-4600/tokenizer.json +3 -0
- checkpoint-4600/tokenizer_config.json +55 -0
- checkpoint-4600/trainer_state.json +0 -0
- checkpoint-4800/1_Pooling/config.json +10 -0
- checkpoint-4800/README.md +1444 -0
- checkpoint-4800/config.json +49 -0
- checkpoint-4800/config_sentence_transformers.json +10 -0
- checkpoint-4800/modules.json +20 -0
- checkpoint-4800/rng_state.pth +3 -0
- checkpoint-4800/scaler.pt +3 -0
- checkpoint-4800/scheduler.pt +3 -0
- checkpoint-4800/sentence_bert_config.json +4 -0
- checkpoint-4800/special_tokens_map.json +51 -0
- checkpoint-4800/tokenizer.json +3 -0
- checkpoint-4800/tokenizer_config.json +55 -0
- checkpoint-4800/trainer_state.json +0 -0
- checkpoint-4800/training_args.bin +3 -0
- eval/Information-Retrieval_evaluation_full_es_results.csv +25 -0
- eval/Information-Retrieval_evaluation_mix_de_results.csv +25 -0
- eval/Information-Retrieval_evaluation_mix_es_results.csv +25 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoint-4800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoint-4400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
checkpoint-4600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,1444 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5171428571428571
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.316
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18895238095238095
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13384126984126984
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10433333333333335
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0678253733846715
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5470006025464504
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7399645316315758
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8452891149669638
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8838497168796887
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9109269128757174
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6953571805621692
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7150421121165462
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7679394555495317
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7856911059911225
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7969632777290026
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8138095238095239
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8138095238095239
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8138095238095239
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8138095238095239
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8138095238095239
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5578605627627369
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5471407389299809
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5795933384755297
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5874505508842796
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5912226659397186
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5952587557760031
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.5718918918918919
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.3885405405405405
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.25172972972972973
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.1904864864864865
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.1521891891891892
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.0036619075252531876
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3842245968041533
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.5640822196868902
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.6741986120580108
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.7463851968088967
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.7825399601398452
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.6139182209948354
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5873893466818746
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.6144038475288277
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.6498632077214272
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.6680602466150343
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5581081081081081
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5581081081081081
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5581081081081081
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5581081081081081
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5581081081081081
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.47988875190050484
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.4249833337950364
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.430155652024808
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.4458862132745998
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.45334655744992447
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.4656066165331343
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9704433497536946
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9852216748768473
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9852216748768473
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9901477832512315
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9901477832512315
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.5083743842364532
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.3654187192118227
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.24133004926108376
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.18036124794745487
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.14467980295566504
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.3221185941380065
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.5024502430161547
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.6247617904371989
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.6829583450315939
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.7216293640715983
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.5393376062142305
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.5267125529267169
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.55793511917882
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.5879547828450983
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.6071252185389439
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.5104381157401634
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.5109752961295605
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.5109752961295605
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.5110222114474118
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.5110222114474118
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.40097257642946377
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.35882787401455
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.3633182590941781
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.3776727961080201
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.3848401555555339
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.3978065874082948
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.6601941747572816
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.9805825242718447
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.9902912621359223
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.9902912621359223
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9902912621359223
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9902912621359223
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.6601941747572816
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.4781553398058253
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.28951456310679613
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.17572815533980585
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.12595469255663433
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.09815533980582528
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.06151358631979527
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.5107966412908705
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.6922746152164951
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.8004152884148357
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.8465065661615649
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.8770990926698364
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.6601941747572816
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.6539867858378715
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.6707332209240133
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.72342020484322
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.7437750875502527
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.7553648453187212
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.6601941747572816
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.8037216828478965
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.8040950958426687
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.8040950958426687
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.8040950958426687
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.8040950958426687
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.6601941747572816
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.5087334164702914
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.49260246320797585
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.5217412166882693
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.529859818130126
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.533378795921413
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.5386011712914499
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.7280291211648466
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.9599583983359334
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.9791991679667187
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9942797711908476
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9958398335933437
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9973998959958398
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.7280291211648466
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.12433697347893914
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.05145085803432139
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.02625065002600105
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.017621771537528162
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.013283931357254294
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.28133620582918556
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.9183394002426764
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.9499306638932224
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.9700901369388107
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.9767724042295025
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9818166059975733
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.7280291211648466
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.8043549768911603
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.81295852465432
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.817339429558165
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.8186380742931886
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.8195485984235017
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.7280291211648466
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.7968549154271433
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.7974653825839162
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.7976914864910069
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.7977044635908871
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.7977139196654446
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.7280291211648466
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.7350836192117531
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.7374205090112232
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.737988888492803
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.7381133157945164
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.7381788581828236
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.7382854440643231
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.6703068122724909
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.9505980239209568
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.9776391055642226
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.9864794591783671
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.9932397295891836
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9947997919916797
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.6703068122724909
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.1251690067602704
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.052282891315652634
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.026729069162766517
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.01799965331946611
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.013541341653666149
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.25235742763043856
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.9095857167620037
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.9482405962905183
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.96845207141619
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.9781591263650546
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.9810192407696308
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.6703068122724909
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.7735712514376322
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.7843644592705362
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.7889444470773866
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.7908660087982327
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.791403470160319
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.6703068122724909
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.7520307321055828
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.7529374175534339
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.7530616872072472
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.7531202644382351
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.7531293951311296
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.6703068122724909
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.6967639778693541
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.699575457224443
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.70027844357658
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.7004487000056766
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.7004863395843564
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.7005835771389989
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.19084763390535622
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 1.0
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 1.0
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 1.0
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 1.0
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 1.0
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.19084763390535622
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.15439417576703063
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.0617576703068123
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.03087883515340615
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.020585890102270757
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.015439417576703075
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.06137978852487433
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 1.0
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 1.0
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 1.0
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 1.0
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 1.0
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.19084763390535622
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.5474303590499686
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.5474303590499686
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.5474303590499686
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.5474303590499686
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.5474303590499686
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.19084763390535622
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.4093433087972877
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.4093433087972877
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.4093433087972877
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.4093433087972877
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.4093433087972877
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.19084763390535622
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.32981711891302556
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.32981711891302556
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.32981711891302556
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.32981711891302556
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.32981711891302556
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.32981711891302556
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)
|
| 908 |
+
|
| 909 |
+
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 768 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 768]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1018 |
+
| cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 |
|
| 1019 |
+
| cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 |
|
| 1020 |
+
| cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 |
|
| 1021 |
+
| cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
|
| 1022 |
+
| cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
|
| 1023 |
+
| cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 |
|
| 1024 |
+
| cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 |
|
| 1025 |
+
| cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 |
|
| 1026 |
+
| cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 |
|
| 1027 |
+
| cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 |
|
| 1028 |
+
| cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1042 |
+
| cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 |
|
| 1043 |
+
| cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 |
|
| 1044 |
+
| cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 |
|
| 1045 |
+
| cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 |
|
| 1046 |
+
| cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 |
|
| 1047 |
+
| cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 64
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 64
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
|
| 1339 |
+
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
|
| 1342 |
+
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
|
| 1344 |
+
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
|
| 1346 |
+
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
|
| 1348 |
+
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
|
| 1350 |
+
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
|
| 1352 |
+
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
|
| 1354 |
+
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
|
| 1356 |
+
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
|
| 1358 |
+
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
|
| 1360 |
+
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
|
| 1362 |
+
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
|
| 1364 |
+
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
|
| 1365 |
+
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
|
| 1366 |
+
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
|
| 1367 |
+
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
|
| 1368 |
+
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
|
| 1369 |
+
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
|
| 1370 |
+
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
|
| 1371 |
+
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
|
| 1372 |
+
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
|
| 1373 |
+
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
|
| 1374 |
+
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
|
| 1375 |
+
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
|
| 1376 |
+
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
|
| 1377 |
+
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
|
| 1378 |
+
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
|
| 1379 |
+
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
|
| 1380 |
+
| 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
|
| 1381 |
+
| 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
|
| 1382 |
+
| 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
|
| 1383 |
+
| 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
|
| 1384 |
+
| 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
|
| 1385 |
+
| 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
|
| 1386 |
+
| 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - |
|
| 1387 |
+
| 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 |
|
| 1388 |
+
|
| 1389 |
+
|
| 1390 |
+
### Framework Versions
|
| 1391 |
+
- Python: 3.11.11
|
| 1392 |
+
- Sentence Transformers: 4.1.0
|
| 1393 |
+
- Transformers: 4.51.2
|
| 1394 |
+
- PyTorch: 2.6.0+cu124
|
| 1395 |
+
- Accelerate: 1.6.0
|
| 1396 |
+
- Datasets: 3.5.0
|
| 1397 |
+
- Tokenizers: 0.21.1
|
| 1398 |
+
|
| 1399 |
+
## Citation
|
| 1400 |
+
|
| 1401 |
+
### BibTeX
|
| 1402 |
+
|
| 1403 |
+
#### Sentence Transformers
|
| 1404 |
+
```bibtex
|
| 1405 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1406 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1407 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1408 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1409 |
+
month = "11",
|
| 1410 |
+
year = "2019",
|
| 1411 |
+
publisher = "Association for Computational Linguistics",
|
| 1412 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1413 |
+
}
|
| 1414 |
+
```
|
| 1415 |
+
|
| 1416 |
+
#### GISTEmbedLoss
|
| 1417 |
+
```bibtex
|
| 1418 |
+
@misc{solatorio2024gistembed,
|
| 1419 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1420 |
+
author={Aivin V. Solatorio},
|
| 1421 |
+
year={2024},
|
| 1422 |
+
eprint={2402.16829},
|
| 1423 |
+
archivePrefix={arXiv},
|
| 1424 |
+
primaryClass={cs.LG}
|
| 1425 |
+
}
|
| 1426 |
+
```
|
| 1427 |
+
|
| 1428 |
+
<!--
|
| 1429 |
+
## Glossary
|
| 1430 |
+
|
| 1431 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1432 |
+
-->
|
| 1433 |
+
|
| 1434 |
+
<!--
|
| 1435 |
+
## Model Card Authors
|
| 1436 |
+
|
| 1437 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1438 |
+
-->
|
| 1439 |
+
|
| 1440 |
+
<!--
|
| 1441 |
+
## Model Card Contact
|
| 1442 |
+
|
| 1443 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1444 |
+
-->
|
checkpoint-4000/README.md
ADDED
|
@@ -0,0 +1,1436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6476190476190476
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6476190476190476
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5133333333333332
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.3165714285714285
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18857142857142858
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13396825396825396
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10433333333333335
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.06742481608756247
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5411228142559339
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7397482609380314
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8429667985290079
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8856357375498775
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9091330295382077
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6476190476190476
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6917131025478591
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.71478335831634
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7666819432677721
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7855970749692088
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7960468614602451
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6476190476190476
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8090476190476191
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8090476190476191
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8090476190476191
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8090476190476191
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8090476190476191
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6476190476190476
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5561135670751935
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5477711353289022
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5791852239372863
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5872469517518495
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5908784036739082
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5948564356607342
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12972972972972974
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12972972972972974
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.5705405405405405
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.38962162162162167
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.25140540540540546
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.19012612612612612
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.15154054054054056
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.0037413987812150314
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.38432915927625627
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.5663097940153319
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.6710180189388714
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.7443549924512646
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.7804985217049148
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12972972972972974
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.6133809590566169
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5888378318443163
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.613553130716134
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.6492700673561147
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.6672020616803231
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12972972972972974
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5608108108108109
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5608108108108109
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5608108108108109
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5608108108108109
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5608108108108109
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12972972972972974
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.47928087268629077
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.4265150109477007
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.4308614258675324
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.446315567522346
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.45361884446786194
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.46587892353181215
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9704433497536946
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9852216748768473
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9852216748768473
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9901477832512315
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9901477832512315
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.5120689655172413
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.3664039408866995
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.2411330049261084
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.180623973727422
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.1453448275862069
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.3229666331805043
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.5039915991834915
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.6239950018657238
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.6837127628220585
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.724182886190782
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.5416271120841382
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.5273905187096658
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.5573943264798527
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.5882759422186796
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.6082376029646045
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.510702296647636
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.5111935025343795
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.5111935025343795
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.5112378818891037
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.5112378818891037
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.4032624181455029
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.35929856113701575
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.3633301227599498
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.3779770424201306
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.38546911827821406
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.3983960288142158
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.6504854368932039
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.9805825242718447
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.9902912621359223
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.9902912621359223
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9902912621359223
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9902912621359223
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.6504854368932039
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.47815533980582525
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.28699029126213593
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.17563106796116504
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.12543689320388354
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.09786407766990295
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.06122803520614593
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.512665335199255
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.6880766978766553
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.8002784995071653
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.8453144636093844
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.8773140543871931
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.6504854368932039
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.6531212612064398
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.6669362863744952
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.7218911998936125
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.7415597018345085
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.7535751066625261
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.6504854368932039
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.7993527508090615
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.7997572815533981
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.7997572815533981
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.7997572815533981
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.7997572815533981
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.6504854368932039
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.5072300500933464
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.4897274345176646
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.5196798622563865
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.5276837053538445
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.5311205359244624
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.5365056842045905
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.7243889755590224
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.9609984399375975
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.9797191887675507
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9937597503900156
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9958398335933437
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9973998959958398
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.7243889755590224
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.12428497139885596
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.05134685387415497
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.026214248569942804
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.017597503900156002
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.013281331253250133
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.2802961642275215
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.9183394002426764
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.9482665973305597
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.9692234356040907
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.9756023574276305
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9821892875715027
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.7243889755590224
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.8023352815755668
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.8104895152869938
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.8150081000806421
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.8162651648802736
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.8174362445077372
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.7243889755590224
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.7938466413093047
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.7944053350960067
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.794613049565821
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.7946306448507517
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.7946402095756717
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.7243889755590224
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.7324440771234734
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.734716178743038
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.7353155432601859
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.735429453970343
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.7355154445871764
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.7356208832908805
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.6697867914716589
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.9505980239209568
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.9771190847633905
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.9859594383775351
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.9921996879875195
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9942797711908476
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.6697867914716589
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.12470098803952159
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.05225169006760271
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.026708268330733236
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.01798231929277171
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.01353874154966199
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.2517940717628705
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.9059022360894435
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.9474345640492287
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.967932050615358
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.9771190847633905
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.9807592303692148
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.6697867914716589
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.770344092734726
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.7819450345813985
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.7865455025019679
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.7883807621544129
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.7890604802329748
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.6697867914716589
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.7504302722692131
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.7513280223222801
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.7514573016845009
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.7515108675350354
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.7515238522218625
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.6697867914716589
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.6929705838065172
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.696080766802269
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.6967651580129317
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.6969258122016383
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.6969715581100935
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.6970655432634698
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.19760790431617264
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 1.0
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 1.0
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 1.0
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 1.0
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 1.0
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.19760790431617264
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.15439417576703063
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.0617576703068123
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.03087883515340615
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.020585890102270757
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.015439417576703075
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.06371492954956293
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 1.0
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 1.0
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 1.0
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 1.0
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 1.0
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.19760790431617264
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.5478938300274205
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.5478938300274205
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.5478938300274205
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.5478938300274205
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.5478938300274205
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.19760790431617264
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.4124442798779788
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.4124442798779788
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.4124442798779788
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.4124442798779788
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.4124442798779788
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.19760790431617264
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.32993583709540925
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.32993583709540925
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.32993583709540925
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.32993583709540925
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.32993583709540925
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.32993583709540925
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 768 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 768]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.961 | 0.9506 | 1.0 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9797 | 0.9771 | 1.0 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9938 | 0.986 | 1.0 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9922 | 1.0 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9943 | 1.0 |
|
| 1017 |
+
| cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
|
| 1018 |
+
| cosine_precision@20 | 0.5133 | 0.5705 | 0.5121 | 0.4782 | 0.1243 | 0.1247 | 0.1544 |
|
| 1019 |
+
| cosine_precision@50 | 0.3166 | 0.3896 | 0.3664 | 0.287 | 0.0513 | 0.0523 | 0.0618 |
|
| 1020 |
+
| cosine_precision@100 | 0.1886 | 0.2514 | 0.2411 | 0.1756 | 0.0262 | 0.0267 | 0.0309 |
|
| 1021 |
+
| cosine_precision@150 | 0.134 | 0.1901 | 0.1806 | 0.1254 | 0.0176 | 0.018 | 0.0206 |
|
| 1022 |
+
| cosine_precision@200 | 0.1043 | 0.1515 | 0.1453 | 0.0979 | 0.0133 | 0.0135 | 0.0154 |
|
| 1023 |
+
| cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0612 | 0.2803 | 0.2518 | 0.0637 |
|
| 1024 |
+
| cosine_recall@20 | 0.5411 | 0.3843 | 0.323 | 0.5127 | 0.9183 | 0.9059 | 1.0 |
|
| 1025 |
+
| cosine_recall@50 | 0.7397 | 0.5663 | 0.504 | 0.6881 | 0.9483 | 0.9474 | 1.0 |
|
| 1026 |
+
| cosine_recall@100 | 0.843 | 0.671 | 0.624 | 0.8003 | 0.9692 | 0.9679 | 1.0 |
|
| 1027 |
+
| cosine_recall@150 | 0.8856 | 0.7444 | 0.6837 | 0.8453 | 0.9756 | 0.9771 | 1.0 |
|
| 1028 |
+
| cosine_recall@200 | 0.9091 | 0.7805 | 0.7242 | 0.8773 | 0.9822 | 0.9808 | 1.0 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6917 | 0.6134 | 0.5416 | 0.6531 | 0.8023 | 0.7703 | 0.5479 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7148 | 0.5888 | 0.5274 | 0.6669 | 0.8105 | 0.7819 | 0.5479 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7667 | 0.6136 | 0.5574 | 0.7219 | 0.815 | 0.7865 | 0.5479 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7856 | 0.6493 | 0.5883 | 0.7416 | 0.8163 | 0.7884 | 0.5479 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.796** | **0.6672** | **0.6082** | **0.7536** | **0.8174** | **0.7891** | **0.5479** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
|
| 1036 |
+
| cosine_mrr@20 | 0.809 | 0.5608 | 0.5107 | 0.7994 | 0.7938 | 0.7504 | 0.4124 |
|
| 1037 |
+
| cosine_mrr@50 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7944 | 0.7513 | 0.4124 |
|
| 1038 |
+
| cosine_mrr@100 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
|
| 1039 |
+
| cosine_mrr@150 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
|
| 1040 |
+
| cosine_mrr@200 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 |
|
| 1041 |
+
| cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 |
|
| 1042 |
+
| cosine_map@20 | 0.5561 | 0.4793 | 0.4033 | 0.5072 | 0.7324 | 0.693 | 0.3299 |
|
| 1043 |
+
| cosine_map@50 | 0.5478 | 0.4265 | 0.3593 | 0.4897 | 0.7347 | 0.6961 | 0.3299 |
|
| 1044 |
+
| cosine_map@100 | 0.5792 | 0.4309 | 0.3633 | 0.5197 | 0.7353 | 0.6968 | 0.3299 |
|
| 1045 |
+
| cosine_map@150 | 0.5872 | 0.4463 | 0.378 | 0.5277 | 0.7354 | 0.6969 | 0.3299 |
|
| 1046 |
+
| cosine_map@200 | 0.5909 | 0.4536 | 0.3855 | 0.5311 | 0.7355 | 0.697 | 0.3299 |
|
| 1047 |
+
| cosine_map@500 | 0.5949 | 0.4659 | 0.3984 | 0.5365 | 0.7356 | 0.6971 | 0.3299 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 64
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 64
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
|
| 1339 |
+
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
|
| 1342 |
+
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
|
| 1344 |
+
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
|
| 1346 |
+
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
|
| 1348 |
+
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
|
| 1350 |
+
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
|
| 1352 |
+
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
|
| 1354 |
+
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
|
| 1356 |
+
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
|
| 1358 |
+
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
|
| 1360 |
+
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
|
| 1362 |
+
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
|
| 1364 |
+
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
|
| 1365 |
+
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
|
| 1366 |
+
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
|
| 1367 |
+
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
|
| 1368 |
+
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
|
| 1369 |
+
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
|
| 1370 |
+
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
|
| 1371 |
+
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
|
| 1372 |
+
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
|
| 1373 |
+
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
|
| 1374 |
+
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
|
| 1375 |
+
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
|
| 1376 |
+
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
|
| 1377 |
+
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
|
| 1378 |
+
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
|
| 1379 |
+
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
|
| 1380 |
+
|
| 1381 |
+
|
| 1382 |
+
### Framework Versions
|
| 1383 |
+
- Python: 3.11.11
|
| 1384 |
+
- Sentence Transformers: 4.1.0
|
| 1385 |
+
- Transformers: 4.51.2
|
| 1386 |
+
- PyTorch: 2.6.0+cu124
|
| 1387 |
+
- Accelerate: 1.6.0
|
| 1388 |
+
- Datasets: 3.5.0
|
| 1389 |
+
- Tokenizers: 0.21.1
|
| 1390 |
+
|
| 1391 |
+
## Citation
|
| 1392 |
+
|
| 1393 |
+
### BibTeX
|
| 1394 |
+
|
| 1395 |
+
#### Sentence Transformers
|
| 1396 |
+
```bibtex
|
| 1397 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1398 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1399 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1400 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1401 |
+
month = "11",
|
| 1402 |
+
year = "2019",
|
| 1403 |
+
publisher = "Association for Computational Linguistics",
|
| 1404 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1405 |
+
}
|
| 1406 |
+
```
|
| 1407 |
+
|
| 1408 |
+
#### GISTEmbedLoss
|
| 1409 |
+
```bibtex
|
| 1410 |
+
@misc{solatorio2024gistembed,
|
| 1411 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1412 |
+
author={Aivin V. Solatorio},
|
| 1413 |
+
year={2024},
|
| 1414 |
+
eprint={2402.16829},
|
| 1415 |
+
archivePrefix={arXiv},
|
| 1416 |
+
primaryClass={cs.LG}
|
| 1417 |
+
}
|
| 1418 |
+
```
|
| 1419 |
+
|
| 1420 |
+
<!--
|
| 1421 |
+
## Glossary
|
| 1422 |
+
|
| 1423 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1424 |
+
-->
|
| 1425 |
+
|
| 1426 |
+
<!--
|
| 1427 |
+
## Model Card Authors
|
| 1428 |
+
|
| 1429 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1430 |
+
-->
|
| 1431 |
+
|
| 1432 |
+
<!--
|
| 1433 |
+
## Model Card Contact
|
| 1434 |
+
|
| 1435 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1436 |
+
-->
|
checkpoint-4000/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-4000/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39ade23fee434657c6acaffedd2e5d962324297aaf40cfff792a5b052f09aded
|
| 3 |
+
size 988
|
checkpoint-4000/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-4200/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-4200/README.md
ADDED
|
@@ -0,0 +1,1438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6476190476190476
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6476190476190476
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5128571428571428
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.315047619047619
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18895238095238098
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.1340952380952381
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10442857142857143
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.06742481608756247
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5405801283990764
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7380563268384144
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8450833938763317
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8854496352730319
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9116090922199359
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6476190476190476
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6921758597708418
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7145715541794455
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7684704586943056
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7869416189606113
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7978715516034123
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6476190476190476
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8090476190476191
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8090476190476191
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8090476190476191
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8090476190476191
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8090476190476191
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6476190476190476
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5574893623656486
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5485611329203299
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5816806877668274
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5898687797086651
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.593482014013077
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5974665649900398
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12972972972972974
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12972972972972974
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.5735135135135134
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.3912432432432432
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.2531351351351352
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.19113513513513514
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.15186486486486486
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.0037413987812150314
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3850053775723816
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.5678708571543062
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.6771132401665688
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.7476366668984507
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.7806646181068078
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12972972972972974
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.6155696219376317
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5902714649088991
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.6166603984916751
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.6514414937889701
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.6681110549873654
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12972972972972974
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5608108108108109
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5608108108108109
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5608108108108109
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5608108108108109
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5608108108108109
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12972972972972974
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.4821585422089324
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.4278073015090324
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.4325091891776662
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.4481236866241766
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.45495240914630236
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.4674583582676571
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9704433497536946
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9852216748768473
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9852216748768473
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9901477832512315
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9901477832512315
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.5118226600985222
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.36640394088669953
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.24108374384236453
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.181247947454844
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.1460591133004926
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.32208430655596165
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.5042827147735226
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.6236391741928202
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.6860046899787209
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.7269946951843458
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.5421464164798184
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.5287112320288665
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.5585547163826412
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.5906267126443239
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.6110534856124217
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.5121285045393612
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.5126572733439921
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.5126572733439921
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.5127050996388891
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.5127050996388891
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.4040566267923372
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.36142610008228787
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.365695506737717
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.38080017460364707
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.3885278636281841
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.40107654023571443
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.6504854368932039
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.9805825242718447
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.9902912621359223
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.9902912621359223
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9902912621359223
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9902912621359223
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.6504854368932039
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.4786407766990292
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.2910679611650486
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.17572815533980585
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.12543689320388351
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.09786407766990295
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.060542712533387485
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.5120181745235721
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.6949930226095598
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.7990376401893455
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.8444978387246413
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.8737742771860034
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.6504854368932039
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.6543043826860687
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.6719601686921535
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.7228108377810673
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.7425317578844268
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.7540053327385158
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.6504854368932039
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.7996763754045308
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.8000497883993031
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.8000497883993031
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.8000497883993031
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.8000497883993031
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.6504854368932039
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.5094084685339617
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.4946470598488666
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.5223997206445464
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.5301660854751861
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.5337279091857492
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.5392657572937102
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.7238689547581904
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.9583983359334374
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.9802392095683827
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9942797711908476
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9953198127925117
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9973998959958398
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.7238689547581904
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.12412896515860634
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.05145085803432139
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.026245449817992726
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.017614837926850403
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.013283931357254293
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.28019216006735503
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.9169353440804299
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.9499306638932224
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.9701768070722828
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.9764690587623505
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9822326226382389
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.7238689547581904
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.8023238060267395
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.8113379258247732
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.8156949679776019
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.816929855500621
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.8179575655343403
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.7238689547581904
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.7934277492682618
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.7941208450339935
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.7943224531588357
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.7943312488289611
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.7943443835009225
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.7238689547581904
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.7331525143106996
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.7355830040348272
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.7361451167677289
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.7362661519275265
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.7363390374447161
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.7364481715630059
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.6666666666666666
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.9479979199167967
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.9760790431617264
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.9859594383775351
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.9927197087883516
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9947997919916797
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.6666666666666666
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.12483099323972958
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.05219968798751951
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.026682267290691637
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.017985786098110586
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.013541341653666149
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.25062402496099845
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.9064222568902757
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.9466805338880222
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.9669786791471658
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.9774657652972785
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.9810192407696308
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.6666666666666666
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.7705186419550625
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.7817408957971655
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.786309170410984
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.7883932008449921
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.7890611279585495
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.6666666666666666
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.7486665934008992
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.7496295288804224
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.74976967024613
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.7498264653686212
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.7498390441909701
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.6666666666666666
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.6933856329177108
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.6963720532834866
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.6970430360365766
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.6972336080548289
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.697279051235347
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.6973750625395665
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.19292771710868434
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 1.0
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 1.0
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 1.0
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 1.0
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 1.0
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.19292771710868434
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.15439417576703063
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.0617576703068123
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.03087883515340615
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.020585890102270757
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.015439417576703075
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.062241537280538835
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 1.0
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 1.0
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 1.0
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 1.0
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 1.0
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.19292771710868434
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.5475590939157456
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.5475590939157456
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.5475590939157456
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.5475590939157456
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.5475590939157456
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.19292771710868434
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.41052639363871923
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.41052639363871923
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.41052639363871923
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.41052639363871923
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.41052639363871923
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.19292771710868434
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.3297429315299459
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.3297429315299459
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.3297429315299459
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.3297429315299459
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.3297429315299459
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.3297429315299459
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 768 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 768]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:----------|:----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.9584 | 0.948 | 1.0 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9761 | 1.0 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.986 | 1.0 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9953 | 0.9927 | 1.0 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
|
| 1017 |
+
| cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
|
| 1018 |
+
| cosine_precision@20 | 0.5129 | 0.5735 | 0.5118 | 0.4786 | 0.1241 | 0.1248 | 0.1544 |
|
| 1019 |
+
| cosine_precision@50 | 0.315 | 0.3912 | 0.3664 | 0.2911 | 0.0515 | 0.0522 | 0.0618 |
|
| 1020 |
+
| cosine_precision@100 | 0.189 | 0.2531 | 0.2411 | 0.1757 | 0.0262 | 0.0267 | 0.0309 |
|
| 1021 |
+
| cosine_precision@150 | 0.1341 | 0.1911 | 0.1812 | 0.1254 | 0.0176 | 0.018 | 0.0206 |
|
| 1022 |
+
| cosine_precision@200 | 0.1044 | 0.1519 | 0.1461 | 0.0979 | 0.0133 | 0.0135 | 0.0154 |
|
| 1023 |
+
| cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0605 | 0.2802 | 0.2506 | 0.0622 |
|
| 1024 |
+
| cosine_recall@20 | 0.5406 | 0.385 | 0.3221 | 0.512 | 0.9169 | 0.9064 | 1.0 |
|
| 1025 |
+
| cosine_recall@50 | 0.7381 | 0.5679 | 0.5043 | 0.695 | 0.9499 | 0.9467 | 1.0 |
|
| 1026 |
+
| cosine_recall@100 | 0.8451 | 0.6771 | 0.6236 | 0.799 | 0.9702 | 0.967 | 1.0 |
|
| 1027 |
+
| cosine_recall@150 | 0.8854 | 0.7476 | 0.686 | 0.8445 | 0.9765 | 0.9775 | 1.0 |
|
| 1028 |
+
| cosine_recall@200 | 0.9116 | 0.7807 | 0.727 | 0.8738 | 0.9822 | 0.981 | 1.0 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6922 | 0.6156 | 0.5421 | 0.6543 | 0.8023 | 0.7705 | 0.5476 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7146 | 0.5903 | 0.5287 | 0.672 | 0.8113 | 0.7817 | 0.5476 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7685 | 0.6167 | 0.5586 | 0.7228 | 0.8157 | 0.7863 | 0.5476 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7869 | 0.6514 | 0.5906 | 0.7425 | 0.8169 | 0.7884 | 0.5476 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7979** | **0.6681** | **0.6111** | **0.754** | **0.818** | **0.7891** | **0.5476** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
|
| 1036 |
+
| cosine_mrr@20 | 0.809 | 0.5608 | 0.5121 | 0.7997 | 0.7934 | 0.7487 | 0.4105 |
|
| 1037 |
+
| cosine_mrr@50 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7941 | 0.7496 | 0.4105 |
|
| 1038 |
+
| cosine_mrr@100 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
|
| 1039 |
+
| cosine_mrr@150 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
|
| 1040 |
+
| cosine_mrr@200 | 0.809 | 0.5608 | 0.5127 | 0.8 | 0.7943 | 0.7498 | 0.4105 |
|
| 1041 |
+
| cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7239 | 0.6667 | 0.1929 |
|
| 1042 |
+
| cosine_map@20 | 0.5575 | 0.4822 | 0.4041 | 0.5094 | 0.7332 | 0.6934 | 0.3297 |
|
| 1043 |
+
| cosine_map@50 | 0.5486 | 0.4278 | 0.3614 | 0.4946 | 0.7356 | 0.6964 | 0.3297 |
|
| 1044 |
+
| cosine_map@100 | 0.5817 | 0.4325 | 0.3657 | 0.5224 | 0.7361 | 0.697 | 0.3297 |
|
| 1045 |
+
| cosine_map@150 | 0.5899 | 0.4481 | 0.3808 | 0.5302 | 0.7363 | 0.6972 | 0.3297 |
|
| 1046 |
+
| cosine_map@200 | 0.5935 | 0.455 | 0.3885 | 0.5337 | 0.7363 | 0.6973 | 0.3297 |
|
| 1047 |
+
| cosine_map@500 | 0.5975 | 0.4675 | 0.4011 | 0.5393 | 0.7364 | 0.6974 | 0.3297 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 64
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 64
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
|
| 1339 |
+
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
|
| 1342 |
+
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
|
| 1344 |
+
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
|
| 1346 |
+
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
|
| 1348 |
+
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
|
| 1350 |
+
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
|
| 1352 |
+
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
|
| 1354 |
+
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
|
| 1356 |
+
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
|
| 1358 |
+
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
|
| 1360 |
+
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
|
| 1362 |
+
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
|
| 1364 |
+
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
|
| 1365 |
+
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
|
| 1366 |
+
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
|
| 1367 |
+
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
|
| 1368 |
+
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
|
| 1369 |
+
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
|
| 1370 |
+
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
|
| 1371 |
+
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
|
| 1372 |
+
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
|
| 1373 |
+
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
|
| 1374 |
+
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
|
| 1375 |
+
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
|
| 1376 |
+
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
|
| 1377 |
+
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
|
| 1378 |
+
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
|
| 1379 |
+
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
|
| 1380 |
+
| 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
|
| 1381 |
+
| 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
|
| 1382 |
+
|
| 1383 |
+
|
| 1384 |
+
### Framework Versions
|
| 1385 |
+
- Python: 3.11.11
|
| 1386 |
+
- Sentence Transformers: 4.1.0
|
| 1387 |
+
- Transformers: 4.51.2
|
| 1388 |
+
- PyTorch: 2.6.0+cu124
|
| 1389 |
+
- Accelerate: 1.6.0
|
| 1390 |
+
- Datasets: 3.5.0
|
| 1391 |
+
- Tokenizers: 0.21.1
|
| 1392 |
+
|
| 1393 |
+
## Citation
|
| 1394 |
+
|
| 1395 |
+
### BibTeX
|
| 1396 |
+
|
| 1397 |
+
#### Sentence Transformers
|
| 1398 |
+
```bibtex
|
| 1399 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1400 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1401 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1402 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1403 |
+
month = "11",
|
| 1404 |
+
year = "2019",
|
| 1405 |
+
publisher = "Association for Computational Linguistics",
|
| 1406 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1407 |
+
}
|
| 1408 |
+
```
|
| 1409 |
+
|
| 1410 |
+
#### GISTEmbedLoss
|
| 1411 |
+
```bibtex
|
| 1412 |
+
@misc{solatorio2024gistembed,
|
| 1413 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1414 |
+
author={Aivin V. Solatorio},
|
| 1415 |
+
year={2024},
|
| 1416 |
+
eprint={2402.16829},
|
| 1417 |
+
archivePrefix={arXiv},
|
| 1418 |
+
primaryClass={cs.LG}
|
| 1419 |
+
}
|
| 1420 |
+
```
|
| 1421 |
+
|
| 1422 |
+
<!--
|
| 1423 |
+
## Glossary
|
| 1424 |
+
|
| 1425 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1426 |
+
-->
|
| 1427 |
+
|
| 1428 |
+
<!--
|
| 1429 |
+
## Model Card Authors
|
| 1430 |
+
|
| 1431 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1432 |
+
-->
|
| 1433 |
+
|
| 1434 |
+
<!--
|
| 1435 |
+
## Model Card Contact
|
| 1436 |
+
|
| 1437 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1438 |
+
-->
|
checkpoint-4200/config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"classifier_dropout": 0.0,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": "LABEL_0"
|
| 21 |
+
},
|
| 22 |
+
"initializer_range": 0.02,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"label2id": {
|
| 25 |
+
"LABEL_0": 0
|
| 26 |
+
},
|
| 27 |
+
"layer_norm_eps": 1e-12,
|
| 28 |
+
"layer_norm_type": "layer_norm",
|
| 29 |
+
"logn_attention_clip1": false,
|
| 30 |
+
"logn_attention_scale": false,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"model_type": "new",
|
| 33 |
+
"num_attention_heads": 12,
|
| 34 |
+
"num_hidden_layers": 12,
|
| 35 |
+
"pack_qkv": true,
|
| 36 |
+
"pad_token_id": 1,
|
| 37 |
+
"position_embedding_type": "rope",
|
| 38 |
+
"rope_scaling": {
|
| 39 |
+
"factor": 8.0,
|
| 40 |
+
"type": "ntk"
|
| 41 |
+
},
|
| 42 |
+
"rope_theta": 20000,
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.51.2",
|
| 45 |
+
"type_vocab_size": 1,
|
| 46 |
+
"unpad_inputs": false,
|
| 47 |
+
"use_memory_efficient_attention": false,
|
| 48 |
+
"vocab_size": 250048
|
| 49 |
+
}
|
checkpoint-4200/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08c3c0eee68a8ed5930442c79d0458d0b34b4e35170a32c2ce1c96f52c462aa6
|
| 3 |
+
size 15958
|
checkpoint-4200/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c9b2d531961e5d2e62f3f04f261cdc73b2f148f446de659eedf81e0be01d4e6
|
| 3 |
+
size 988
|
checkpoint-4200/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aae741f7abaf2255bfeb83a85dae5baa691b92cd252ccff1b44afa573600e43d
|
| 3 |
+
size 1064
|
checkpoint-4200/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-4200/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-4200/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-4200/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40c33010f3b5232b8f1e5876490b57675597dbc48a2cd0560f16d15d56ebb4e1
|
| 3 |
+
size 5624
|
checkpoint-4400/config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"classifier_dropout": 0.0,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": "LABEL_0"
|
| 21 |
+
},
|
| 22 |
+
"initializer_range": 0.02,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"label2id": {
|
| 25 |
+
"LABEL_0": 0
|
| 26 |
+
},
|
| 27 |
+
"layer_norm_eps": 1e-12,
|
| 28 |
+
"layer_norm_type": "layer_norm",
|
| 29 |
+
"logn_attention_clip1": false,
|
| 30 |
+
"logn_attention_scale": false,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"model_type": "new",
|
| 33 |
+
"num_attention_heads": 12,
|
| 34 |
+
"num_hidden_layers": 12,
|
| 35 |
+
"pack_qkv": true,
|
| 36 |
+
"pad_token_id": 1,
|
| 37 |
+
"position_embedding_type": "rope",
|
| 38 |
+
"rope_scaling": {
|
| 39 |
+
"factor": 8.0,
|
| 40 |
+
"type": "ntk"
|
| 41 |
+
},
|
| 42 |
+
"rope_theta": 20000,
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.51.2",
|
| 45 |
+
"type_vocab_size": 1,
|
| 46 |
+
"unpad_inputs": false,
|
| 47 |
+
"use_memory_efficient_attention": false,
|
| 48 |
+
"vocab_size": 250048
|
| 49 |
+
}
|
checkpoint-4400/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.2",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-4400/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-4400/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-4400/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-4400/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
checkpoint-4400/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-4600/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-4600/README.md
ADDED
|
@@ -0,0 +1,1442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5166666666666666
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.3163809523809524
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18933333333333335
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13390476190476192
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.1043809523809524
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0678253733846715
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5460189311963579
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7403235838789698
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8464627087513951
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8848060278145474
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9111577982544093
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6948532664971591
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7153574898330466
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7686347737859489
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7861125403087321
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7971859934143821
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8130158730158731
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8130158730158731
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8130158730158731
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8130158730158731
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8130158730158731
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5581960070033892
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.547955793387211
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5806457152419001
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5882750787814468
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5920418241592634
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5960343884399482
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.5713513513513514
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.3888648648648649
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.25194594594594594
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.18998198198198196
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.1519189189189189
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.0036619075252531876
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3842833355443445
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.5650012903557396
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.6742574573080582
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.7433217612578467
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.7815387878511015
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.6134037350149425
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.587765249332833
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.6145100789008344
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.6485708474409041
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.6674981723654128
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5576576576576577
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5576576576576577
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5576576576576577
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5576576576576577
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5576576576576577
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.47936111065720205
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.4252592911005701
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.4304825507648424
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.4457575975367371
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.4532981716560443
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.4657478115586777
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9704433497536946
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9852216748768473
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9852216748768473
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9901477832512315
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9901477832512315
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.5103448275862069
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.3654187192118227
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.24152709359605912
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.18039408866995077
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.1444088669950739
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.3232480342404406
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.5030915016290886
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.6249715272880884
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.6832865603922703
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.7220918134235578
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.5410295152452983
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.5272863852084945
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.5583782732060053
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.588398956427303
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.6072311612102843
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.5115567241030488
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.5120878378565168
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.5120878378565168
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.5121352042831936
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.5121352042831936
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.4027772467386738
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.3591245737395942
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.3636915129209065
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.3780389811429104
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.3849915747167181
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.3979586734666635
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.6601941747572816
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.9805825242718447
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.9902912621359223
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.9902912621359223
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9902912621359223
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9902912621359223
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.6601941747572816
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.4805825242718447
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.2900970873786408
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.17592233009708735
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.12601941747572815
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.09815533980582528
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.06151358631979527
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.5137714811644284
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.6926011095977929
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.8015658686430839
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.8498529142376811
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.8756860745010276
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.6601941747572816
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.6561470810556217
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.6713912878037265
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.7242859634217003
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.7450276543061775
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.7555798172662749
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.6601941747572816
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.8042071197411004
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.8045805327358726
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.8045805327358726
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.8045805327358726
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.8045805327358726
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.6601941747572816
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.5106521768718877
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.4936260792000732
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.5228282305505247
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.5309790629236998
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.5343942751177704
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.5396780030153469
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.7243889755590224
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.9594383775351014
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.9791991679667187
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9927197087883516
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9963598543941757
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9973998959958398
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.7243889755590224
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.12423296931877274
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.05144045761830475
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.026235049401976088
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.017628705148205925
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.013283931357254294
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.2801228239605774
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.9177327093083724
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.9498439937597504
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.9693967758710348
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.9772057548968625
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9819032761310452
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.7243889755590224
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.8035653524093836
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.8123465374976416
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.816619783760099
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.8181288168343755
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.8189742580500373
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.7243889755590224
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.7950733254581356
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.7957037061937158
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.7959106624394904
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.795941995568463
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.7959480612399141
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.7243889755590224
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.7344976284540953
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.7369058419409787
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.7374765660485233
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.7376131540231733
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.7376752620519383
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.7377852907056718
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.6687467498699948
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.9495579823192928
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.9776391055642226
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.9864794591783671
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.9932397295891836
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9947997919916797
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.6687467498699948
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.1251430057202288
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.052282891315652634
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.026723868954758197
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.01799965331946611
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.013541341653666149
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.2518374068296065
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.9091090310279077
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.9482405962905183
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.968278731149246
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.9781591263650546
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.9810192407696308
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.6687467498699948
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.7729181248399849
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.7838354251194414
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.78838397650382
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.7903404232459181
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.7908776550064243
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.6687467498699948
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.7511103493630668
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.7520644853972484
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.75218787562777
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.7522459565052304
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.7522551943857011
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.6687467498699948
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.6960508888943099
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.698910694860312
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.699611558838961
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.6997846710668125
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.6998222199397084
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.6999210147339264
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.19240769630785232
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 1.0
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 1.0
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 1.0
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 1.0
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 1.0
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.19240769630785232
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.15439417576703063
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.0617576703068123
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.03087883515340615
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.020585890102270757
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.015439417576703075
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.06189980932570636
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 1.0
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 1.0
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 1.0
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 1.0
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 1.0
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.19240769630785232
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.5477973908226992
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.5477973908226992
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.5477973908226992
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.5477973908226992
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.5477973908226992
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.19240769630785232
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.41054733531332677
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.41054733531332677
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.41054733531332677
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.41054733531332677
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.41054733531332677
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.19240769630785232
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.33014621049351006
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.33014621049351006
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.33014621049351006
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.33014621049351006
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.33014621049351006
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.33014621049351006
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 768 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 768]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:-----------|:----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.9594 | 0.9496 | 1.0 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9927 | 0.9865 | 1.0 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9932 | 1.0 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
|
| 1018 |
+
| cosine_precision@20 | 0.5167 | 0.5714 | 0.5103 | 0.4806 | 0.1242 | 0.1251 | 0.1544 |
|
| 1019 |
+
| cosine_precision@50 | 0.3164 | 0.3889 | 0.3654 | 0.2901 | 0.0514 | 0.0523 | 0.0618 |
|
| 1020 |
+
| cosine_precision@100 | 0.1893 | 0.2519 | 0.2415 | 0.1759 | 0.0262 | 0.0267 | 0.0309 |
|
| 1021 |
+
| cosine_precision@150 | 0.1339 | 0.19 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
|
| 1022 |
+
| cosine_precision@200 | 0.1044 | 0.1519 | 0.1444 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
|
| 1023 |
+
| cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2801 | 0.2518 | 0.0619 |
|
| 1024 |
+
| cosine_recall@20 | 0.546 | 0.3843 | 0.3232 | 0.5138 | 0.9177 | 0.9091 | 1.0 |
|
| 1025 |
+
| cosine_recall@50 | 0.7403 | 0.565 | 0.5031 | 0.6926 | 0.9498 | 0.9482 | 1.0 |
|
| 1026 |
+
| cosine_recall@100 | 0.8465 | 0.6743 | 0.625 | 0.8016 | 0.9694 | 0.9683 | 1.0 |
|
| 1027 |
+
| cosine_recall@150 | 0.8848 | 0.7433 | 0.6833 | 0.8499 | 0.9772 | 0.9782 | 1.0 |
|
| 1028 |
+
| cosine_recall@200 | 0.9112 | 0.7815 | 0.7221 | 0.8757 | 0.9819 | 0.981 | 1.0 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6949 | 0.6134 | 0.541 | 0.6561 | 0.8036 | 0.7729 | 0.5478 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7154 | 0.5878 | 0.5273 | 0.6714 | 0.8123 | 0.7838 | 0.5478 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7686 | 0.6145 | 0.5584 | 0.7243 | 0.8166 | 0.7884 | 0.5478 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7861 | 0.6486 | 0.5884 | 0.745 | 0.8181 | 0.7903 | 0.5478 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7972** | **0.6675** | **0.6072** | **0.7556** | **0.819** | **0.7909** | **0.5478** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
|
| 1036 |
+
| cosine_mrr@20 | 0.813 | 0.5577 | 0.5116 | 0.8042 | 0.7951 | 0.7511 | 0.4105 |
|
| 1037 |
+
| cosine_mrr@50 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7957 | 0.7521 | 0.4105 |
|
| 1038 |
+
| cosine_mrr@100 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7522 | 0.4105 |
|
| 1039 |
+
| cosine_mrr@150 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7522 | 0.4105 |
|
| 1040 |
+
| cosine_mrr@200 | 0.813 | 0.5577 | 0.5121 | 0.8046 | 0.7959 | 0.7523 | 0.4105 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.7244 | 0.6687 | 0.1924 |
|
| 1042 |
+
| cosine_map@20 | 0.5582 | 0.4794 | 0.4028 | 0.5107 | 0.7345 | 0.6961 | 0.3301 |
|
| 1043 |
+
| cosine_map@50 | 0.548 | 0.4253 | 0.3591 | 0.4936 | 0.7369 | 0.6989 | 0.3301 |
|
| 1044 |
+
| cosine_map@100 | 0.5806 | 0.4305 | 0.3637 | 0.5228 | 0.7375 | 0.6996 | 0.3301 |
|
| 1045 |
+
| cosine_map@150 | 0.5883 | 0.4458 | 0.378 | 0.531 | 0.7376 | 0.6998 | 0.3301 |
|
| 1046 |
+
| cosine_map@200 | 0.592 | 0.4533 | 0.385 | 0.5344 | 0.7377 | 0.6998 | 0.3301 |
|
| 1047 |
+
| cosine_map@500 | 0.596 | 0.4657 | 0.398 | 0.5397 | 0.7378 | 0.6999 | 0.3301 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 64
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 64
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
|
| 1339 |
+
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
|
| 1342 |
+
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
|
| 1344 |
+
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
|
| 1346 |
+
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
|
| 1348 |
+
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
|
| 1350 |
+
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
|
| 1352 |
+
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
|
| 1354 |
+
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
|
| 1356 |
+
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
|
| 1358 |
+
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
|
| 1360 |
+
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
|
| 1362 |
+
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
|
| 1364 |
+
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
|
| 1365 |
+
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
|
| 1366 |
+
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
|
| 1367 |
+
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
|
| 1368 |
+
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
|
| 1369 |
+
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
|
| 1370 |
+
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
|
| 1371 |
+
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
|
| 1372 |
+
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
|
| 1373 |
+
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
|
| 1374 |
+
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
|
| 1375 |
+
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
|
| 1376 |
+
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
|
| 1377 |
+
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
|
| 1378 |
+
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
|
| 1379 |
+
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
|
| 1380 |
+
| 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
|
| 1381 |
+
| 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
|
| 1382 |
+
| 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
|
| 1383 |
+
| 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
|
| 1384 |
+
| 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
|
| 1385 |
+
| 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
|
| 1386 |
+
|
| 1387 |
+
|
| 1388 |
+
### Framework Versions
|
| 1389 |
+
- Python: 3.11.11
|
| 1390 |
+
- Sentence Transformers: 4.1.0
|
| 1391 |
+
- Transformers: 4.51.2
|
| 1392 |
+
- PyTorch: 2.6.0+cu124
|
| 1393 |
+
- Accelerate: 1.6.0
|
| 1394 |
+
- Datasets: 3.5.0
|
| 1395 |
+
- Tokenizers: 0.21.1
|
| 1396 |
+
|
| 1397 |
+
## Citation
|
| 1398 |
+
|
| 1399 |
+
### BibTeX
|
| 1400 |
+
|
| 1401 |
+
#### Sentence Transformers
|
| 1402 |
+
```bibtex
|
| 1403 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1404 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1405 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1406 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1407 |
+
month = "11",
|
| 1408 |
+
year = "2019",
|
| 1409 |
+
publisher = "Association for Computational Linguistics",
|
| 1410 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1411 |
+
}
|
| 1412 |
+
```
|
| 1413 |
+
|
| 1414 |
+
#### GISTEmbedLoss
|
| 1415 |
+
```bibtex
|
| 1416 |
+
@misc{solatorio2024gistembed,
|
| 1417 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1418 |
+
author={Aivin V. Solatorio},
|
| 1419 |
+
year={2024},
|
| 1420 |
+
eprint={2402.16829},
|
| 1421 |
+
archivePrefix={arXiv},
|
| 1422 |
+
primaryClass={cs.LG}
|
| 1423 |
+
}
|
| 1424 |
+
```
|
| 1425 |
+
|
| 1426 |
+
<!--
|
| 1427 |
+
## Glossary
|
| 1428 |
+
|
| 1429 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1430 |
+
-->
|
| 1431 |
+
|
| 1432 |
+
<!--
|
| 1433 |
+
## Model Card Authors
|
| 1434 |
+
|
| 1435 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1436 |
+
-->
|
| 1437 |
+
|
| 1438 |
+
<!--
|
| 1439 |
+
## Model Card Contact
|
| 1440 |
+
|
| 1441 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1442 |
+
-->
|
checkpoint-4600/config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"classifier_dropout": 0.0,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": "LABEL_0"
|
| 21 |
+
},
|
| 22 |
+
"initializer_range": 0.02,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"label2id": {
|
| 25 |
+
"LABEL_0": 0
|
| 26 |
+
},
|
| 27 |
+
"layer_norm_eps": 1e-12,
|
| 28 |
+
"layer_norm_type": "layer_norm",
|
| 29 |
+
"logn_attention_clip1": false,
|
| 30 |
+
"logn_attention_scale": false,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"model_type": "new",
|
| 33 |
+
"num_attention_heads": 12,
|
| 34 |
+
"num_hidden_layers": 12,
|
| 35 |
+
"pack_qkv": true,
|
| 36 |
+
"pad_token_id": 1,
|
| 37 |
+
"position_embedding_type": "rope",
|
| 38 |
+
"rope_scaling": {
|
| 39 |
+
"factor": 8.0,
|
| 40 |
+
"type": "ntk"
|
| 41 |
+
},
|
| 42 |
+
"rope_theta": 20000,
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.51.2",
|
| 45 |
+
"type_vocab_size": 1,
|
| 46 |
+
"unpad_inputs": false,
|
| 47 |
+
"use_memory_efficient_attention": false,
|
| 48 |
+
"vocab_size": 250048
|
| 49 |
+
}
|
checkpoint-4600/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.2",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-4600/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-4600/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-4600/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-4600/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
checkpoint-4600/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-4600/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-4800/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-4800/README.md
ADDED
|
@@ -0,0 +1,1444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5171428571428571
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.316
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18895238095238095
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13384126984126984
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.10433333333333335
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0678253733846715
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5470006025464504
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7399645316315758
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8452891149669638
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8838497168796887
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9109269128757174
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6953571805621692
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7150421121165462
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7679394555495317
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7856911059911225
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7969632777290026
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8138095238095239
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8138095238095239
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8138095238095239
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8138095238095239
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8138095238095239
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5578605627627369
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5471407389299809
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5795933384755297
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5874505508842796
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5912226659397186
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5952587557760031
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.5718918918918919
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.3885405405405405
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.25172972972972973
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.1904864864864865
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.1521891891891892
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.0036619075252531876
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3842245968041533
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.5640822196868902
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.6741986120580108
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.7463851968088967
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.7825399601398452
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.6139182209948354
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5873893466818746
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.6144038475288277
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.6498632077214272
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.6680602466150343
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5581081081081081
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5581081081081081
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5581081081081081
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5581081081081081
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5581081081081081
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.47988875190050484
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.4249833337950364
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.430155652024808
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.4458862132745998
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.45334655744992447
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.4656066165331343
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9704433497536946
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9852216748768473
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9852216748768473
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9901477832512315
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9901477832512315
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.5083743842364532
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.3654187192118227
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.24133004926108376
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.18036124794745487
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.14467980295566504
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.3221185941380065
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.5024502430161547
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.6247617904371989
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.6829583450315939
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.7216293640715983
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.5393376062142305
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.5267125529267169
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.55793511917882
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.5879547828450983
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.6071252185389439
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.5104381157401634
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.5109752961295605
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.5109752961295605
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.5110222114474118
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.5110222114474118
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.40097257642946377
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.35882787401455
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.3633182590941781
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.3776727961080201
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.3848401555555339
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.3978065874082948
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.6601941747572816
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.9805825242718447
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.9902912621359223
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.9902912621359223
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9902912621359223
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9902912621359223
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.6601941747572816
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.4781553398058253
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.28951456310679613
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.17572815533980585
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.12595469255663433
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.09815533980582528
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.06151358631979527
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.5107966412908705
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.6922746152164951
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.8004152884148357
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.8465065661615649
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.8770990926698364
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.6601941747572816
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.6539867858378715
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.6707332209240133
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.72342020484322
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.7437750875502527
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.7553648453187212
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.6601941747572816
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.8037216828478965
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.8040950958426687
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.8040950958426687
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.8040950958426687
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.8040950958426687
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.6601941747572816
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.5087334164702914
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.49260246320797585
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.5217412166882693
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.529859818130126
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.533378795921413
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.5386011712914499
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.7280291211648466
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.9599583983359334
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.9791991679667187
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9942797711908476
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9958398335933437
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9973998959958398
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.7280291211648466
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.12433697347893914
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.05145085803432139
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.02625065002600105
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.017621771537528162
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.013283931357254294
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.28133620582918556
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.9183394002426764
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.9499306638932224
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.9700901369388107
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.9767724042295025
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9818166059975733
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.7280291211648466
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.8043549768911603
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.81295852465432
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.817339429558165
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.8186380742931886
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.8195485984235017
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.7280291211648466
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.7968549154271433
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.7974653825839162
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.7976914864910069
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.7977044635908871
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.7977139196654446
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.7280291211648466
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.7350836192117531
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.7374205090112232
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.737988888492803
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.7381133157945164
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.7381788581828236
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.7382854440643231
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.6703068122724909
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.9505980239209568
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.9776391055642226
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.9864794591783671
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.9932397295891836
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9947997919916797
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.6703068122724909
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.1251690067602704
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.052282891315652634
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.026729069162766517
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.01799965331946611
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.013541341653666149
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.25235742763043856
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.9095857167620037
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.9482405962905183
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.96845207141619
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.9781591263650546
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.9810192407696308
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.6703068122724909
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.7735712514376322
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.7843644592705362
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.7889444470773866
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.7908660087982327
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.791403470160319
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.6703068122724909
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.7520307321055828
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.7529374175534339
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.7530616872072472
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.7531202644382351
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.7531293951311296
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.6703068122724909
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.6967639778693541
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.699575457224443
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.70027844357658
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.7004487000056766
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.7004863395843564
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.7005835771389989
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.19084763390535622
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 1.0
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 1.0
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 1.0
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 1.0
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 1.0
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.19084763390535622
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.15439417576703063
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.0617576703068123
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.03087883515340615
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.020585890102270757
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.015439417576703075
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.06137978852487433
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 1.0
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 1.0
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 1.0
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 1.0
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 1.0
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.19084763390535622
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.5474303590499686
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.5474303590499686
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.5474303590499686
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.5474303590499686
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.5474303590499686
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.19084763390535622
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.4093433087972877
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.4093433087972877
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.4093433087972877
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.4093433087972877
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.4093433087972877
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.19084763390535622
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.32981711891302556
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.32981711891302556
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.32981711891302556
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.32981711891302556
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.32981711891302556
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.32981711891302556
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)
|
| 908 |
+
|
| 909 |
+
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 768 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 768]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1018 |
+
| cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 |
|
| 1019 |
+
| cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 |
|
| 1020 |
+
| cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 |
|
| 1021 |
+
| cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 |
|
| 1022 |
+
| cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 |
|
| 1023 |
+
| cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 |
|
| 1024 |
+
| cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 |
|
| 1025 |
+
| cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 |
|
| 1026 |
+
| cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 |
|
| 1027 |
+
| cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 |
|
| 1028 |
+
| cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 |
|
| 1042 |
+
| cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 |
|
| 1043 |
+
| cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 |
|
| 1044 |
+
| cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 |
|
| 1045 |
+
| cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 |
|
| 1046 |
+
| cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 |
|
| 1047 |
+
| cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 64
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 64
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 |
|
| 1339 |
+
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 |
|
| 1342 |
+
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 |
|
| 1344 |
+
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 |
|
| 1346 |
+
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 |
|
| 1348 |
+
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 |
|
| 1350 |
+
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 |
|
| 1352 |
+
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 |
|
| 1354 |
+
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 |
|
| 1356 |
+
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 |
|
| 1358 |
+
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 |
|
| 1360 |
+
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 |
|
| 1362 |
+
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - |
|
| 1363 |
+
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 |
|
| 1364 |
+
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - |
|
| 1365 |
+
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 |
|
| 1366 |
+
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - |
|
| 1367 |
+
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 |
|
| 1368 |
+
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - |
|
| 1369 |
+
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 |
|
| 1370 |
+
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - |
|
| 1371 |
+
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 |
|
| 1372 |
+
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - |
|
| 1373 |
+
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 |
|
| 1374 |
+
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - |
|
| 1375 |
+
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 |
|
| 1376 |
+
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - |
|
| 1377 |
+
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 |
|
| 1378 |
+
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - |
|
| 1379 |
+
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 |
|
| 1380 |
+
| 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - |
|
| 1381 |
+
| 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 |
|
| 1382 |
+
| 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - |
|
| 1383 |
+
| 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 |
|
| 1384 |
+
| 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - |
|
| 1385 |
+
| 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 |
|
| 1386 |
+
| 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - |
|
| 1387 |
+
| 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 |
|
| 1388 |
+
|
| 1389 |
+
|
| 1390 |
+
### Framework Versions
|
| 1391 |
+
- Python: 3.11.11
|
| 1392 |
+
- Sentence Transformers: 4.1.0
|
| 1393 |
+
- Transformers: 4.51.2
|
| 1394 |
+
- PyTorch: 2.6.0+cu124
|
| 1395 |
+
- Accelerate: 1.6.0
|
| 1396 |
+
- Datasets: 3.5.0
|
| 1397 |
+
- Tokenizers: 0.21.1
|
| 1398 |
+
|
| 1399 |
+
## Citation
|
| 1400 |
+
|
| 1401 |
+
### BibTeX
|
| 1402 |
+
|
| 1403 |
+
#### Sentence Transformers
|
| 1404 |
+
```bibtex
|
| 1405 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1406 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1407 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1408 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1409 |
+
month = "11",
|
| 1410 |
+
year = "2019",
|
| 1411 |
+
publisher = "Association for Computational Linguistics",
|
| 1412 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1413 |
+
}
|
| 1414 |
+
```
|
| 1415 |
+
|
| 1416 |
+
#### GISTEmbedLoss
|
| 1417 |
+
```bibtex
|
| 1418 |
+
@misc{solatorio2024gistembed,
|
| 1419 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1420 |
+
author={Aivin V. Solatorio},
|
| 1421 |
+
year={2024},
|
| 1422 |
+
eprint={2402.16829},
|
| 1423 |
+
archivePrefix={arXiv},
|
| 1424 |
+
primaryClass={cs.LG}
|
| 1425 |
+
}
|
| 1426 |
+
```
|
| 1427 |
+
|
| 1428 |
+
<!--
|
| 1429 |
+
## Glossary
|
| 1430 |
+
|
| 1431 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1432 |
+
-->
|
| 1433 |
+
|
| 1434 |
+
<!--
|
| 1435 |
+
## Model Card Authors
|
| 1436 |
+
|
| 1437 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1438 |
+
-->
|
| 1439 |
+
|
| 1440 |
+
<!--
|
| 1441 |
+
## Model Card Contact
|
| 1442 |
+
|
| 1443 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1444 |
+
-->
|
checkpoint-4800/config.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"classifier_dropout": 0.0,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": "LABEL_0"
|
| 21 |
+
},
|
| 22 |
+
"initializer_range": 0.02,
|
| 23 |
+
"intermediate_size": 3072,
|
| 24 |
+
"label2id": {
|
| 25 |
+
"LABEL_0": 0
|
| 26 |
+
},
|
| 27 |
+
"layer_norm_eps": 1e-12,
|
| 28 |
+
"layer_norm_type": "layer_norm",
|
| 29 |
+
"logn_attention_clip1": false,
|
| 30 |
+
"logn_attention_scale": false,
|
| 31 |
+
"max_position_embeddings": 8192,
|
| 32 |
+
"model_type": "new",
|
| 33 |
+
"num_attention_heads": 12,
|
| 34 |
+
"num_hidden_layers": 12,
|
| 35 |
+
"pack_qkv": true,
|
| 36 |
+
"pad_token_id": 1,
|
| 37 |
+
"position_embedding_type": "rope",
|
| 38 |
+
"rope_scaling": {
|
| 39 |
+
"factor": 8.0,
|
| 40 |
+
"type": "ntk"
|
| 41 |
+
},
|
| 42 |
+
"rope_theta": 20000,
|
| 43 |
+
"torch_dtype": "float32",
|
| 44 |
+
"transformers_version": "4.51.2",
|
| 45 |
+
"type_vocab_size": 1,
|
| 46 |
+
"unpad_inputs": false,
|
| 47 |
+
"use_memory_efficient_attention": false,
|
| 48 |
+
"vocab_size": 250048
|
| 49 |
+
}
|
checkpoint-4800/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.2",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-4800/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-4800/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18f7282ab1794e08c4b4b08e435d1c280f8ffd3b854395a11b620a7472776d29
|
| 3 |
+
size 15958
|
checkpoint-4800/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c143c5f287168ca43f876b42c855fa8ed58ac53946ea92028d4871161e59c35
|
| 3 |
+
size 988
|
checkpoint-4800/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:771de1c33cd39219f8ff19435c56de0d3d8a374202466259d71fb8e3c5a3e7c4
|
| 3 |
+
size 1064
|
checkpoint-4800/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-4800/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-4800/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
checkpoint-4800/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-4800/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-4800/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40c33010f3b5232b8f1e5876490b57675597dbc48a2cd0560f16d15d56ebb4e1
|
| 3 |
+
size 5624
|
eval/Information-Retrieval_evaluation_full_es_results.csv
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.2053388090349076,200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036542148230633313,0.5602702702702703,0.3828077426666972,0.38335135135135134,0.5653252324643432,0.2503783783783784,0.6800221958461447,0.18681081081081083,0.7388915948699079,0.149972972972973,0.7804837951694225,0.12432432432432433,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.5567567567567567,0.12432432432432433,0.6019271564713847,0.5833730603752632,0.6139937306765353,0.6433585312593553,0.6632845626952335,0.12432432432432433,0.4633435867906743,0.4188093941413692,0.42609267111605426,0.44016851054024486,0.4482545851085946,0.4607662221292372
|
| 3 |
+
0.4106776180698152,400,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0035436931012884127,0.5683783783783785,0.3810462671828017,0.38324324324324327,0.5543993842372753,0.24810810810810813,0.6700411876973422,0.18515315315315314,0.7311788302888577,0.14832432432432432,0.7678363663093309,0.11891891891891893,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.5545045045045045,0.11891891891891893,0.608829799528409,0.5811778113289973,0.6102432927126396,0.6401874966927388,0.6585608274394179,0.11891891891891893,0.4730257073536956,0.4194802635669368,0.4252576537009097,0.4385610105081702,0.44599736870498363,0.4586336991926438
|
| 4 |
+
0.6160164271047228,600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0035045234969014166,0.5713513513513514,0.3846125291226745,0.3913513513513514,0.5682209903507661,0.2525945945945946,0.6778875140787548,0.1881081081081081,0.738073200978772,0.15154054054054053,0.7822033748058627,0.11351351351351352,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.5509009009009009,0.11351351351351352,0.6120507278465956,0.589300707007821,0.615928427138543,0.6457992728749911,0.667053226562886,0.11351351351351352,0.47819284350499,0.4243332984656309,0.4304507877187128,0.44417898246014825,0.4525438357699329,0.46507797386754063
|
| 5 |
+
0.8213552361396304,800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0036933844274503265,0.5781081081081081,0.3874647857418556,0.39372972972972975,0.5727008693667749,0.2557837837837838,0.6842591787966371,0.1899099099099099,0.7400278311282196,0.1514594594594595,0.7809088317561025,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6199466914696183,0.5960674362052089,0.6240359667874307,0.6520216816558552,0.6710916559047866,0.12972972972972974,0.4878817205058847,0.4341970857400079,0.4408342359843624,0.45414196691999603,0.4614165994644783,0.47385564807420766
|
| 6 |
+
1.0266940451745379,1000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036231843572502565,0.5637837837837838,0.37729156169584205,0.3885405405405405,0.5633539830825378,0.25464864864864867,0.6827730159650425,0.18990990990990994,0.7428633667293452,0.15132432432432433,0.7782685040521145,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6057777177642741,0.5867260726659175,0.6183196404646596,0.6481962270281353,0.6659059109179445,0.12432432432432433,0.4687261860511995,0.42180542179418523,0.4308714867841366,0.4446949532622736,0.45192025430903376,0.46527408086342625
|
| 7 |
+
1.2320328542094456,1200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.577027027027027,0.3847769295694512,0.38789189189189194,0.5614675431439459,0.25416216216216214,0.6788995357226216,0.1912792792792793,0.7447525709656728,0.15318918918918917,0.7841950250873984,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6153010648078737,0.5862024056553702,0.6170116332997596,0.6500916277248869,0.6695594700373524,0.12432432432432433,0.4795409082105716,0.42295585561484256,0.430282617284781,0.4456649970867384,0.4534754614662622,0.46568048911518123
|
| 8 |
+
1.4373716632443532,1400,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036542148230633313,0.5778378378378378,0.3854462956207493,0.3930810810810811,0.5718241254218704,0.25702702702702707,0.6876874645193202,0.19196396396396398,0.7494223714305853,0.15375675675675676,0.792200813255954,0.12432432432432433,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.5563063063063063,0.12432432432432433,0.6183362743387226,0.5942702286222415,0.6245437474082477,0.6553581121410758,0.6756783811750192,0.12432432432432433,0.48462670819493664,0.4313917915592608,0.4396814925285873,0.4540585313589766,0.46184599750190675,0.47440674302762886
|
| 9 |
+
1.6427104722792607,1600,0.11351351351351352,1.0,1.0,1.0,1.0,1.0,0.11351351351351352,0.0035045234969014166,0.5764864864864865,0.3838299041397214,0.3923243243243243,0.5676927670554055,0.2550810810810811,0.6800509517344185,0.19102702702702704,0.7443262071007248,0.15316216216216216,0.7883305977043269,0.11351351351351352,0.551981981981982,0.551981981981982,0.551981981981982,0.551981981981982,0.551981981981982,0.11351351351351352,0.6164256669688939,0.5912816216435999,0.6197132420680798,0.6514620845615328,0.6723348835622636,0.11351351351351352,0.4822334196423875,0.428689300381166,0.4358240738421247,0.45072644527221695,0.45843672035723626,0.47144338596575885
|
| 10 |
+
1.8480492813141685,1800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5781081081081081,0.3843655271102247,0.39178378378378387,0.5676845000312233,0.2542702702702703,0.6787154918207249,0.18785585585585585,0.7320225875719449,0.15113513513513513,0.7761507059670063,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6185956862201957,0.5911825957843169,0.619072389909614,0.6455432274603132,0.6667655327783534,0.12972972972972974,0.4837965937849941,0.4285331090232545,0.43606519106346137,0.4482049475328162,0.4562691988973938,0.46885714095350695
|
| 11 |
+
2.0544147843942504,2000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.5754054054054053,0.38145806817133593,0.38724324324324316,0.5609230769799306,0.25313513513513514,0.6732219748754285,0.1890810810810811,0.7352593490969169,0.15135135135135136,0.7750850885027253,0.12432432432432433,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.5572072072072072,0.12432432432432433,0.6150465394619441,0.5856947806997886,0.6145141363648746,0.6453998709917663,0.6647428229280057,0.12432432432432433,0.4825873237596062,0.4233448232888883,0.43062097640739355,0.44500664950380214,0.4524896138305996,0.4654736935141093
|
| 12 |
+
2.259753593429158,2200,0.11891891891891893,1.0,1.0,1.0,1.0,1.0,0.11891891891891893,0.0035747235671014874,0.5689189189189189,0.37777386748934544,0.3911351351351352,0.5649004100538018,0.25275675675675674,0.6795926106033889,0.18738738738738742,0.732879504902313,0.1511081081081081,0.7801094330153461,0.11891891891891893,0.554954954954955,0.554954954954955,0.554954954954955,0.554954954954955,0.554954954954955,0.11891891891891893,0.6102156454096861,0.5880185911691195,0.6157958581477553,0.6430878006010147,0.6652050601478975,0.11891891891891893,0.47682238898990137,0.42447626539918315,0.4292496912787929,0.4423464730434234,0.4509245941088909,0.46326314665597734
|
| 13 |
+
2.465092402464066,2400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0036933844274503265,0.5694594594594594,0.37897271285529815,0.38951351351351354,0.564877405689267,0.2525945945945946,0.6775440114898331,0.1889009009009009,0.7399484000008381,0.15232432432432433,0.7852643837938816,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6114452843733574,0.5885739212092884,0.6163707400008701,0.6471826727296124,0.6690296055702684,0.12972972972972974,0.4778421789596433,0.42528298846411233,0.4308215112766512,0.4453858074670597,0.4540712408593371,0.4662322432529058
|
| 14 |
+
2.6704312114989732,2600,0.13513513513513514,1.0,1.0,1.0,1.0,1.0,0.13513513513513514,0.0037805683856020266,0.5689189189189189,0.37980549211286346,0.39156756756756755,0.5654990665744473,0.2554054054054054,0.6811080928479146,0.1920720720720721,0.7500526739804151,0.15478378378378377,0.7971983411426202,0.13513513513513514,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.5630630630630631,0.13513513513513514,0.6112694350799244,0.5897596950997224,0.6196123237451338,0.653341969847444,0.6757815538442021,0.13513513513513514,0.4768630502305793,0.4268490797781516,0.43438544166855364,0.4498742166248682,0.45867889167253034,0.4703139514013845
|
| 15 |
+
2.875770020533881,2800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5759459459459461,0.38642757375013415,0.3905945945945946,0.5678636581736557,0.25335135135135134,0.6828369327276755,0.19149549549549547,0.7494392702606744,0.1528108108108108,0.7876309603981632,0.12972972972972974,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.5612612612612613,0.12972972972972974,0.6166342865591007,0.5902204952624381,0.6193734266318873,0.6531118980314357,0.6718916215504982,0.12972972972972974,0.4825471418519291,0.42696486553261526,0.4331297275336443,0.4492308538620596,0.4566434936651272,0.4686210351280788
|
| 16 |
+
3.082135523613963,3000,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036138931714884822,0.5732432432432432,0.3843298086450538,0.38875675675675686,0.5650294350649707,0.25416216216216214,0.6803318262694354,0.1910630630630631,0.7403401943726319,0.15264864864864863,0.779930588965831,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6143008527055751,0.5877390176744759,0.6177618735749928,0.648977793940304,0.6681685872747991,0.12432432432432433,0.4785583292524849,0.4243560892850918,0.4318640928093425,0.4471005875068474,0.45439053305098065,0.46665216860447767
|
| 17 |
+
3.2874743326488707,3200,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.571081081081081,0.3828514779996719,0.39081081081081087,0.5673342901285358,0.2558378378378378,0.6844506535508201,0.19210810810810813,0.7483366539961698,0.1532972972972973,0.7878739392122067,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6127977853629571,0.5896774300207103,0.6205913187119861,0.652649303380801,0.6717100228964664,0.12432432432432433,0.4776124239982684,0.42680207356106176,0.4345050542016339,0.4495238771603171,0.45698068155359556,0.468967880585077
|
| 18 |
+
3.4928131416837784,3400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.003701077129640182,0.567027027027027,0.3804982136664571,0.3875675675675676,0.5629699580592333,0.25081081081081086,0.6707062354999778,0.1889009009009009,0.7368379061779298,0.15054054054054056,0.7766992539904688,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6089336440451314,0.5856625822268604,0.6117458478660927,0.6445114367692948,0.6634236875631417,0.12972972972972974,0.4730243382102379,0.4222040964295926,0.427053097765836,0.4419405854099873,0.44898785309975947,0.46116246384135534
|
| 19 |
+
3.6981519507186857,3600,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5678378378378378,0.3827628869405309,0.3863783783783784,0.5631375966688502,0.24967567567567567,0.6708095319711836,0.18807207207207208,0.7352302478861616,0.1507027027027027,0.7771325965481749,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6104723243523141,0.5851867564637715,0.6111351459739588,0.6434844421459089,0.6635444455655303,0.12972972972972974,0.47463453452331006,0.4217990464159235,0.4265057087682277,0.440835085807051,0.44854541040657625,0.4606477333412848
|
| 20 |
+
3.9034907597535935,3800,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.572972972972973,0.3863687030094713,0.39156756756756755,0.5684964616110271,0.25243243243243246,0.6746797199000947,0.1914234234234234,0.7467802963396935,0.1522972972972973,0.7847156758414823,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6146096492130458,0.5903942165828612,0.6157380431058012,0.6513020633067227,0.6695734441770614,0.12972972972972974,0.47857516088611635,0.42741121568687945,0.43204147433500506,0.44812154826154116,0.45515154391733104,0.467280855272183
|
| 21 |
+
4.108829568788501,4000,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5705405405405405,0.38432915927625627,0.38962162162162167,0.5663097940153319,0.25140540540540546,0.6710180189388714,0.19012612612612612,0.7443549924512646,0.15154054054054056,0.7804985217049148,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6133809590566169,0.5888378318443163,0.613553130716134,0.6492700673561147,0.6672020616803231,0.12972972972972974,0.47928087268629077,0.4265150109477007,0.4308614258675324,0.446315567522346,0.45361884446786194,0.46587892353181215
|
| 22 |
+
4.314168377823409,4200,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5735135135135134,0.3850053775723816,0.3912432432432432,0.5678708571543062,0.2531351351351352,0.6771132401665688,0.19113513513513514,0.7476366668984507,0.15186486486486486,0.7806646181068078,0.12972972972972974,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.5608108108108109,0.12972972972972974,0.6155696219376317,0.5902714649088991,0.6166603984916751,0.6514414937889701,0.6681110549873654,0.12972972972972974,0.4821585422089324,0.4278073015090324,0.4325091891776662,0.4481236866241766,0.45495240914630236,0.4674583582676571
|
| 23 |
+
4.519507186858316,4400,0.12972972972972974,1.0,1.0,1.0,1.0,1.0,0.12972972972972974,0.0037413987812150314,0.5721621621621621,0.38564412906376994,0.3898378378378379,0.56634717829376,0.25248648648648647,0.6751207657229007,0.19001801801801804,0.7429721526766266,0.15216216216216216,0.782741009344735,0.12972972972972974,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.5603603603603604,0.12972972972972974,0.6146062832951104,0.5888430944817052,0.6153911974508461,0.6488811790186049,0.668484227215925,0.12972972972972974,0.48065989256661584,0.4260414587944102,0.4313410890675031,0.44627409433309473,0.45409073457648325,0.4664141280463215
|
| 24 |
+
4.724845995893224,4600,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.5713513513513514,0.3842833355443445,0.3888648648648649,0.5650012903557396,0.25194594594594594,0.6742574573080582,0.18998198198198196,0.7433217612578467,0.1519189189189189,0.7815387878511015,0.12432432432432433,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.5576576576576577,0.12432432432432433,0.6134037350149425,0.587765249332833,0.6145100789008344,0.6485708474409041,0.6674981723654128,0.12432432432432433,0.47936111065720205,0.4252592911005701,0.4304825507648424,0.4457575975367371,0.4532981716560443,0.4657478115586777
|
| 25 |
+
4.930184804928132,4800,0.12432432432432433,1.0,1.0,1.0,1.0,1.0,0.12432432432432433,0.0036619075252531876,0.5718918918918919,0.3842245968041533,0.3885405405405405,0.5640822196868902,0.25172972972972973,0.6741986120580108,0.1904864864864865,0.7463851968088967,0.1521891891891892,0.7825399601398452,0.12432432432432433,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.5581081081081081,0.12432432432432433,0.6139182209948354,0.5873893466818746,0.6144038475288277,0.6498632077214272,0.6680602466150343,0.12432432432432433,0.47988875190050484,0.4249833337950364,0.430155652024808,0.4458862132745998,0.45334655744992447,0.4656066165331343
|
eval/Information-Retrieval_evaluation_mix_de_results.csv
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.2053388090349076,200,0.5824232969318772,0.890795631825273,0.9344773790951638,0.9625585023400937,0.9713988559542381,0.9755590223608944,0.5824232969318772,0.21945744496446523,0.10995839833593343,0.8010140405616224,0.04770670826833075,0.8672560235742762,0.025023400936037447,0.9088503891032834,0.017067082683307328,0.928888523962011,0.013003120124804996,0.9424478382644077,0.5824232969318772,0.6686146655052267,0.6700220401420418,0.6704225963707373,0.6704949320904295,0.6705196374407493,0.5824232969318772,0.6671050419586103,0.6853068462793799,0.6945910686245909,0.6985990036687157,0.7011459404427492,0.5824232969318772,0.5804077947241746,0.5851378642364741,0.5864292325266649,0.5868080085531887,0.5870045172476335,0.587255698964039
|
| 3 |
+
0.4106776180698152,400,0.6058242329693188,0.9001560062402496,0.9438377535101404,0.9661986479459178,0.9786791471658867,0.984919396775871,0.6058242329693188,0.22767377361761137,0.11453458138325531,0.8328913156526262,0.049277171086843485,0.8950078003120124,0.025501820072802914,0.9252310443294924,0.01738949557982319,0.9456258952112471,0.013208528341133648,0.9575863736303838,0.6058242329693188,0.6916097716264229,0.6930731873244362,0.6933861079128469,0.6934856963760448,0.6935223150466893,0.6058242329693188,0.6978257678791413,0.7148134512905183,0.7215656325178118,0.7256044427041147,0.7278106695507355,0.6058242329693188,0.6136914531088427,0.6180001645069843,0.6189322601089229,0.6193042781784874,0.6194584295615786,0.6196563244482027
|
| 4 |
+
0.6160164271047228,600,0.6136245449817993,0.9027561102444098,0.9511180447217888,0.9724388975559022,0.9823192927717108,0.9880395215808633,0.6136245449817993,0.2296931877275091,0.1156786271450858,0.8399982665973306,0.04980759230369215,0.9041254983532674,0.025803432137285493,0.9360807765643959,0.01750390015600624,0.9516220999717182,0.013304732189287575,0.9633773070221053,0.6136245449817993,0.6967436196163437,0.6983767208927972,0.6986755582030411,0.6987550736361285,0.6987871879396401,0.6136245449817993,0.7039015030314165,0.7214196598697487,0.7285557386019151,0.731660833854203,0.7338649218512935,0.6136245449817993,0.6199336468860212,0.6243059725986513,0.6252932577240808,0.6255849080363306,0.6257398204144359,0.6259188350215349
|
| 5 |
+
0.8213552361396304,800,0.6198647945917837,0.9199167966718669,0.9599583983359334,0.9771190847633905,0.984919396775871,0.9890795631825273,0.6198647945917837,0.23226729069162766,0.11835673426937077,0.8603137458831687,0.05055642225689029,0.9172906916276651,0.026058242329693195,0.9446177847113885,0.01765643959091697,0.9596550528687814,0.01338013520540822,0.9689127915993833,0.6198647945917837,0.7067310519072951,0.7080323481502147,0.7082793254956429,0.7083435341245732,0.708367858453663,0.6198647945917837,0.7179147930131626,0.7335369696209415,0.7396898870736865,0.7426721836970417,0.7444074102762905,0.6198647945917837,0.6325265171671292,0.6365112891787109,0.6373788268173515,0.6376617577798908,0.6377881327329524,0.6379357654928159
|
| 6 |
+
1.0266940451745379,1000,0.641185647425897,0.9261570462818512,0.9641185647425897,0.9817992719708788,0.9875195007800313,0.9932397295891836,0.641185647425897,0.2409169700121338,0.11957878315132604,0.868322066215982,0.05092043681747271,0.9239296238516207,0.026287051482059287,0.953371468192061,0.017784711388455537,0.9668053388802219,0.013426937077483103,0.9728996177390954,0.641185647425897,0.723512152520197,0.7247732383573519,0.7250213151606678,0.7250670172565229,0.725101115499198,0.641185647425897,0.7331582819294082,0.7484853776582061,0.7550159668996201,0.7577049278428191,0.7588390730905107,0.641185647425897,0.6507883293963721,0.6548526090599666,0.6557655896025038,0.6560320335460608,0.6561000390732701,0.6562403086721103
|
| 7 |
+
1.2320328542094456,1200,0.6469058762350494,0.9292771710868435,0.9625585023400937,0.9812792511700468,0.9895995839833593,0.9927197087883516,0.6469058762350494,0.24236436124111632,0.11991679667186687,0.8719188767550701,0.05069162766510661,0.9197694574449645,0.026261050442017687,0.9518114057895649,0.017791644999133292,0.9665726979956392,0.013450338013520543,0.9738529892072876,0.6469058762350494,0.7269400985028893,0.7280394635287579,0.7283120754443227,0.7283774712480807,0.7283958171968078,0.6469058762350494,0.7376190451778748,0.7508860063210446,0.7580843131044783,0.7610353115310864,0.7623967599316989,0.6469058762350494,0.6568766292733668,0.6603301597824439,0.6613474042139721,0.661638250077651,0.6617378656761332,0.661867663149717
|
| 8 |
+
1.4373716632443532,1400,0.6531461258450338,0.9308372334893396,0.9651586063442538,0.984399375975039,0.9906396255850234,0.9942797711908476,0.6531461258450338,0.24460045068469405,0.1204368174726989,0.8760703761483793,0.051170046801872086,0.9280464551915409,0.026417056682267296,0.9580083203328134,0.017847113884555378,0.970055468885422,0.013497139885595427,0.9776391055642226,0.6531461258450338,0.7301427290607674,0.73127221921329,0.7315515852685716,0.7316041804827806,0.7316258311778456,0.6531461258450338,0.7400846276876067,0.7544954223077399,0.7611232562936333,0.7635508214909821,0.7649716494639359,0.6531461258450338,0.6582591347527325,0.6620448798560229,0.6629532720507669,0.6631839344942984,0.6632878487109075,0.663394290277717
|
| 9 |
+
1.6427104722792607,1600,0.6531461258450338,0.9282371294851794,0.9672386895475819,0.984399375975039,0.9916796671866874,0.9927197087883516,0.6531461258450338,0.24526781071242848,0.12061882475299011,0.876269717455365,0.051305252210088415,0.930516553995493,0.026417056682267296,0.9579216501993414,0.017867914716588662,0.9713121858207663,0.013478939157566308,0.9765990639625585,0.6531461258450338,0.7297931034955463,0.7310949829556551,0.7313458635342546,0.7314015672242672,0.7314070148575023,0.6531461258450338,0.7411519844144333,0.7562323464980976,0.7623550920981482,0.7650222597446915,0.7660148980251885,0.6531461258450338,0.6598824970349082,0.6638312074627658,0.6647182775063895,0.6649656128823839,0.6650428618726513,0.6651608439550554
|
| 10 |
+
1.8480492813141685,1800,0.655746229849194,0.9313572542901716,0.967758710348414,0.984399375975039,0.9901196047841914,0.9927197087883516,0.655746229849194,0.24639452244756457,0.12121684867394694,0.8807245623158259,0.05134685387415497,0.9323799618651413,0.026427457098283938,0.9584850060669092,0.01785404749523314,0.97040214941931,0.013471138845553827,0.9760790431617264,0.655746229849194,0.7359661579803044,0.7371839757004826,0.7374316676183734,0.7374778751542778,0.7374937192664236,0.655746229849194,0.747961593820956,0.7620851284167808,0.7679714384557973,0.7703599291055326,0.7714144528908776,0.655746229849194,0.6682485275594054,0.6718501706313308,0.6726831971840679,0.672906327059626,0.672984318369321,0.6730960459348426
|
| 11 |
+
2.0544147843942504,2000,0.6547061882475299,0.9365574622984919,0.9713988559542381,0.983879355174207,0.9901196047841914,0.9937597503900156,0.6547061882475299,0.24629051828739817,0.12184087363494539,0.8856474258970358,0.051648465938637554,0.9372248223262264,0.026510660426417063,0.9610417750043336,0.017899115964638588,0.9730022534234704,0.013512740509620388,0.9789824926330386,0.6547061882475299,0.734953306211269,0.7360724461513224,0.7362604762082307,0.736310379668506,0.7363320594909445,0.6547061882475299,0.7501708892155533,0.7643740612112161,0.7697269409372974,0.7720989054331775,0.7732212507206273,0.6547061882475299,0.6706228544587022,0.6742958831841708,0.6750767013506579,0.6753004485993032,0.6753808341815668,0.6754764501239573
|
| 12 |
+
2.259753593429158,2200,0.6495059802392096,0.9339573582943318,0.9750390015600624,0.9875195007800313,0.9895995839833593,0.9947997919916797,0.6495059802392096,0.24444444444444446,0.1220228809152366,0.8857947651239382,0.051752470098803974,0.9388282197954585,0.026583463338533547,0.9632951984746055,0.017926850407349624,0.9739989599583984,0.013551742069682791,0.9817126018374069,0.6495059802392096,0.7317406351805603,0.7330178506535835,0.7331845752525227,0.7332024734980075,0.7332323545925215,0.6495059802392096,0.749844314932409,0.7643258266456834,0.7698372693681987,0.7719596031454881,0.7733737187427536,0.6495059802392096,0.6710144415214195,0.6745997972154377,0.6754157585321406,0.6756270441179111,0.6757258475913458,0.6758073431120588
|
| 13 |
+
2.465092402464066,2400,0.6521060842433697,0.9401976079043162,0.9708788351534061,0.9859594383775351,0.9906396255850234,0.9937597503900156,0.6521060842433697,0.2450078003120125,0.12259490379615184,0.891142312359161,0.05174206968278733,0.9381868608077656,0.026562662506500266,0.9625585023400937,0.017919916796671865,0.9740856300918704,0.01352834113364535,0.9802392095683827,0.6521060842433697,0.7349706584794825,0.7360203516763673,0.7362484971298274,0.7362874510511505,0.7363052831644673,0.6521060842433697,0.7514313213364424,0.7645915252490415,0.7700800079311404,0.7723411044676748,0.7734871450981708,0.6521060842433697,0.67003898125552,0.6735751668034196,0.6743691079556863,0.6745756303601855,0.6746624975062249,0.6747632068113166
|
| 14 |
+
2.6704312114989732,2600,0.6536661466458659,0.9381175247009881,0.9703588143525741,0.9854394175767031,0.9916796671866874,0.9958398335933437,0.6536661466458659,0.24587450164673252,0.12282891315652626,0.8930750563355867,0.05167966718668748,0.9377968452071417,0.026552262090483628,0.9624284971398855,0.017933784018027386,0.9747789911596464,0.013541341653666149,0.9811925810365748,0.6536661466458659,0.7373857427749009,0.7385000464999506,0.738719487795195,0.7387713118408488,0.7387956405134187,0.6536661466458659,0.755149068100915,0.7675543097789403,0.7731235795059239,0.7755614120877131,0.7767483456621986,0.6536661466458659,0.6752645042438818,0.6784554571817863,0.6792712280157911,0.6794904476645582,0.6795751687891997,0.6796700471093178
|
| 15 |
+
2.875770020533881,2800,0.6651066042641706,0.9412376495059802,0.9734789391575663,0.984399375975039,0.9921996879875195,0.9942797711908476,0.6651066042641706,0.25062402496099845,0.12327093083723348,0.8951118044721789,0.05196047841913678,0.9431270584156699,0.026547061882475305,0.9621251516727336,0.017912983185994102,0.9737389495579823,0.01353614144565783,0.9808459005026867,0.6651066042641706,0.7447057162349396,0.7457938217093175,0.7459476857643497,0.7460107206090002,0.7460226155893531,0.6651066042641706,0.7607569908925185,0.7738642721422997,0.7782002609687475,0.7804702046847336,0.7817818016898852,0.6651066042641706,0.6824310256371793,0.685769301349588,0.6864131853857557,0.6866036842499446,0.6866997216650711,0.6868009169562614
|
| 16 |
+
3.082135523613963,3000,0.6661466458658346,0.9443577743109725,0.9750390015600624,0.984919396775871,0.9916796671866874,0.9932397295891836,0.6661466458658346,0.25062402496099845,0.1234789391575663,0.896238516207315,0.052054082163286546,0.9445311145779165,0.026604264170566827,0.9641185647425897,0.017926850407349624,0.9743456404922862,0.01352834113364535,0.9801525394349107,0.6661466458658346,0.7464169509265817,0.7474550994157608,0.7476003509741266,0.7476590729610166,0.7476687655877939,0.6661466458658346,0.7640416023030964,0.7772648865502759,0.7817421536267213,0.7837612033967705,0.7848431573634226,0.6661466458658346,0.6873288696219481,0.6907802183912366,0.6914523791132502,0.6916310113321876,0.6917144768814371,0.691810994391746
|
| 17 |
+
3.2874743326488707,3200,0.6645865834633385,0.9464378575143005,0.9729589183567343,0.9854394175767031,0.9895995839833593,0.9927197087883516,0.6645865834633385,0.2500173340266944,0.12334893395735828,0.896151846073843,0.051939677587103494,0.9423210261743804,0.026578263130525227,0.9635118738082856,0.017906049575316343,0.9733055988906222,0.013507540301612069,0.9787658172993586,0.6645865834633385,0.7433869700558867,0.7442863237155917,0.7444609180222659,0.7444966838015857,0.7445152574695719,0.6645865834633385,0.7619137547756507,0.7746988356255203,0.7794731762785382,0.7814274877816622,0.7824383670746612,0.6645865834633385,0.6847080148910323,0.6881316323671095,0.6888171087483478,0.6890031088980757,0.6890737606322342,0.6891753134206773
|
| 18 |
+
3.4928131416837784,3400,0.6604264170566823,0.9479979199167967,0.9755590223608944,0.9869994799791991,0.9906396255850234,0.9942797711908476,0.6604264170566823,0.24819726122378227,0.12425897035881435,0.9031287918183393,0.052064482579303184,0.9446004506846941,0.02663026521060843,0.9651586063442538,0.017923383602010744,0.9740856300918702,0.01352314092563703,0.9798925290344946,0.6604264170566823,0.7411957880662449,0.7421341031933468,0.7423013773363349,0.7423339639832182,0.7423549073635346,0.6604264170566823,0.7632817895540933,0.7747278581631409,0.7793739698011521,0.7811638364681455,0.7822324273293833,0.6604264170566823,0.6844940922755857,0.6874343390709853,0.6881070773901289,0.6882828264127825,0.6883575877123549,0.6884625105227826
|
| 19 |
+
3.6981519507186857,3600,0.6640665626625065,0.9479979199167967,0.9765990639625585,0.9869994799791991,0.9911596463858554,0.9942797711908476,0.6640665626625065,0.2497573236262784,0.12446697867914715,0.9039088230195874,0.05206448257930319,0.9446437857514302,0.026671866874674995,0.9667186687467498,0.017937250823366262,0.9750390015600624,0.013546541861674468,0.9817126018374068,0.6640665626625065,0.7444151495436726,0.7453714641249883,0.7455234088060528,0.7455579756624613,0.7455765617713824,0.6640665626625065,0.7651622845341957,0.7764622150886418,0.7814728174494031,0.783119149591433,0.7843548910978398,0.6640665626625065,0.686265061048045,0.6892551200216643,0.6900189954189452,0.6901706054009246,0.6902620634727198,0.6903466810311089
|
| 20 |
+
3.9034907597535935,3800,0.6682267290691628,0.9474778991159646,0.9765990639625585,0.9864794591783671,0.9921996879875195,0.9947997919916797,0.6682267290691628,0.2512307158953025,0.12475299011960478,0.9057722308892355,0.05217888715548623,0.9462645172473565,0.026656266250650037,0.966371988212862,0.017982319292771706,0.9772924250303345,0.013538741549661988,0.9808459005026867,0.6682267290691628,0.749539837016351,0.7505835257894989,0.7507225998991089,0.7507702961100938,0.7507859876637466,0.6682267290691628,0.7699298794056397,0.7811815187176623,0.7856773518895132,0.787866276832638,0.7885328568032918,0.6682267290691628,0.6924317728526937,0.6953819295464787,0.6960351508135207,0.6962400021157449,0.6962837979968974,0.6963746897826547
|
| 21 |
+
4.108829568788501,4000,0.6697867914716589,0.9505980239209568,0.9771190847633905,0.9859594383775351,0.9921996879875195,0.9942797711908476,0.6697867914716589,0.2517940717628705,0.12470098803952159,0.9059022360894435,0.05225169006760271,0.9474345640492287,0.026708268330733236,0.967932050615358,0.01798231929277171,0.9771190847633905,0.01353874154966199,0.9807592303692148,0.6697867914716589,0.7504302722692131,0.7513280223222801,0.7514573016845009,0.7515108675350354,0.7515238522218625,0.6697867914716589,0.770344092734726,0.7819450345813985,0.7865455025019679,0.7883807621544129,0.7890604802329748,0.6697867914716589,0.6929705838065172,0.696080766802269,0.6967651580129317,0.6969258122016383,0.6969715581100935,0.6970655432634698
|
| 22 |
+
4.314168377823409,4200,0.6666666666666666,0.9479979199167967,0.9760790431617264,0.9859594383775351,0.9927197087883516,0.9947997919916797,0.6666666666666666,0.25062402496099845,0.12483099323972958,0.9064222568902757,0.05219968798751951,0.9466805338880222,0.026682267290691637,0.9669786791471658,0.017985786098110586,0.9774657652972785,0.013541341653666149,0.9810192407696308,0.6666666666666666,0.7486665934008992,0.7496295288804224,0.74976967024613,0.7498264653686212,0.7498390441909701,0.6666666666666666,0.7705186419550625,0.7817408957971655,0.786309170410984,0.7883932008449921,0.7890611279585495,0.6666666666666666,0.6933856329177108,0.6963720532834866,0.6970430360365766,0.6972336080548289,0.697279051235347,0.6973750625395665
|
| 23 |
+
4.519507186858316,4400,0.6687467498699948,0.9495579823192928,0.9781591263650546,0.9864794591783671,0.9937597503900156,0.9947997919916797,0.6687467498699948,0.2516640665626625,0.1250390015600624,0.9084156699601317,0.05221008840353615,0.9471138845553821,0.026718668746749875,0.9683654012827179,0.017996186514127228,0.9779857860981105,0.013546541861674468,0.9813659213035187,0.6687467498699948,0.7497638732138926,0.7507175554997805,0.7508323831532827,0.7508936641683207,0.7509002910567728,0.6687467498699948,0.771957090473385,0.7827623591767751,0.7875734242708617,0.7894969663782526,0.7901321903376272,0.6687467498699948,0.6950013134615064,0.6978571886056382,0.6985915209847109,0.6987589388742937,0.6988064092994788,0.6989004605248843
|
| 24 |
+
4.724845995893224,4600,0.6687467498699948,0.9495579823192928,0.9776391055642226,0.9864794591783671,0.9932397295891836,0.9947997919916797,0.6687467498699948,0.2518374068296065,0.1251430057202288,0.9091090310279077,0.052282891315652634,0.9482405962905183,0.026723868954758197,0.968278731149246,0.01799965331946611,0.9781591263650546,0.013541341653666149,0.9810192407696308,0.6687467498699948,0.7511103493630668,0.7520644853972484,0.75218787562777,0.7522459565052304,0.7522551943857011,0.6687467498699948,0.7729181248399849,0.7838354251194414,0.78838397650382,0.7903404232459181,0.7908776550064243,0.6687467498699948,0.6960508888943099,0.698910694860312,0.699611558838961,0.6997846710668125,0.6998222199397084,0.6999210147339264
|
| 25 |
+
4.930184804928132,4800,0.6703068122724909,0.9505980239209568,0.9776391055642226,0.9864794591783671,0.9932397295891836,0.9947997919916797,0.6703068122724909,0.25235742763043856,0.1251690067602704,0.9095857167620037,0.052282891315652634,0.9482405962905183,0.026729069162766517,0.96845207141619,0.01799965331946611,0.9781591263650546,0.013541341653666149,0.9810192407696308,0.6703068122724909,0.7520307321055828,0.7529374175534339,0.7530616872072472,0.7531202644382351,0.7531293951311296,0.6703068122724909,0.7735712514376322,0.7843644592705362,0.7889444470773866,0.7908660087982327,0.791403470160319,0.6703068122724909,0.6967639778693541,0.699575457224443,0.70027844357658,0.7004487000056766,0.7004863395843564,0.7005835771389989
|
eval/Information-Retrieval_evaluation_mix_es_results.csv
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@20,cosine-Accuracy@50,cosine-Accuracy@100,cosine-Accuracy@150,cosine-Accuracy@200,cosine-Precision@1,cosine-Recall@1,cosine-Precision@20,cosine-Recall@20,cosine-Precision@50,cosine-Recall@50,cosine-Precision@100,cosine-Recall@100,cosine-Precision@150,cosine-Recall@150,cosine-Precision@200,cosine-Recall@200,cosine-MRR@1,cosine-MRR@20,cosine-MRR@50,cosine-MRR@100,cosine-MRR@150,cosine-MRR@200,cosine-NDCG@1,cosine-NDCG@20,cosine-NDCG@50,cosine-NDCG@100,cosine-NDCG@150,cosine-NDCG@200,cosine-MAP@1,cosine-MAP@20,cosine-MAP@50,cosine-MAP@100,cosine-MAP@150,cosine-MAP@200,cosine-MAP@500
|
| 2 |
+
0.2053388090349076,200,0.6744669786791472,0.9193967758710349,0.9547581903276131,0.9786791471658867,0.9854394175767031,0.9895995839833593,0.6744669786791472,0.26115073174355546,0.11300052002080084,0.8396169180100536,0.04843473738949559,0.8969578783151325,0.02519500780031202,0.9319847460565089,0.017087883515340612,0.94801872074883,0.01293551742069683,0.9566337320159473,0.6744669786791472,0.741763195639624,0.7429306662309286,0.7432800219034473,0.7433366328877163,0.7433604279356348,0.6744669786791472,0.7283598223719706,0.7441766946642234,0.7519314012572818,0.7550733326720689,0.756655547133677,0.6744669786791472,0.6512370737218736,0.6554344055014282,0.6564948783659126,0.6568034198042897,0.6569158742390337,0.6571132869122711
|
| 3 |
+
0.4106776180698152,400,0.6879875195007801,0.9386375455018201,0.96931877275091,0.9859594383775351,0.9906396255850234,0.9937597503900156,0.6879875195007801,0.26589158804447416,0.11674466978679147,0.8650286011440458,0.04972438897555903,0.9198127925117004,0.025746229849193975,0.9518460738429537,0.01735829433177327,0.9622239556248916,0.013104524180967242,0.9687588836886808,0.6879875195007801,0.7573600016494716,0.758373082976894,0.7586129872645225,0.7586521805670934,0.7586695865464829,0.6879875195007801,0.7496761044826149,0.7645910592449513,0.771678161894379,0.7737195873568836,0.7748920737782092,0.6879875195007801,0.6723890167478477,0.6763190985720952,0.6773385103067359,0.67753789966102,0.6776180675766235,0.6777703627783342
|
| 4 |
+
0.6160164271047228,600,0.6916276651066042,0.9386375455018201,0.9698387935517421,0.9859594383775351,0.9901196047841914,0.9927197087883516,0.6916276651066042,0.26777232994081673,0.11757670306812272,0.8705408216328654,0.04999479979199169,0.9244669786791472,0.025767030681227255,0.9522447564569249,0.017354827526434392,0.9622326226382389,0.013112324492979721,0.9691419656786271,0.6916276651066042,0.761342948642869,0.7623647640351301,0.762602306784832,0.762635838698989,0.7626512812607942,0.6916276651066042,0.7551750332158662,0.7699635084903145,0.776150635032849,0.778075100149402,0.7793189303805319,0.6916276651066042,0.6786213376102775,0.6826339651024589,0.6835232286091564,0.683704369370875,0.6837900471429439,0.6839749487471821
|
| 5 |
+
0.8213552361396304,800,0.7103484139365575,0.9427977119084764,0.96931877275091,0.9869994799791991,0.9911596463858554,0.9953198127925117,0.7103484139365575,0.2754426367530892,0.11874674986999478,0.8783584676720402,0.05051482059282372,0.9327266423990292,0.025917836713468544,0.9576183047321893,0.017431097243889755,0.9668486739469578,0.013151326053042124,0.9724128965158605,0.7103484139365575,0.7746274084028193,0.7755192305203115,0.7757896714286256,0.7758222583986994,0.7758465532110386,0.7103484139365575,0.7667662331766134,0.7817254043804741,0.7871621741197808,0.7889005540486419,0.7899230983968881,0.7103484139365575,0.6919105171080385,0.6960607070870991,0.6968051220833996,0.6969637678097483,0.6970278516736893,0.6971776567635193
|
| 6 |
+
1.0266940451745379,1000,0.7165886635465418,0.9479979199167967,0.9739989599583984,0.9880395215808633,0.9916796671866874,0.9942797711908476,0.7165886635465418,0.27682935888864124,0.12007280291211647,0.8882821979545847,0.050878835153406146,0.9391315652626105,0.025990639625585028,0.9601750736696135,0.01749003293465072,0.9697607904316173,0.013187727509100368,0.9749609984399376,0.7165886635465418,0.7806461907353381,0.7815205876591033,0.7817330221665041,0.7817632650241372,0.7817790651760725,0.7165886635465418,0.7753874056135623,0.789441581396985,0.7940295021279941,0.7958516238757499,0.7968002112038809,0.7165886635465418,0.7010433442003473,0.7049146489569816,0.7055466305976777,0.7057148420462953,0.7057822673177551,0.70590198422608
|
| 7 |
+
1.2320328542094456,1200,0.7160686427457098,0.9485179407176287,0.9719188767550702,0.9901196047841914,0.9932397295891836,0.9963598543941757,0.7160686427457098,0.27572864819354675,0.12048881955278211,0.891055642225689,0.05065002600104005,0.935179407176287,0.025995839833593347,0.9607210955104871,0.017496966545328476,0.9699861327786444,0.013200728029121167,0.9756751603397469,0.7160686427457098,0.778609201692751,0.7794068678456314,0.7796779018026971,0.7797046138072552,0.7797225672612155,0.7160686427457098,0.7752959106174916,0.7875021072976487,0.7930929905744307,0.7948936889372247,0.7959269355495714,0.7160686427457098,0.7008047752596147,0.7041474811963291,0.7049135025881823,0.705090223026125,0.7051595169219359,0.7052913750553237
|
| 8 |
+
1.4373716632443532,1400,0.7103484139365575,0.9542381695267811,0.9719188767550702,0.9911596463858554,0.9937597503900156,0.9953198127925117,0.7103484139365575,0.2750352871257708,0.1219448777951118,0.9020107470965505,0.05075403016120646,0.9373028254463512,0.02602184087363495,0.9614404576183047,0.01747963251863408,0.9688594210435084,0.013190327613104529,0.9750303345467152,0.7103484139365575,0.7768666973118454,0.7774521252326642,0.7777311412628978,0.7777516090311071,0.7777607563891314,0.7103484139365575,0.78029413905518,0.7899589941885002,0.7952340704884101,0.7966711304082723,0.79778241351855,0.7103484139365575,0.7052870437204709,0.7079382732951186,0.7086312147232268,0.7087692465933743,0.7088501950968276,0.7089812352190901
|
| 9 |
+
1.6427104722792607,1600,0.7129485179407177,0.9516380655226209,0.9750390015600624,0.9885595423816953,0.9932397295891836,0.9958398335933437,0.7129485179407177,0.2756419780600748,0.12184087363494539,0.9002686774137633,0.050847633905356224,0.9389668920090136,0.026021840873634954,0.9618478072456231,0.01752123418270064,0.971780204541515,0.013221528861154448,0.9780377881781938,0.7129485179407177,0.7797205262689477,0.7804857228147521,0.7806846568150605,0.7807244509674673,0.7807398377221492,0.7129485179407177,0.7822618234647495,0.792861555226357,0.7978245182980915,0.799733913298044,0.8008450004390294,0.7129485179407177,0.7087979133181056,0.711693498011822,0.7123657338619016,0.712539507853168,0.7126164453689728,0.7127442669566819
|
| 10 |
+
1.8480492813141685,1800,0.7103484139365575,0.9537181487259491,0.9739989599583984,0.9911596463858554,0.9942797711908476,0.9958398335933437,0.7103484139365575,0.2744285961914667,0.12176287051482058,0.9000866701334721,0.05087883515340615,0.9393135725429017,0.02601144045761831,0.9613711215115271,0.01753856820939504,0.9723262263823886,0.013205928237129488,0.9761743803085456,0.7103484139365575,0.7797974381169049,0.7804575566096145,0.7807093532180903,0.7807350755839835,0.7807434365267484,0.7103484139365575,0.7816740608933163,0.7925215922661627,0.7973005051810768,0.7994341922334063,0.8001279720825101,0.7103484139365575,0.7075641957576527,0.7106282558269326,0.7112539778654484,0.711456058042057,0.7115072450201507,0.7116370106997361
|
| 11 |
+
2.0544147843942504,2000,0.7207488299531981,0.9521580863234529,0.9765990639625585,0.9906396255850234,0.9953198127925117,0.9963598543941757,0.7207488299531981,0.278588762598123,0.12223088923556942,0.903111457791645,0.05103484139365575,0.9421216848673946,0.02610504420176808,0.9645779164499912,0.01756630265210608,0.9738342867048015,0.01322412896515861,0.9773877621771538,0.7207488299531981,0.7873743471935627,0.7881759932357659,0.7883771758956241,0.7884149410028269,0.7884208710645908,0.7207488299531981,0.7883196859173041,0.7990932075241108,0.8039489808553328,0.8057371014393404,0.8063877024121885,0.7207488299531981,0.7153993340854142,0.7183155449822083,0.718970651956238,0.7191336515108652,0.7191835345317726,0.7193090898334479
|
| 12 |
+
2.259753593429158,2200,0.7113884555382215,0.9568382735309412,0.9765990639625585,0.9880395215808633,0.9937597503900156,0.9958398335933437,0.7113884555382215,0.2746712725651883,0.12236089443577743,0.9043508407002947,0.05110764430577225,0.943690414283238,0.026094643785751433,0.9643179060495752,0.017566302652106083,0.9738169526781072,0.013231929277171092,0.9781677933784018,0.7113884555382215,0.7835697215745069,0.7841773605961617,0.7843616437981823,0.7844127842473977,0.7844258102126603,0.7113884555382215,0.7875021890770186,0.798261026605884,0.8027649163643685,0.8046152570766616,0.8054007787239339,0.7113884555382215,0.7148513662990627,0.7178274362599699,0.718458957886724,0.7186233527190637,0.7186803161109593,0.7188227343370103
|
| 13 |
+
2.465092402464066,2400,0.717628705148206,0.9578783151326054,0.9791991679667187,0.9895995839833593,0.9942797711908476,0.9973998959958398,0.717628705148206,0.27822474803754055,0.12280291211648464,0.9070376148379269,0.05125325013000521,0.945935170740163,0.02613104524180968,0.9652019414109898,0.017555902236089438,0.9730542555035535,0.013242329693187732,0.978696481192581,0.717628705148206,0.7868617407547724,0.7875289660537991,0.7876800412919529,0.7877168093489998,0.7877345598054268,0.717628705148206,0.7908125858745491,0.8013945801409573,0.8055508039227626,0.8070450080965864,0.8080600033148232,0.717628705148206,0.7184433693837136,0.7213309657706507,0.7219024909250962,0.7220323828023852,0.7221006087563977,0.7222437352425529
|
| 14 |
+
2.6704312114989732,2600,0.7150286011440458,0.9589183567342694,0.9771190847633905,0.9895995839833593,0.9937597503900156,0.9953198127925117,0.7150286011440458,0.27702870019562686,0.12329693187727507,0.9100190674293639,0.05128445137805514,0.9463425203674813,0.026099843993759756,0.9640578956491592,0.017559369041428324,0.9728375801698735,0.013231929277171092,0.9778644479112498,0.7150286011440458,0.785840290964467,0.7864319813601817,0.786619238877732,0.7866537588948767,0.78666313006588,0.7150286011440458,0.7917988390977458,0.8017367449412399,0.8055669404932451,0.8072831931363913,0.8081722728713215,0.7150286011440458,0.7193801183610506,0.7221124339124323,0.7226230549387277,0.7227852441481344,0.722846886494557,0.722968388876534
|
| 15 |
+
2.875770020533881,2800,0.7228289131565263,0.9594383775351014,0.9776391055642226,0.9901196047841914,0.9947997919916797,0.9968798751950078,0.7228289131565263,0.2794294628928014,0.1235829433177327,0.9124284971398857,0.051263650546021854,0.9463078523140925,0.02614664586583464,0.9660686427457098,0.0175801698734616,0.9742503033454671,0.013276131045241814,0.9815565955971572,0.7228289131565263,0.7899938448272602,0.7905850272789016,0.7907603766340526,0.7907971834013171,0.7908095689840076,0.7228289131565263,0.7959776691032214,0.8052218859556804,0.8094758218085412,0.8110653021951649,0.8123520678935076,0.7228289131565263,0.7247290364038195,0.7272469793121716,0.7278160623638382,0.7279625886901666,0.7280545302821056,0.7281572552607218
|
| 16 |
+
3.082135523613963,3000,0.7280291211648466,0.9594383775351014,0.9776391055642226,0.9901196047841914,0.9953198127925117,0.9968798751950078,0.7280291211648466,0.2820295668969616,0.12373894955798231,0.9141618998093257,0.05132605304212169,0.9473825619691454,0.026115444617784717,0.9651152712775177,0.01758710348413936,0.9755676893742417,0.013283931357254294,0.9829086496793205,0.7280291211648466,0.7936259077760474,0.7942215768213808,0.7944025637572019,0.7944447704847868,0.794453781113962,0.7280291211648466,0.798946396985741,0.8080660832318841,0.8118764604779153,0.8138708034784832,0.8151668636249689,0.7280291211648466,0.7279941931573798,0.7304749375451067,0.7309842337473567,0.7311641189752125,0.7312553938108709,0.7313554857163891
|
| 17 |
+
3.2874743326488707,3200,0.7150286011440458,0.9573582943317732,0.9765990639625585,0.9911596463858554,0.9947997919916797,0.9963598543941757,0.7150286011440458,0.2765520144615309,0.12373894955798231,0.913659213035188,0.05123244929797193,0.9459611717802046,0.02612064482579304,0.9655486219448778,0.01755936904142832,0.9737649505980239,0.013263130525221012,0.9807505633558675,0.7150286011440458,0.7853064274912624,0.7859443378814273,0.7861623312440641,0.7861940238062093,0.7862032372379819,0.7150286011440458,0.7951101406060039,0.8039370692571942,0.8081817298513937,0.8097758398379429,0.8110327686440667,0.7150286011440458,0.7242135152783706,0.7266007218222952,0.7271697294824622,0.7273166403120899,0.7274087739403149,0.7275217450212315
|
| 18 |
+
3.4928131416837784,3400,0.7233489339573583,0.9604784191367655,0.9765990639625585,0.9911596463858554,0.9963598543941757,0.9968798751950078,0.7233489339573583,0.27967213926652307,0.12363494539781592,0.9135898769284104,0.051211648465938654,0.9454411509793724,0.026136245449817998,0.9663286531461258,0.017576703068122722,0.9750476685734096,0.013283931357254293,0.9827959785058069,0.7233489339573583,0.790616300036987,0.7911451755698473,0.791368754766026,0.791414074459704,0.7914169006597087,0.7233489339573583,0.7973298093826647,0.8061926213958046,0.8107203328894771,0.8124096809038343,0.8137923662435536,0.7233489339573583,0.7263932539293092,0.7289821299517589,0.7295971508011626,0.7297494047331623,0.7298530106478077,0.7299587469603714
|
| 19 |
+
3.6981519507186857,3600,0.7249089963598544,0.9599583983359334,0.9771190847633905,0.9921996879875195,0.9958398335933437,0.9968798751950078,0.7249089963598544,0.28027883020082717,0.12384295371814871,0.9154099497313225,0.051294851794071776,0.9471658866354654,0.026188247529901204,0.968408736349454,0.017611371121511524,0.9763650546021839,0.013281331253250133,0.9824492979719188,0.7249089963598544,0.7931568992440393,0.793715015835792,0.7939504079883869,0.7939819349883227,0.7939883353049277,0.7249089963598544,0.8003506405205896,0.8091193234281266,0.8137121141444412,0.8152921945289446,0.8163523042378167,0.7249089963598544,0.7301955878758443,0.7326872629149596,0.7333037830153952,0.7334498461075301,0.7335264824052321,0.7336333524545813
|
| 20 |
+
3.9034907597535935,3800,0.7259490379615184,0.9599583983359334,0.9797191887675507,0.9927197087883516,0.9958398335933437,0.9973998959958398,0.7259490379615184,0.2806428447614095,0.12423296931877274,0.9178193794418443,0.051419656786271466,0.9494973132258623,0.026183047321892885,0.9675593690414283,0.017600970705494885,0.9757583636678799,0.013276131045241814,0.9814959265037267,0.7259490379615184,0.7948163472735045,0.7954302623521613,0.7956223667502647,0.7956489127503253,0.7956584389155293,0.7259490379615184,0.8024229430955802,0.8110354092322288,0.8149702827130566,0.8165529751035248,0.8175777108172241,0.7259490379615184,0.7324403090373143,0.7348033703076142,0.7353336579174736,0.7354741697534483,0.7355476089683456,0.7356573413185541
|
| 21 |
+
4.108829568788501,4000,0.7243889755590224,0.9609984399375975,0.9797191887675507,0.9937597503900156,0.9958398335933437,0.9973998959958398,0.7243889755590224,0.2802961642275215,0.12428497139885596,0.9183394002426764,0.05134685387415497,0.9482665973305597,0.026214248569942804,0.9692234356040907,0.017597503900156002,0.9756023574276305,0.013281331253250133,0.9821892875715027,0.7243889755590224,0.7938466413093047,0.7944053350960067,0.794613049565821,0.7946306448507517,0.7946402095756717,0.7243889755590224,0.8023352815755668,0.8104895152869938,0.8150081000806421,0.8162651648802736,0.8174362445077372,0.7243889755590224,0.7324440771234734,0.734716178743038,0.7353155432601859,0.735429453970343,0.7355154445871764,0.7356208832908805
|
| 22 |
+
4.314168377823409,4200,0.7238689547581904,0.9583983359334374,0.9802392095683827,0.9942797711908476,0.9953198127925117,0.9973998959958398,0.7238689547581904,0.28019216006735503,0.12412896515860634,0.9169353440804299,0.05145085803432139,0.9499306638932224,0.026245449817992726,0.9701768070722828,0.017614837926850403,0.9764690587623505,0.013283931357254293,0.9822326226382389,0.7238689547581904,0.7934277492682618,0.7941208450339935,0.7943224531588357,0.7943312488289611,0.7943443835009225,0.7238689547581904,0.8023238060267395,0.8113379258247732,0.8156949679776019,0.816929855500621,0.8179575655343403,0.7238689547581904,0.7331525143106996,0.7355830040348272,0.7361451167677289,0.7362661519275265,0.7363390374447161,0.7364481715630059
|
| 23 |
+
4.519507186858316,4400,0.7264690587623505,0.9589183567342694,0.9791991679667187,0.9942797711908476,0.9963598543941757,0.9973998959958398,0.7264690587623505,0.2809028551618255,0.12420696827873114,0.9175593690414283,0.051430057202288104,0.9495839833593345,0.026245449817992726,0.9700901369388107,0.017621771537528166,0.9768157392962384,0.013286531461258454,0.9820072802912115,0.7264690587623505,0.7950273648815123,0.7956778348360616,0.7959013329165427,0.7959172370306803,0.7959232938160362,0.7264690587623505,0.8030413573056574,0.811796736904274,0.816244308604025,0.8175588810577264,0.8184967672553575,0.7264690587623505,0.7336401935022089,0.7360366435506714,0.7366186564599716,0.7367425141591574,0.7368117834120087,0.7369173075310415
|
| 24 |
+
4.724845995893224,4600,0.7243889755590224,0.9594383775351014,0.9791991679667187,0.9927197087883516,0.9963598543941757,0.9973998959958398,0.7243889755590224,0.2801228239605774,0.12423296931877274,0.9177327093083724,0.05144045761830475,0.9498439937597504,0.026235049401976088,0.9693967758710348,0.017628705148205925,0.9772057548968625,0.013283931357254294,0.9819032761310452,0.7243889755590224,0.7950733254581356,0.7957037061937158,0.7959106624394904,0.795941995568463,0.7959480612399141,0.7243889755590224,0.8035653524093836,0.8123465374976416,0.816619783760099,0.8181288168343755,0.8189742580500373,0.7243889755590224,0.7344976284540953,0.7369058419409787,0.7374765660485233,0.7376131540231733,0.7376752620519383,0.7377852907056718
|
| 25 |
+
4.930184804928132,4800,0.7280291211648466,0.9599583983359334,0.9791991679667187,0.9942797711908476,0.9958398335933437,0.9973998959958398,0.7280291211648466,0.28133620582918556,0.12433697347893914,0.9183394002426764,0.05145085803432139,0.9499306638932224,0.02625065002600105,0.9700901369388107,0.017621771537528162,0.9767724042295025,0.013283931357254294,0.9818166059975733,0.7280291211648466,0.7968549154271433,0.7974653825839162,0.7976914864910069,0.7977044635908871,0.7977139196654446,0.7280291211648466,0.8043549768911603,0.81295852465432,0.817339429558165,0.8186380742931886,0.8195485984235017,0.7280291211648466,0.7350836192117531,0.7374205090112232,0.737988888492803,0.7381133157945164,0.7381788581828236,0.7382854440643231
|