--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: Alibaba-NLP/gte-multilingual-base widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5133333333333332 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3165714285714285 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.18857142857142858 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13396825396825396 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10433333333333335 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06742481608756247 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5411228142559339 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7397482609380314 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8429667985290079 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8856357375498775 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9091330295382077 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6917131025478591 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.71478335831634 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7666819432677721 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7855970749692088 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7960468614602451 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8090476190476191 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8090476190476191 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8090476190476191 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8090476190476191 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8090476190476191 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5561135670751935 name: Cosine Map@20 - type: cosine_map@50 value: 0.5477711353289022 name: Cosine Map@50 - type: cosine_map@100 value: 0.5791852239372863 name: Cosine Map@100 - type: cosine_map@150 value: 0.5872469517518495 name: Cosine Map@150 - type: cosine_map@200 value: 0.5908784036739082 name: Cosine Map@200 - type: cosine_map@500 value: 0.5948564356607342 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12972972972972974 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12972972972972974 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5705405405405405 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.38962162162162167 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25140540540540546 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19012612612612612 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.15154054054054056 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0037413987812150314 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.38432915927625627 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5663097940153319 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6710180189388714 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7443549924512646 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7804985217049148 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12972972972972974 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6133809590566169 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5888378318443163 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.613553130716134 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6492700673561147 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6672020616803231 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12972972972972974 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5608108108108109 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5608108108108109 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5608108108108109 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5608108108108109 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5608108108108109 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12972972972972974 name: Cosine Map@1 - type: cosine_map@20 value: 0.47928087268629077 name: Cosine Map@20 - type: cosine_map@50 value: 0.4265150109477007 name: Cosine Map@50 - type: cosine_map@100 value: 0.4308614258675324 name: Cosine Map@100 - type: cosine_map@150 value: 0.446315567522346 name: Cosine Map@150 - type: cosine_map@200 value: 0.45361884446786194 name: Cosine Map@200 - type: cosine_map@500 value: 0.46587892353181215 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9704433497536946 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9852216748768473 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9852216748768473 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5120689655172413 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3664039408866995 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2411330049261084 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.180623973727422 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1453448275862069 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3229666331805043 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5039915991834915 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6239950018657238 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6837127628220585 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.724182886190782 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5416271120841382 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5273905187096658 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5573943264798527 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5882759422186796 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6082376029646045 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.510702296647636 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5111935025343795 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5111935025343795 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5112378818891037 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5112378818891037 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.4032624181455029 name: Cosine Map@20 - type: cosine_map@50 value: 0.35929856113701575 name: Cosine Map@50 - type: cosine_map@100 value: 0.3633301227599498 name: Cosine Map@100 - type: cosine_map@150 value: 0.3779770424201306 name: Cosine Map@150 - type: cosine_map@200 value: 0.38546911827821406 name: Cosine Map@200 - type: cosine_map@500 value: 0.3983960288142158 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6504854368932039 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9805825242718447 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6504854368932039 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.47815533980582525 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28699029126213593 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17563106796116504 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12543689320388354 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09786407766990295 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06122803520614593 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.512665335199255 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6880766978766553 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8002784995071653 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8453144636093844 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8773140543871931 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6504854368932039 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6531212612064398 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6669362863744952 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7218911998936125 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7415597018345085 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7535751066625261 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6504854368932039 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7993527508090615 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7997572815533981 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7997572815533981 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7997572815533981 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7997572815533981 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6504854368932039 name: Cosine Map@1 - type: cosine_map@20 value: 0.5072300500933464 name: Cosine Map@20 - type: cosine_map@50 value: 0.4897274345176646 name: Cosine Map@50 - type: cosine_map@100 value: 0.5196798622563865 name: Cosine Map@100 - type: cosine_map@150 value: 0.5276837053538445 name: Cosine Map@150 - type: cosine_map@200 value: 0.5311205359244624 name: Cosine Map@200 - type: cosine_map@500 value: 0.5365056842045905 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7243889755590224 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9609984399375975 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9797191887675507 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9937597503900156 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9958398335933437 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9973998959958398 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7243889755590224 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12428497139885596 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05134685387415497 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026214248569942804 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017597503900156002 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013281331253250133 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2802961642275215 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9183394002426764 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9482665973305597 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9692234356040907 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9756023574276305 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9821892875715027 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7243889755590224 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8023352815755668 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8104895152869938 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8150081000806421 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8162651648802736 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8174362445077372 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7243889755590224 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7938466413093047 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7944053350960067 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.794613049565821 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7946306448507517 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7946402095756717 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7243889755590224 name: Cosine Map@1 - type: cosine_map@20 value: 0.7324440771234734 name: Cosine Map@20 - type: cosine_map@50 value: 0.734716178743038 name: Cosine Map@50 - type: cosine_map@100 value: 0.7353155432601859 name: Cosine Map@100 - type: cosine_map@150 value: 0.735429453970343 name: Cosine Map@150 - type: cosine_map@200 value: 0.7355154445871764 name: Cosine Map@200 - type: cosine_map@500 value: 0.7356208832908805 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6697867914716589 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9505980239209568 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9771190847633905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9859594383775351 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9921996879875195 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9942797711908476 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6697867914716589 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12470098803952159 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05225169006760271 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026708268330733236 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.01798231929277171 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.01353874154966199 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2517940717628705 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9059022360894435 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9474345640492287 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.967932050615358 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9771190847633905 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9807592303692148 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6697867914716589 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.770344092734726 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7819450345813985 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7865455025019679 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7883807621544129 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7890604802329748 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6697867914716589 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7504302722692131 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7513280223222801 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7514573016845009 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7515108675350354 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7515238522218625 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6697867914716589 name: Cosine Map@1 - type: cosine_map@20 value: 0.6929705838065172 name: Cosine Map@20 - type: cosine_map@50 value: 0.696080766802269 name: Cosine Map@50 - type: cosine_map@100 value: 0.6967651580129317 name: Cosine Map@100 - type: cosine_map@150 value: 0.6969258122016383 name: Cosine Map@150 - type: cosine_map@200 value: 0.6969715581100935 name: Cosine Map@200 - type: cosine_map@500 value: 0.6970655432634698 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.19760790431617264 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.19760790431617264 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06371492954956293 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.19760790431617264 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5478938300274205 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5478938300274205 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5478938300274205 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5478938300274205 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5478938300274205 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.19760790431617264 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4124442798779788 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4124442798779788 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4124442798779788 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4124442798779788 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4124442798779788 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.19760790431617264 name: Cosine Map@1 - type: cosine_map@20 value: 0.32993583709540925 name: Cosine Map@20 - type: cosine_map@50 value: 0.32993583709540925 name: Cosine Map@50 - type: cosine_map@100 value: 0.32993583709540925 name: Cosine Map@100 - type: cosine_map@150 value: 0.32993583709540925 name: Cosine Map@150 - type: cosine_map@200 value: 0.32993583709540925 name: Cosine Map@200 - type: cosine_map@500 value: 0.32993583709540925 name: Cosine Map@500 --- # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.961 | 0.9506 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9797 | 0.9771 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9938 | 0.986 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9922 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9943 | 1.0 | | cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | | cosine_precision@20 | 0.5133 | 0.5705 | 0.5121 | 0.4782 | 0.1243 | 0.1247 | 0.1544 | | cosine_precision@50 | 0.3166 | 0.3896 | 0.3664 | 0.287 | 0.0513 | 0.0523 | 0.0618 | | cosine_precision@100 | 0.1886 | 0.2514 | 0.2411 | 0.1756 | 0.0262 | 0.0267 | 0.0309 | | cosine_precision@150 | 0.134 | 0.1901 | 0.1806 | 0.1254 | 0.0176 | 0.018 | 0.0206 | | cosine_precision@200 | 0.1043 | 0.1515 | 0.1453 | 0.0979 | 0.0133 | 0.0135 | 0.0154 | | cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0612 | 0.2803 | 0.2518 | 0.0637 | | cosine_recall@20 | 0.5411 | 0.3843 | 0.323 | 0.5127 | 0.9183 | 0.9059 | 1.0 | | cosine_recall@50 | 0.7397 | 0.5663 | 0.504 | 0.6881 | 0.9483 | 0.9474 | 1.0 | | cosine_recall@100 | 0.843 | 0.671 | 0.624 | 0.8003 | 0.9692 | 0.9679 | 1.0 | | cosine_recall@150 | 0.8856 | 0.7444 | 0.6837 | 0.8453 | 0.9756 | 0.9771 | 1.0 | | cosine_recall@200 | 0.9091 | 0.7805 | 0.7242 | 0.8773 | 0.9822 | 0.9808 | 1.0 | | cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | | cosine_ndcg@20 | 0.6917 | 0.6134 | 0.5416 | 0.6531 | 0.8023 | 0.7703 | 0.5479 | | cosine_ndcg@50 | 0.7148 | 0.5888 | 0.5274 | 0.6669 | 0.8105 | 0.7819 | 0.5479 | | cosine_ndcg@100 | 0.7667 | 0.6136 | 0.5574 | 0.7219 | 0.815 | 0.7865 | 0.5479 | | cosine_ndcg@150 | 0.7856 | 0.6493 | 0.5883 | 0.7416 | 0.8163 | 0.7884 | 0.5479 | | **cosine_ndcg@200** | **0.796** | **0.6672** | **0.6082** | **0.7536** | **0.8174** | **0.7891** | **0.5479** | | cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | | cosine_mrr@20 | 0.809 | 0.5608 | 0.5107 | 0.7994 | 0.7938 | 0.7504 | 0.4124 | | cosine_mrr@50 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7944 | 0.7513 | 0.4124 | | cosine_mrr@100 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | | cosine_mrr@150 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | | cosine_mrr@200 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | | cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | | cosine_map@20 | 0.5561 | 0.4793 | 0.4033 | 0.5072 | 0.7324 | 0.693 | 0.3299 | | cosine_map@50 | 0.5478 | 0.4265 | 0.3593 | 0.4897 | 0.7347 | 0.6961 | 0.3299 | | cosine_map@100 | 0.5792 | 0.4309 | 0.3633 | 0.5197 | 0.7353 | 0.6968 | 0.3299 | | cosine_map@150 | 0.5872 | 0.4463 | 0.378 | 0.5277 | 0.7354 | 0.6969 | 0.3299 | | cosine_map@200 | 0.5909 | 0.4536 | 0.3855 | 0.5311 | 0.7355 | 0.697 | 0.3299 | | cosine_map@500 | 0.5949 | 0.4659 | 0.3984 | 0.5365 | 0.7356 | 0.6971 | 0.3299 | ## Training Details ### Training Datasets
full_en #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | air commodore | flight lieutenant | | command and control officer | flight officer | | air commodore | command and control officer | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_de #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | Staffelkommandantin | Kommodore | | Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin | | Staffelkommandantin | Luftwaffenoffizierin | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_es #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | jefe de escuadrón | instructor | | comandante de aeronave | instructor de simulador | | instructor | oficial del Ejército del Aire | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_zh #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:---------------------| | 技术总监 | 技术和运营总监 | | 技术总监 | 技术主管 | | 技术总监 | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
mix #### mix * Dataset: mix * Size: 21,760 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | technical manager | Technischer Direktor für Bühne, Film und Fernsehen | | head of technical | directora técnica | | head of technical department | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 | | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 | | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 | | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 | | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 | | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 | | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 | | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 | | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 | | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 | | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 | | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 | | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 | | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 | | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 | | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 | | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 | | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 | | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 | | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 | | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```