File size: 38,318 Bytes
8271c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:114699
- loss:CachedGISTEmbedLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: 'Bus drivers, including those operating in various sectors like
    public transit, intercity, private, or school services, need strong driving skills,
    knowledge of traffic laws, and the ability to operate safely in diverse conditions.
    Additionally, effective communication skills and the ability to handle passenger
    inquiries and emergencies are crucial.

    [''bus driver'', ''intercity bus driver'', ''private bus operator'', ''transit
    bus driver'', ''public service vehicle operator'', ''passenger driver'', ''international
    bus driver'', ''public bus operator'', ''touristic bus driver'', ''coach driver'',
    ''private coach driver'', ''public bus driver'', ''bus operator'', ''driver of
    bus'', ''bus driving operator'', ''schoolbus driver'']'
  sentences:
  - 'The skill of determining shreds sizes percentage in cigarettes is primarily required
    by tobacco processing technicians and quality control specialists in the cigarette
    manufacturing industry, who ensure that the tobacco shreds meet specific size
    and quality standards for consistent product performance.

    [''determine shreds sizes percentage in cigarettes'', ''determine shreds sizes
    percentage in cigarettes'', ''determine the shreds sizes percentage of cigarettes'',
    ''determine shreds size percentages in cigarettes'', ''agree shreds sizes percentage
    in cigarettes'', ''determine the shreds sizes percentage in cigarettes'', ''confirm
    shreds sizes percentage in cigarettes'', ''sort shreds sizes percentage in cigarettes'']'
  - 'Job roles such as curriculum developers, educational consultants, and instructional
    designers require skills like analyzing, evaluating, and scrutinizing curriculums
    to improve educational outcomes. For legislative programmes, roles including policy
    analysts, legislative aides, and compliance officers use skills to test, evaluate,
    and scrutinize legislative processes to ensure effective and efficient policy
    implementation.

    [''analyse curriculum'', ''test legislative programmes'', ''evaluate legislative
    programmes'', ''evaluate curriculum'', ''test curriculum'', ''investigate curriculum'',
    ''scrutinise curriculum'', ''analyze  curriculum'', ''scrutinise legislative processes'',
    ''investigate legislative programmes'']'
  - 'Job roles such as customer service representatives, flight attendants, and hotel
    concierges require a strong focus on passengers or customers, ensuring their needs
    and comfort are prioritized to provide excellent service and support.

    [''focus on passengers'', ''prioritise passengers'', ''ensure passenger prioritisation'',
    ''make passengers a priority'', ''maintain a focus on passengers'', ''ensure passengers
    are the priority focus'', ''ensure passengers are prioritised'', ''attend to passengers'',
    ''ensure a focus on passengers'']'
- source_sentence: 'A medical laboratory assistant, or any of its synonyms such as
    a biomedical laboratory assistant, requires strong attention to detail, proficiency
    in using laboratory equipment, and a foundational understanding of medical science.
    Additionally, skills in sample handling, data recording, and basic research methodologies
    are crucial for roles like a clinical research assistant or an assistant in medical
    laboratory.

    [''medical laboratory assistant'', ''medical laboratory research assistant'',
    ''biomedical laboratory assistant'', ''clinical research assistant'', ''assistant
    in medical laboratory'', ''biomedical laboratory research assistant'', ''assistant
    clinical researcher'', ''medical lab assistant'', ''assistant in biomedical laboratory'']'
  sentences:
  - 'Job roles such as automotive mechanics, fleet managers, and vehicle technicians
    require skills to ensure vehicle operability and regular maintenance, which involves
    diagnosing and repairing issues to keep vehicles roadworthy and operational.

    [''ensure vehicle operability'', ''keep vehicle roadworthy'', ''keep vehicle operational'',
    ''ensure operability of the vehicle'', ''ensure vehicle remains operational'',
    ''ensure maintenance of vehicle'', ''ensure regular vehicle maintenance'', ''ensure
    operation of the vehicle'', ''ensure operability'']'
  - 'The skill of classroom management is primarily required by teachers and educators
    at all levels, from kindergarten to higher education, to ensure a productive,
    safe, and organized learning environment. It involves maintaining discipline,
    organizing space and materials, and facilitating effective instruction, roles
    that are crucial for teaching assistants and substitute teachers as well.

    [''perform classroom management'', ''performing classroom management'', ''conduct
    classroom management'', ''practice classroom management'', ''carry out classroom
    management'', ''implement classroom management'', ''performs classroom management'']'
  - 'Job roles requiring expertise in stem cells, including embryonic and adult stem
    cells, typically include stem cell researchers, regenerative medicine scientists,
    and biomedical engineers who focus on the development and application of stem
    cell technologies for therapeutic purposes. Additionally, clinical researchers
    and medical practitioners in specialized fields such as oncology and hematology
    may utilize knowledge of stem cells for treatment and research purposes.

    [''stem cells'', ''undifferentiated biological cells'', ''embryonic stem cells'',
    ''development of stem cells'', ''stem cell'', ''adult stem cells'', ''stem cells'']'
- source_sentence: 'For roles such as ''physiotherapist'', ''neuromusculoskeletal
    physiotherapist'', ''osteopath'', and ''chiropractor'', the skills needed include
    a deep understanding of human anatomy and physiology, strong diagnostic skills,
    and the ability to apply manual therapy techniques to treat musculoskeletal issues.
    Additionally, effective communication skills are crucial for explaining treatments
    and exercises to patients, while adaptability and problem-solving skills are essential
    for tailoring treatments to individual patient needs.

    [''physiotherapist'', ''neuromusculoskeletal physiotherapist'', ''osteopath'',
    ''eurythmy therapist'', ''respiratory therapist'', ''remedial physiotherapist'',
    ''physiotherapist manager'', ''occupational therapist'', ''neurological physiotherapist'',
    ''occupational physiotherapist'', ''bobath physiotherapist'', ''neuromuscular
    physiotherapist'', ''manipulative physiotherapist'', ''hydrotherapist'', ''rehabilitation
    therapist'', ''masseuse'', ''health promotion worker'', ''cardiovascular physiotherapist'',
    ''respiratory physiotherapist'', ''chiropractor'', ''sports physiotherapist'',
    ''chiropractic therapist'', ''neurodevelopmental physiotherapist'', ''physical
    therapist'', ''health and well-being therapist'', ''business physiotherapist'']'
  sentences:
  - 'Job roles that require skills in dealing with emergency care situations include
    emergency medical technicians (EMTs), paramedics, and emergency room nurses or
    doctors, all of whom must quickly and effectively manage critical health situations
    to save lives.

    [''deal with emergency care situations'', ''deal with emergency care situation'',
    ''handle emergency care situation'', ''apply knowledge in emergency care situations'',
    ''handle emergency care situations'']'
  - 'Job roles such as fashion designers, stylist coordinators, and jewelry designers
    require the skill to distinguish and evaluate accessories, their differences,
    and applications, to ensure the right aesthetic and functional fit for their designs
    or clients. This skill is crucial for creating cohesive looks and enhancing the
    overall visual appeal in fashion and design industries.

    [''distinguish accessories'', ''evaluate accessories and their differences'',
    ''evaluate accessories and their application'', ''differentiate accessories'',
    ''distinguish accessories and their application'', ''distinguish differences in
    accessories'']'
  - 'Job roles that require expertise in curriculum objectives include educational
    consultants, curriculum developers, and instructional designers, who are tasked
    with creating and refining educational content and learning goals to meet specific
    educational standards and student needs. Teachers and headteachers also utilize
    these skills to align their teaching methods and materials with the set educational
    targets and aims.

    [''curriculum objectives'', ''curriculum objective'', ''curriculum goals'', ''curriculum
    targets'', ''curriculum aims'', ''curricula objectives'']'
- source_sentence: 'A mine surveyor, also known as a mining surveyor or mine planning
    surveyor, requires expertise in geomatics and mining engineering to accurately
    map and plan mine operations, ensuring safety and efficiency. They must also possess
    strong analytical skills and the ability to use specialized software for creating
    detailed mine plans and maintaining accurate records.

    [''mine surveyor'', ''mining surveyor'', ''mine operations surveyor'', ''mine
    plan maker'', ''mine records keeper'', ''mine surveyors'', ''planner of mining
    operations'', ''mine planning surveyor'']'
  sentences:
  - 'Job roles such as data analysts, business analysts, and financial analysts require
    the skill to present reports or prepare statistical reports, as they often need
    to communicate complex data insights clearly and effectively to stakeholders.

    [''present reports'', ''present a report'', ''submit presentation'', ''prepare
    statistical reports'']'
  - 'Job roles such as Food Safety Manager, Quality Assurance Specialist, and Public
    Health Inspector require the skill of developing food safety programs to ensure
    compliance with regulations and maintain high standards of food safety in various
    settings including manufacturing, retail, and public health sectors.

    [''develop food safety programmes'', ''creating food safety programmes'', ''develop
    programmes for food safety'', ''food safety programmes creating'', ''food safety
    programmes developing'', ''develop food safety programs'', ''food safety programme
    developing'', ''food safety programme creating'', ''create food safety programmes'',
    ''create programmes for food safety'', ''developing food safety programmes'']'
  - 'The skill of using a sander, whether it be a handheld, manual, automatic, or
    drywall sander, is primarily required by construction workers, carpenters, and
    drywall installers for tasks such as roughening and smoothing wall surfaces to
    prepare them for painting or finishing.

    [''use sander'', ''use handheld sander'', ''roughening of wall surfaces'', ''use
    drywall sander'', ''sanding of wall surfaces'', ''using sander'', ''sander usage'',
    ''use manual sander'', ''drywall sanding'', ''use automatic sander'']'
- source_sentence: 'An insulation supervisor, regardless of the specific type of insulation
    material or installation area, requires strong project management skills, knowledge
    of building codes and safety regulations, and expertise in insulation techniques
    to oversee the installation process effectively and ensure quality standards are
    met.

    [''insulation supervisor'', ''supervisor of installation of insulating materials'',
    ''supervisor of insulation materials installation'', ''supervisor of installation
    of insulation'', ''solid wall insulation installation supervisor'', ''insulation
    installers supervisor'', ''cavity wall insulation installation supervisor'', ''loft
    insulation installation supervisor'']'
  sentences:
  - 'Job roles such as Food Safety Inspector, Public Health Officer, and Environmental
    Health Specialist require the skill of taking action on food safety violations
    to ensure compliance with health regulations and maintain public safety standards.

    [''take action on food safety violations'', ''invoke action on food safety violations'',
    ''agree action on food safety violations'', ''pursue action on food safety violations'',
    ''determine action on food safety violations'']'
  - 'Job roles that require skills in operating and supervising textile printing machines
    include Textile Printer Operators, Printing Machine Technicians, and Textile Production
    Specialists. These roles involve setting up, running, and maintaining printing
    machinery to ensure high-quality textile printing.

    [''tend textile printing machines'', ''activate and supervise printing machines
    for textile material'', ''activate and supervise textile printing machines'',
    ''tend printing machines for textile'', ''tend printing machines for textile material'',
    ''care for textile printing machines'', ''operate printing machines for textile
    material'', ''operate textile printing machines'']'
  - 'The skill of installing insulation material is primarily required by job roles
    such as insulation workers, HVAC technicians, and construction specialists, who
    are responsible for improving energy efficiency and thermal comfort in buildings
    by correctly fitting and fixing insulation materials in various structures.

    [''install insulation material'', ''insulate structure'', ''fix insulation'',
    ''insulation material installation'', ''installation of insulation material'',
    ''fitting insulation'', ''insulating structure'', ''installing insulation material'',
    ''fixing insulation'', ''fit insulation'']'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: full en
      type: full_en
    metrics:
    - type: cosine_accuracy@1
      value: 0.7368421052631579
      name: Cosine Accuracy@1
    - type: cosine_accuracy@20
      value: 1.0
      name: Cosine Accuracy@20
    - type: cosine_accuracy@50
      value: 1.0
      name: Cosine Accuracy@50
    - type: cosine_accuracy@100
      value: 1.0
      name: Cosine Accuracy@100
    - type: cosine_accuracy@150
      value: 1.0
      name: Cosine Accuracy@150
    - type: cosine_accuracy@200
      value: 1.0
      name: Cosine Accuracy@200
    - type: cosine_precision@1
      value: 0.7368421052631579
      name: Cosine Precision@1
    - type: cosine_precision@20
      value: 0.4921052631578948
      name: Cosine Precision@20
    - type: cosine_precision@50
      value: 0.3868421052631579
      name: Cosine Precision@50
    - type: cosine_precision@100
      value: 0.3044078947368421
      name: Cosine Precision@100
    - type: cosine_precision@150
      value: 0.25736842105263164
      name: Cosine Precision@150
    - type: cosine_precision@200
      value: 0.22491776315789475
      name: Cosine Precision@200
    - type: cosine_recall@1
      value: 0.01039409883791453
      name: Cosine Recall@1
    - type: cosine_recall@20
      value: 0.1314962018456217
      name: Cosine Recall@20
    - type: cosine_recall@50
      value: 0.2511670790686618
      name: Cosine Recall@50
    - type: cosine_recall@100
      value: 0.3859374865532201
      name: Cosine Recall@100
    - type: cosine_recall@150
      value: 0.4818501617128863
      name: Cosine Recall@150
    - type: cosine_recall@200
      value: 0.5551710793208664
      name: Cosine Recall@200
    - type: cosine_ndcg@1
      value: 0.7368421052631579
      name: Cosine Ndcg@1
    - type: cosine_ndcg@20
      value: 0.5317498285158393
      name: Cosine Ndcg@20
    - type: cosine_ndcg@50
      value: 0.4448140813756596
      name: Cosine Ndcg@50
    - type: cosine_ndcg@100
      value: 0.43485894357663457
      name: Cosine Ndcg@100
    - type: cosine_ndcg@150
      value: 0.47830668593064973
      name: Cosine Ndcg@150
    - type: cosine_ndcg@200
      value: 0.5218296209371078
      name: Cosine Ndcg@200
    - type: cosine_mrr@1
      value: 0.7368421052631579
      name: Cosine Mrr@1
    - type: cosine_mrr@20
      value: 0.8445253759398496
      name: Cosine Mrr@20
    - type: cosine_mrr@50
      value: 0.8445253759398496
      name: Cosine Mrr@50
    - type: cosine_mrr@100
      value: 0.8445253759398496
      name: Cosine Mrr@100
    - type: cosine_mrr@150
      value: 0.8445253759398496
      name: Cosine Mrr@150
    - type: cosine_mrr@200
      value: 0.8445253759398496
      name: Cosine Mrr@200
    - type: cosine_map@1
      value: 0.7368421052631579
      name: Cosine Map@1
    - type: cosine_map@20
      value: 0.3353557764243207
      name: Cosine Map@20
    - type: cosine_map@50
      value: 0.23307824080713455
      name: Cosine Map@50
    - type: cosine_map@100
      value: 0.20557025537249785
      name: Cosine Map@100
    - type: cosine_map@150
      value: 0.22085155962397507
      name: Cosine Map@150
    - type: cosine_map@200
      value: 0.2384397256373622
      name: Cosine Map@200
    - type: cosine_map@500
      value: 0.2878557013636694
      name: Cosine Map@500
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met.\n['insulation supervisor', 'supervisor of installation of insulating materials', 'supervisor of insulation materials installation', 'supervisor of installation of insulation', 'solid wall insulation installation supervisor', 'insulation installers supervisor', 'cavity wall insulation installation supervisor', 'loft insulation installation supervisor']",
    "The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures.\n['install insulation material', 'insulate structure', 'fix insulation', 'insulation material installation', 'installation of insulation material', 'fitting insulation', 'insulating structure', 'installing insulation material', 'fixing insulation', 'fit insulation']",
    "Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards.\n['take action on food safety violations', 'invoke action on food safety violations', 'agree action on food safety violations', 'pursue action on food safety violations', 'determine action on food safety violations']",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `full_en`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric               | Value      |
|:---------------------|:-----------|
| cosine_accuracy@1    | 0.7368     |
| cosine_accuracy@20   | 1.0        |
| cosine_accuracy@50   | 1.0        |
| cosine_accuracy@100  | 1.0        |
| cosine_accuracy@150  | 1.0        |
| cosine_accuracy@200  | 1.0        |
| cosine_precision@1   | 0.7368     |
| cosine_precision@20  | 0.4921     |
| cosine_precision@50  | 0.3868     |
| cosine_precision@100 | 0.3044     |
| cosine_precision@150 | 0.2574     |
| cosine_precision@200 | 0.2249     |
| cosine_recall@1      | 0.0104     |
| cosine_recall@20     | 0.1315     |
| cosine_recall@50     | 0.2512     |
| cosine_recall@100    | 0.3859     |
| cosine_recall@150    | 0.4819     |
| cosine_recall@200    | 0.5552     |
| cosine_ndcg@1        | 0.7368     |
| cosine_ndcg@20       | 0.5317     |
| cosine_ndcg@50       | 0.4448     |
| cosine_ndcg@100      | 0.4349     |
| cosine_ndcg@150      | 0.4783     |
| **cosine_ndcg@200**  | **0.5218** |
| cosine_mrr@1         | 0.7368     |
| cosine_mrr@20        | 0.8445     |
| cosine_mrr@50        | 0.8445     |
| cosine_mrr@100       | 0.8445     |
| cosine_mrr@150       | 0.8445     |
| cosine_mrr@200       | 0.8445     |
| cosine_map@1         | 0.7368     |
| cosine_map@20        | 0.3354     |
| cosine_map@50        | 0.2331     |
| cosine_map@100       | 0.2056     |
| cosine_map@150       | 0.2209     |
| cosine_map@200       | 0.2384     |
| cosine_map@500       | 0.2879     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 114,699 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                               | positive                                                                             |
  |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                               |
  | details | <ul><li>min: 78 tokens</li><li>mean: 144.94 tokens</li><li>max: 354 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 114.13 tokens</li><li>max: 274 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require promoting health and safety include occupational health and safety specialists, safety managers, and public health educators, all of whom work to ensure safe and healthy environments in workplaces and communities.<br>['promote health and safety', 'promote importance of health and safety', 'promoting health and safety', 'advertise health and safety']</code>                                                                                                                                                                                                          |
  | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require organizing rehearsals include directors, choreographers, and conductors in theater, dance, and music ensembles, who must efficiently plan and schedule practice sessions to prepare performers for a successful final performance.<br>['organise rehearsals', 'organise rehearsal', 'organize rehearsals', 'plan rehearsals', 'arrange rehearsals', 'organising rehearsals', 'schedule rehearsals']</code>                                                                                                                                                                      |
  | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles such as Health and Safety Managers, Environmental Health Officers, and Risk Management Specialists often require the skill of negotiating health and safety issues with third parties to ensure compliance and protection standards are met across different organizations and sites.<br>['negotiate health and safety issues with third parties', 'agree with third parties on health and safety', 'negotiate issues on health and safety with third parties', 'negotiate with third parties on health and safety issues', 'negotiate health and safety matters with third parties']</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01, 'mini_batch_size': 32, 'margin_strategy': 'absolute', 'margin': 0.0}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | full_en_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|
| -1     | -1   | -             | 0.4795                  |
| 0.0022 | 1    | 10.6462       | -                       |
| 0.2232 | 100  | 4.5115        | -                       |
| 0.4464 | 200  | 2.9237        | 0.5255                  |
| 0.6696 | 300  | 2.5327        | -                       |
| 0.8929 | 400  | 2.3451        | 0.5305                  |
| 1.1161 | 500  | 1.9882        | -                       |
| 1.3393 | 600  | 1.7738        | 0.5240                  |
| 1.5625 | 700  | 1.7365        | -                       |
| 1.7857 | 800  | 1.6932        | 0.5251                  |
| 2.0089 | 900  | 1.6184        | -                       |
| 2.2321 | 1000 | 1.285         | 0.5254                  |
| 2.4554 | 1100 | 1.2651        | -                       |
| 2.6786 | 1200 | 1.2739        | 0.5238                  |
| 2.9018 | 1300 | 1.2625        | -                       |
| 3.125  | 1400 | 1.0726        | 0.5251                  |
| 3.3482 | 1500 | 0.9606        | -                       |
| 3.5714 | 1600 | 0.9594        | 0.5214                  |
| 3.7946 | 1700 | 0.954         | -                       |
| 4.0179 | 1800 | 0.9264        | 0.5239                  |
| 4.2411 | 1900 | 0.7486        | -                       |
| 4.4643 | 2000 | 0.7424        | 0.5218                  |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->