InklyAI / src /data /preprocessing.py
pravinai's picture
Upload folder using huggingface_hub
8eab354 verified
"""
Signature preprocessing module for image normalization and preparation.
"""
import cv2
import numpy as np
import torch
from PIL import Image
from typing import Tuple, Union, Optional
import albumentations as A
from albumentations.pytorch import ToTensorV2
class SignaturePreprocessor:
"""
Handles preprocessing of signature images for the verification model.
"""
def __init__(self, target_size: Tuple[int, int] = (224, 224)):
"""
Initialize the preprocessor.
Args:
target_size: Target size for signature images (height, width)
"""
self.target_size = target_size
self.transform = A.Compose([
A.Resize(target_size[0], target_size[1]),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2()
])
def load_image(self, image_path: str) -> np.ndarray:
"""
Load image from file path.
Args:
image_path: Path to the image file
Returns:
Loaded image as numpy array
"""
try:
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Could not load image from {image_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
except Exception as e:
raise ValueError(f"Error loading image {image_path}: {str(e)}")
def preprocess_image(self, image: Union[str, np.ndarray, Image.Image]) -> torch.Tensor:
"""
Preprocess a signature image for model input.
Args:
image: Image as file path, numpy array, or PIL Image
Returns:
Preprocessed image as torch tensor
"""
# Convert to numpy array if needed
if isinstance(image, str):
image = self.load_image(image)
elif isinstance(image, Image.Image):
image = np.array(image)
elif isinstance(image, torch.Tensor):
image = image.numpy()
# Ensure image is in RGB format
if len(image.shape) == 3 and image.shape[2] == 3:
pass # Already RGB
elif len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
raise ValueError(f"Unsupported image format with shape: {image.shape}")
# Apply transformations
transformed = self.transform(image=image)
return transformed['image']
def enhance_signature(self, image: np.ndarray) -> np.ndarray:
"""
Enhance signature image quality.
Args:
image: Input signature image
Returns:
Enhanced signature image
"""
# Convert to grayscale for processing
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
else:
gray = image.copy()
# Apply adaptive thresholding to get binary image
binary = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
)
# Morphological operations to clean up the signature
kernel = np.ones((2, 2), np.uint8)
cleaned = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
cleaned = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel)
# Convert back to RGB
if len(image.shape) == 3:
enhanced = cv2.cvtColor(cleaned, cv2.COLOR_GRAY2RGB)
else:
enhanced = cleaned
return enhanced
def normalize_signature(self, image: np.ndarray) -> np.ndarray:
"""
Normalize signature image for consistent processing.
Args:
image: Input signature image
Returns:
Normalized signature image
"""
# Convert to grayscale
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
else:
gray = image.copy()
# Find signature contours
contours, _ = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return image
# Get bounding box of the signature
x, y, w, h = cv2.boundingRect(max(contours, key=cv2.contourArea))
# Crop to signature area with some padding
padding = 10
x1 = max(0, x - padding)
y1 = max(0, y - padding)
x2 = min(image.shape[1], x + w + padding)
y2 = min(image.shape[0], y + h + padding)
cropped = image[y1:y2, x1:x2]
# Resize to target size while maintaining aspect ratio
h_orig, w_orig = cropped.shape[:2]
aspect_ratio = w_orig / h_orig
if aspect_ratio > 1:
new_w = self.target_size[1]
new_h = int(new_w / aspect_ratio)
else:
new_h = self.target_size[0]
new_w = int(new_h * aspect_ratio)
resized = cv2.resize(cropped, (new_w, new_h))
# Create canvas with target size
canvas = np.ones((self.target_size[0], self.target_size[1], 3), dtype=np.uint8) * 255
# Center the signature on the canvas
y_offset = (self.target_size[0] - new_h) // 2
x_offset = (self.target_size[1] - new_w) // 2
canvas[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized
return canvas
def preprocess_batch(self, images: list) -> torch.Tensor:
"""
Preprocess a batch of signature images.
Args:
images: List of images to preprocess
Returns:
Batch of preprocessed images as torch tensor
"""
processed_images = []
for image in images:
processed = self.preprocess_image(image)
processed_images.append(processed)
return torch.stack(processed_images)
class SignatureAugmentation:
"""
Data augmentation for signature images during training.
"""
def __init__(self, target_size: Tuple[int, int] = (224, 224)):
"""
Initialize augmentation pipeline.
Args:
target_size: Target size for signature images
"""
self.target_size = target_size
# Training augmentations
self.train_transform = A.Compose([
A.Resize(target_size[0], target_size[1]),
A.HorizontalFlip(p=0.3),
A.Rotate(limit=15, p=0.5),
A.RandomBrightnessContrast(
brightness_limit=0.2,
contrast_limit=0.2,
p=0.5
),
A.GaussNoise(var_limit=(10.0, 50.0), p=0.3),
A.ElasticTransform(
alpha=1,
sigma=50,
alpha_affine=50,
p=0.3
),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2()
])
# Validation augmentations (minimal)
self.val_transform = A.Compose([
A.Resize(target_size[0], target_size[1]),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2()
])
def augment(self, image: np.ndarray, is_training: bool = True) -> torch.Tensor:
"""
Apply augmentation to signature image.
Args:
image: Input signature image
is_training: Whether to apply training augmentations
Returns:
Augmented image as torch tensor
"""
transform = self.train_transform if is_training else self.val_transform
transformed = transform(image=image)
return transformed['image']
def augment_batch(self, images: list, is_training: bool = True) -> torch.Tensor:
"""
Apply augmentation to a batch of signature images.
Args:
images: List of images to augment
is_training: Whether to apply training augmentations
Returns:
Batch of augmented images as torch tensor
"""
augmented_images = []
for image in images:
augmented = self.augment(image, is_training)
augmented_images.append(augmented)
return torch.stack(augmented_images)