File size: 27,404 Bytes
5797415
 
 
 
 
 
 
 
 
 
 
 
463d8df
 
 
349efa2
5c59cca
b47dcde
9d67102
b47dcde
5c59cca
0e74fba
 
 
 
 
 
9fa8bf0
 
c1dc177
0e74fba
781d1ed
 
 
 
 
349efa2
781d1ed
 
 
db5dc6f
5c59cca
86414b9
 
5c59cca
 
 
 
 
 
 
 
86414b9
db5dc6f
5c59cca
 
 
 
 
6760b43
f122b4d
5c59cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47dcde
5c59cca
 
 
 
 
 
 
 
db5dc6f
 
b1c6615
 
74d2323
54cd942
 
 
 
 
 
 
 
 
 
 
349efa2
 
 
54cd942
 
 
 
 
 
 
b47dcde
6b41390
b47dcde
348b2ca
b47dcde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99567fa
 
 
 
 
 
 
 
b47dcde
6760b43
b47dcde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99567fa
b47dcde
2c42c12
 
 
 
b1c6615
 
db5dc6f
 
 
 
 
 
463d8df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
---
language:
- en
library_name: diffusers
license: other
license_name: flux-1-dev-non-commercial-license
license_link: LICENSE.md
base_model:
- black-forest-labs/FLUX.1-dev
- black-forest-labs/FLUX.1-Krea-dev
base_model_relation: merge
pipeline_tag: text-to-image
tags:
- flux
- art
- experimental
---
# **Flux.1-Krea-Merged-Dev (Flux.1-Dev + Flux.1-Krea-Dev)**

> The Flux.1-Krea-Merged-Dev repository contains merged parameters combining two advanced image generation models: black-forest-labs/FLUX.1-dev and black-forest-labs/FLUX.1-Krea-dev. This merged model integrates the capabilities of the rectified flow transformer FLUX.1-dev, known for competitive prompt following and high-quality outputs, with FLUX.1-Krea-dev, a guidance distilled model emphasizing aesthetics and photorealism. The result is a unified model that balances quality, aesthetic control, and efficiency for text-to-image generation tasks. The repository includes instructions for loading, merging, and using the fused parameters via the Diffusers library, enabling users to generate images from text prompts through the FluxPipeline with enhanced performance and visual quality. This merge facilitates leveraging strengths from both base models in a single, accessible implementation for research and creative workflows.

| FLUX.1-dev (28 steps) | FLUX.1-Krea-dev (28 steps) | **Flux.1-Krea-Merged-Dev (28 steps)** |
|-----------------------|---------------------------|----------------------------------|
| ![1.webp](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FzWOpQgGxaC_SYjdmevQ3y.webp%3C%2Fspan%3E) | ![11.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FYNLGuhlybdrOIsghT-yeP.png%3C%2Fspan%3E) | ![Img_0.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2F3CT_hwrzKIEn4I02qWwkS.png%3C%2Fspan%3E) |
| ![2.webp](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2F6TzAd5Gl5rtzZy5A7cDbt.webp%3C%2Fspan%3E) | ![22.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FNV54aLXFPxjWiOSY74W_m.png%3C%2Fspan%3E) | ![Img_1.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FAqUJQ3A3ewjcLXCb84Ufb.png%3C%2Fspan%3E) |
| ![3.webp](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FnqnhwVh0I23v6pGgGEVD6.webp%3C%2Fspan%3E) | ![343.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FeH5y3zkLDkVy1voEHdm3P.png%3C%2Fspan%3E) | ![Img_2.png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2F5jhpXxIfwaPeolYbinoF4.png%3C%2Fspan%3E) |

> prompt : a tiny astronaut hatching from an egg on the moon

---

| FLUX.1-dev (28 steps) | FLUX.1-Krea-dev (28 steps) | Flux.1-Krea-Merged-Dev (28 steps) |
|------------------------|-----------------------------|------------------------------------|
| ![Sample 1](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2F0jHC3wC-SuZ6QlAyPSc8I.webp%3C%2Fspan%3E) | ![Sample 1](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FYqOxPGJpTUxV_0EclDfG4.png%3C%2Fspan%3E) | ![Sample 1](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FFMnSGYDrZjLwQ3_KVG10B.png%3C%2Fspan%3E) |
| ![Sample 2](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FEzx2_B--lN_LgENleaknq.webp%3C%2Fspan%3E) | ![Sample 2](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2F8D5Cr5qtj3Dv1kI0A8_pa.png%3C%2Fspan%3E) | ![Sample 2](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F65bb837dbfb878f46c77de4c%2FmujudYA5Yvm6x9me-lDBp.png%3C%2Fspan%3E) |

> prompt : cute anime illustration of a colorful sushi platter featuring nigiri, maki rolls, sashimi, and wasabi on a wooden tray with decorative two chopsticks.

---

## **Sub-Memory-efficient merging code (Flux.1-Dev + Flux.1-Krea-Dev)**

**Installing Required Packages** 

```py
%%capture
!pip install git+https://github.com/huggingface/transformers.git
!pip install git+https://github.com/huggingface/diffusers.git
!pip install git+https://github.com/huggingface/peft.git
!pip install git+https://github.com/huggingface/accelerate.git
!pip install safetensors huggingface_hub hf_xet
```
**hf-login**

```
from huggingface_hub import notebook_login, HfApi
notebook_login()
```

**merge.py**

```py
from diffusers import FluxTransformer2DModel
from huggingface_hub import snapshot_download
from accelerate import init_empty_weights
from diffusers.models.model_loading_utils import load_model_dict_into_meta
import safetensors.torch
import glob
import torch

# Initialize model with empty weights
with init_empty_weights():
    config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer")
    model = FluxTransformer2DModel.from_config(config)

# Download checkpoints
dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", allow_patterns="transformer/*")
krea_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-Krea-dev", allow_patterns="transformer/*")

# Get sorted shard paths
dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors"))
krea_shards = sorted(glob.glob(f"{krea_ckpt}/transformer/*.safetensors"))

# Initialize dictionaries for merged and guidance weights
merged_state_dict = {}
guidance_state_dict = {}

# Merge shards
for dev_shard, krea_shard in zip(dev_shards, krea_shards):
    state_dict_dev = safetensors.torch.load_file(dev_shard)
    state_dict_krea = safetensors.torch.load_file(krea_shard)

    # Process keys from dev model
    for k in list(state_dict_dev.keys()):
        if "guidance" in k:
            # Keep guidance weights from dev model
            guidance_state_dict[k] = state_dict_dev.pop(k)
        else:
            # Average non-guidance weights if key exists in krea
            if k in state_dict_krea:
                merged_state_dict[k] = (state_dict_dev.pop(k) + state_dict_krea.pop(k)) / 2
            else:
                raise ValueError(f"Key {k} missing in krea shard.")

    # Check for residual keys in krea (e.g., extra guidance keys)
    for k in list(state_dict_krea.keys()):
        if "guidance" in k:
            # Skip extra guidance keys in krea
            state_dict_krea.pop(k)
        else:
            raise ValueError(f"Unexpected non-guidance key in krea shard: {k}")

    # Verify no unexpected residue
    if len(state_dict_dev) > 0:
        raise ValueError(f"Residue in dev shard: {list(state_dict_dev.keys())}")
    if len(state_dict_krea) > 0:
        raise ValueError(f"Residue in krea shard: {list(state_dict_krea.keys())}")

# Combine merged and guidance state dictionaries
merged_state_dict.update(guidance_state_dict)

# Load merged state dictionary into model
load_model_dict_into_meta(model, merged_state_dict)

# Convert to bfloat16 and save
model.to(torch.bfloat16).save_pretrained("merged/transformer")
```


```py
api = HfApi()
repo_id = "prithivMLmods/Flux.1-Krea-Merged-Dev"

api.upload_folder(
    folder_path="merged/",
    path_in_repo=".",
    repo_id=repo_id,
    repo_type="model",
    revision="main"
)
```

---

## Inference Code🧨

```py
from diffusers import FluxPipeline
import torch

pipeline = FluxPipeline.from_pretrained(
    "prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=torch.bfloat16
).to("cuda")
image = pipeline(
    prompt="a tiny astronaut hatching from an egg on the moon",
    guidance_scale=3.5,
    num_inference_steps=28,
    height=1024,
    width=1024,
    max_sequence_length=512,
    generator=torch.manual_seed(0),
).images[0]
image.save("img0.png")
```

---

## Quick Start with Gradio and Transformers🤗

> COMPARATOR : FLUX.1-Dev(Realism) and FLUX.1-Krea-Merged-Dev (Flux.1-Dev + Flux.1-Krea-Dev)

**Installing Required Packages** 

```py
%%capture
!pip install git+https://github.com/huggingface/transformers.git
!pip install git+https://github.com/huggingface/diffusers.git
!pip install git+https://github.com/huggingface/peft.git
!pip install git+https://github.com/huggingface/accelerate.git
!pip install safetensors huggingface_hub hf_xet
```

**hf-login**

```
from huggingface_hub import notebook_login, HfApi
notebook_login()
```

<div style="
    background: rgba(255, 193, 61, 0.15);
    padding: 16px;
    border-radius: 6px;
    border: 1px solid rgba(255, 165, 0, 0.3);
    margin: 16px 0;
">

<details>
  <summary>app.py</summary>

```py
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import random
import uuid
from typing import Tuple, Union, List, Optional, Any, Dict
import numpy as np
import time
import zipfile
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

# Description for the app
DESCRIPTION = """## flux comparator hpc/."""

# Helper functions
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Load pipelines for both models
# Flux.1-dev-realism
base_model_dev = "black-forest-labs/FLUX.1-dev"
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"
pipe_dev.load_lora_weights(lora_repo)
pipe_dev.to("cuda")

# Flux.1-krea
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)

# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()

    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)

# Helper functions for flux.1-krea
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# Styles for flux.1-dev-realism
style_list = [
    {"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n

# Generation function for flux.1-dev-realism
@spaces.GPU
def generate_dev(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    num_inference_steps: int = 30,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
    
    if use_negative_prompt:
        final_negative_prompt = style_negative_prompt + " " + negative_prompt
    else:
        final_negative_prompt = style_negative_prompt
    
    final_negative_prompt = final_negative_prompt.strip()
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    start_time = time.time()
    
    images = pipe_dev(
        prompt=positive_prompt,
        negative_prompt=final_negative_prompt if final_negative_prompt else None,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        generator=generator,
        output_type="pil",
    ).images
    
    end_time = time.time()
    duration = end_time - start_time
    
    image_paths = [save_image(img) for img in images]
    
    zip_path = None
    if zip_images:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name
    
    return image_paths, seed, f"{duration:.2f}", zip_path

# Generation function for flux.1-krea
@spaces.GPU
def generate_krea(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 4.5,
    randomize_seed: bool = False,
    num_inference_steps: int = 28,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    start_time = time.time()
    
    images = []
    for _ in range(num_images):
        final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ))[-1]  # Take the final image only
        images.append(final_img)
    
    end_time = time.time()
    duration = end_time - start_time
    
    image_paths = [save_image(img) for img in images]
    
    zip_path = None
    if zip_images:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name
    
    return image_paths, seed, f"{duration:.2f}", zip_path

# Main generation function to handle model choice
@spaces.GPU
def generate(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    num_inference_steps: int = 30,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    if model_choice == "flux.1-dev-realism":
        return generate_dev(
            prompt=prompt,
            negative_prompt=negative_prompt,
            use_negative_prompt=use_negative_prompt,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            randomize_seed=randomize_seed,
            style_name=style_name,
            num_inference_steps=num_inference_steps,
            num_images=num_images,
            zip_images=zip_images,
            progress=progress,
        )
    elif model_choice == "flux.1-krea-merged-dev":
        return generate_krea(
            prompt=prompt,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            randomize_seed=randomize_seed,
            num_inference_steps=num_inference_steps,
            num_images=num_images,
            zip_images=zip_images,
            progress=progress,
        )
    else:
        raise ValueError("Invalid model choice")

# Examples (tailored for flux.1-dev-realism)
examples = [
    "An attractive young woman with blue eyes lying face down on the bed, in the style of animated gifs, light white and light amber, jagged edges, the snapshot aesthetic, timeless beauty, goosepunk, sunrays shine upon it --no freckles --chaos 65 --ar 1:2 --profile yruxpc2 --stylize 750 --v 6.1",
    "Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
    "Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights.",
    "High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250"
]

css = '''
.gradio-container {
    max-width: 590px !important;
    margin: 0 auto !important;
}
h1 {
    text-align: center;
}
footer {
    visibility: hidden;
}
'''

# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0, variant="primary")
    result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
    
    with gr.Row():
    # Model choice radio button above additional options
        model_choice = gr.Radio(
            choices=["flux.1-krea-merged-dev", "flux.1-dev-realism"],
            label="Select Model",
            value="flux.1-krea-merged-dev"
        )
    
    with gr.Accordion("Additional Options", open=False):
        style_selection = gr.Dropdown(
            label="Quality Style (for flux.1-dev-realism only)",
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            interactive=True,
        )
        use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
        guidance_scale = gr.Slider(
            label="Guidance Scale",
            minimum=0.1,
            maximum=20.0,
            step=0.1,
            value=3.5,
        )
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=40,
            step=1,
            value=28,
        )
        num_images = gr.Slider(
            label="Number of images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        zip_images = gr.Checkbox(label="Zip generated images", value=False)
        
        gr.Markdown("### Output Information")
        seed_display = gr.Textbox(label="Seed used", interactive=False)
        generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
        zip_file = gr.File(label="Download ZIP")

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed_display, generation_time, zip_file],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
            num_inference_steps,
            num_images,
            zip_images,
        ],
        outputs=[result, seed_display, generation_time, zip_file],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
```    

</details>

</div>

## Recommended runtime type

`@hardware-accelerator : H200`

---

## For more information, visit the documentation.

> Flux is a suite of state-of-the-art text-to-image generation models based on diffusion transformers, developed by Black Forest Labs. The models are designed for high-quality generative image tasks, including text-to-image, inpainting, outpainting, and advanced structure or depth-controlled workflows. Flux is available through the Hugging Face diffusers library.

For detailed guides, examples, and API refer to:
- **[Main Flux Pipeline Documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux)**
- **[Flux Transformer Model Documentation](https://huggingface.co/docs/diffusers/main/en/api/models/flux_transformer)**