File size: 27,404 Bytes
5797415 463d8df 349efa2 5c59cca b47dcde 9d67102 b47dcde 5c59cca 0e74fba 9fa8bf0 c1dc177 0e74fba 781d1ed 349efa2 781d1ed db5dc6f 5c59cca 86414b9 5c59cca 86414b9 db5dc6f 5c59cca 6760b43 f122b4d 5c59cca b47dcde 5c59cca db5dc6f b1c6615 74d2323 54cd942 349efa2 54cd942 b47dcde 6b41390 b47dcde 348b2ca b47dcde 99567fa b47dcde 6760b43 b47dcde 99567fa b47dcde 2c42c12 b1c6615 db5dc6f 463d8df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
---
language:
- en
library_name: diffusers
license: other
license_name: flux-1-dev-non-commercial-license
license_link: LICENSE.md
base_model:
- black-forest-labs/FLUX.1-dev
- black-forest-labs/FLUX.1-Krea-dev
base_model_relation: merge
pipeline_tag: text-to-image
tags:
- flux
- art
- experimental
---
# **Flux.1-Krea-Merged-Dev (Flux.1-Dev + Flux.1-Krea-Dev)**
> The Flux.1-Krea-Merged-Dev repository contains merged parameters combining two advanced image generation models: black-forest-labs/FLUX.1-dev and black-forest-labs/FLUX.1-Krea-dev. This merged model integrates the capabilities of the rectified flow transformer FLUX.1-dev, known for competitive prompt following and high-quality outputs, with FLUX.1-Krea-dev, a guidance distilled model emphasizing aesthetics and photorealism. The result is a unified model that balances quality, aesthetic control, and efficiency for text-to-image generation tasks. The repository includes instructions for loading, merging, and using the fused parameters via the Diffusers library, enabling users to generate images from text prompts through the FluxPipeline with enhanced performance and visual quality. This merge facilitates leveraging strengths from both base models in a single, accessible implementation for research and creative workflows.
| FLUX.1-dev (28 steps) | FLUX.1-Krea-dev (28 steps) | **Flux.1-Krea-Merged-Dev (28 steps)** |
|-----------------------|---------------------------|----------------------------------|
|  |  |  |
|  |  |  |
|  |  |  |
> prompt : a tiny astronaut hatching from an egg on the moon
---
| FLUX.1-dev (28 steps) | FLUX.1-Krea-dev (28 steps) | Flux.1-Krea-Merged-Dev (28 steps) |
|------------------------|-----------------------------|------------------------------------|
|  |  |  |
|  |  |  |
> prompt : cute anime illustration of a colorful sushi platter featuring nigiri, maki rolls, sashimi, and wasabi on a wooden tray with decorative two chopsticks.
---
## **Sub-Memory-efficient merging code (Flux.1-Dev + Flux.1-Krea-Dev)**
**Installing Required Packages**
```py
%%capture
!pip install git+https://github.com/huggingface/transformers.git
!pip install git+https://github.com/huggingface/diffusers.git
!pip install git+https://github.com/huggingface/peft.git
!pip install git+https://github.com/huggingface/accelerate.git
!pip install safetensors huggingface_hub hf_xet
```
**hf-login**
```
from huggingface_hub import notebook_login, HfApi
notebook_login()
```
**merge.py**
```py
from diffusers import FluxTransformer2DModel
from huggingface_hub import snapshot_download
from accelerate import init_empty_weights
from diffusers.models.model_loading_utils import load_model_dict_into_meta
import safetensors.torch
import glob
import torch
# Initialize model with empty weights
with init_empty_weights():
config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer")
model = FluxTransformer2DModel.from_config(config)
# Download checkpoints
dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", allow_patterns="transformer/*")
krea_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-Krea-dev", allow_patterns="transformer/*")
# Get sorted shard paths
dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors"))
krea_shards = sorted(glob.glob(f"{krea_ckpt}/transformer/*.safetensors"))
# Initialize dictionaries for merged and guidance weights
merged_state_dict = {}
guidance_state_dict = {}
# Merge shards
for dev_shard, krea_shard in zip(dev_shards, krea_shards):
state_dict_dev = safetensors.torch.load_file(dev_shard)
state_dict_krea = safetensors.torch.load_file(krea_shard)
# Process keys from dev model
for k in list(state_dict_dev.keys()):
if "guidance" in k:
# Keep guidance weights from dev model
guidance_state_dict[k] = state_dict_dev.pop(k)
else:
# Average non-guidance weights if key exists in krea
if k in state_dict_krea:
merged_state_dict[k] = (state_dict_dev.pop(k) + state_dict_krea.pop(k)) / 2
else:
raise ValueError(f"Key {k} missing in krea shard.")
# Check for residual keys in krea (e.g., extra guidance keys)
for k in list(state_dict_krea.keys()):
if "guidance" in k:
# Skip extra guidance keys in krea
state_dict_krea.pop(k)
else:
raise ValueError(f"Unexpected non-guidance key in krea shard: {k}")
# Verify no unexpected residue
if len(state_dict_dev) > 0:
raise ValueError(f"Residue in dev shard: {list(state_dict_dev.keys())}")
if len(state_dict_krea) > 0:
raise ValueError(f"Residue in krea shard: {list(state_dict_krea.keys())}")
# Combine merged and guidance state dictionaries
merged_state_dict.update(guidance_state_dict)
# Load merged state dictionary into model
load_model_dict_into_meta(model, merged_state_dict)
# Convert to bfloat16 and save
model.to(torch.bfloat16).save_pretrained("merged/transformer")
```
```py
api = HfApi()
repo_id = "prithivMLmods/Flux.1-Krea-Merged-Dev"
api.upload_folder(
folder_path="merged/",
path_in_repo=".",
repo_id=repo_id,
repo_type="model",
revision="main"
)
```
---
## Inference Code🧨
```py
from diffusers import FluxPipeline
import torch
pipeline = FluxPipeline.from_pretrained(
"prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=torch.bfloat16
).to("cuda")
image = pipeline(
prompt="a tiny astronaut hatching from an egg on the moon",
guidance_scale=3.5,
num_inference_steps=28,
height=1024,
width=1024,
max_sequence_length=512,
generator=torch.manual_seed(0),
).images[0]
image.save("img0.png")
```
---
## Quick Start with Gradio and Transformers🤗
> COMPARATOR : FLUX.1-Dev(Realism) and FLUX.1-Krea-Merged-Dev (Flux.1-Dev + Flux.1-Krea-Dev)
**Installing Required Packages**
```py
%%capture
!pip install git+https://github.com/huggingface/transformers.git
!pip install git+https://github.com/huggingface/diffusers.git
!pip install git+https://github.com/huggingface/peft.git
!pip install git+https://github.com/huggingface/accelerate.git
!pip install safetensors huggingface_hub hf_xet
```
**hf-login**
```
from huggingface_hub import notebook_login, HfApi
notebook_login()
```
<div style="
background: rgba(255, 193, 61, 0.15);
padding: 16px;
border-radius: 6px;
border: 1px solid rgba(255, 165, 0, 0.3);
margin: 16px 0;
">
<details>
<summary>app.py</summary>
```py
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import random
import uuid
from typing import Tuple, Union, List, Optional, Any, Dict
import numpy as np
import time
import zipfile
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
# Description for the app
DESCRIPTION = """## flux comparator hpc/."""
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load pipelines for both models
# Flux.1-dev-realism
base_model_dev = "black-forest-labs/FLUX.1-dev"
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"
pipe_dev.load_lora_weights(lora_repo)
pipe_dev.to("cuda")
# Flux.1-krea
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)
# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
# Helper functions for flux.1-krea
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Styles for flux.1-dev-realism
style_list = [
{"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n
# Generation function for flux.1-dev-realism
@spaces.GPU
def generate_dev(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
if use_negative_prompt:
final_negative_prompt = style_negative_prompt + " " + negative_prompt
else:
final_negative_prompt = style_negative_prompt
final_negative_prompt = final_negative_prompt.strip()
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device="cuda").manual_seed(seed)
start_time = time.time()
images = pipe_dev(
prompt=positive_prompt,
negative_prompt=final_negative_prompt if final_negative_prompt else None,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Generation function for flux.1-krea
@spaces.GPU
def generate_krea(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.5,
randomize_seed: bool = False,
num_inference_steps: int = 28,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
images = []
for _ in range(num_images):
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
))[-1] # Take the final image only
images.append(final_img)
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Main generation function to handle model choice
@spaces.GPU
def generate(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if model_choice == "flux.1-dev-realism":
return generate_dev(
prompt=prompt,
negative_prompt=negative_prompt,
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
style_name=style_name,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
elif model_choice == "flux.1-krea-merged-dev":
return generate_krea(
prompt=prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
else:
raise ValueError("Invalid model choice")
# Examples (tailored for flux.1-dev-realism)
examples = [
"An attractive young woman with blue eyes lying face down on the bed, in the style of animated gifs, light white and light amber, jagged edges, the snapshot aesthetic, timeless beauty, goosepunk, sunrays shine upon it --no freckles --chaos 65 --ar 1:2 --profile yruxpc2 --stylize 750 --v 6.1",
"Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
"Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights.",
"High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250"
]
css = '''
.gradio-container {
max-width: 590px !important;
margin: 0 auto !important;
}
h1 {
text-align: center;
}
footer {
visibility: hidden;
}
'''
# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
with gr.Row():
# Model choice radio button above additional options
model_choice = gr.Radio(
choices=["flux.1-krea-merged-dev", "flux.1-dev-realism"],
label="Select Model",
value="flux.1-krea-merged-dev"
)
with gr.Accordion("Additional Options", open=False):
style_selection = gr.Dropdown(
label="Quality Style (for flux.1-dev-realism only)",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
interactive=True,
)
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=28,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=5,
step=1,
value=1,
)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
gr.Markdown("### Output Information")
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed_display, generation_time, zip_file],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
num_inference_steps,
num_images,
zip_images,
],
outputs=[result, seed_display, generation_time, zip_file],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
```
</details>
</div>
## Recommended runtime type
`@hardware-accelerator : H200`
---
## For more information, visit the documentation.
> Flux is a suite of state-of-the-art text-to-image generation models based on diffusion transformers, developed by Black Forest Labs. The models are designed for high-quality generative image tasks, including text-to-image, inpainting, outpainting, and advanced structure or depth-controlled workflows. Flux is available through the Hugging Face diffusers library.
For detailed guides, examples, and API refer to:
- **[Main Flux Pipeline Documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux)**
- **[Flux Transformer Model Documentation](https://huggingface.co/docs/diffusers/main/en/api/models/flux_transformer)** |