Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,23 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- AadityaJain/Fromula_text_classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```py
|
| 8 |
Classification Report:
|
| 9 |
precision recall f1-score support
|
|
@@ -17,3 +32,82 @@ weighted avg 0.9991 0.9991 0.9991 11832
|
|
| 17 |
```
|
| 18 |
|
| 19 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- AadityaJain/Fromula_text_classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-224
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- Formula-Text-Detection
|
| 13 |
+
- SigLIP2
|
| 14 |
---
|
| 15 |
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
# **Formula-Text-Detection**
|
| 19 |
+
|
| 20 |
+
> **Formula-Text-Detection** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is built using the **SiglipForImageClassification** architecture to distinguish between **mathematical formulas** and **natural text** in document or image regions.
|
| 21 |
+
|
| 22 |
```py
|
| 23 |
Classification Report:
|
| 24 |
precision recall f1-score support
|
|
|
|
| 32 |
```
|
| 33 |
|
| 34 |

|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
## **Label Space: 2 Classes**
|
| 39 |
+
|
| 40 |
+
The model classifies each input image into one of the following categories:
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
Class 0: "formula"
|
| 44 |
+
Class 1: "text"
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## **Install Dependencies**
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
pip install -q transformers torch pillow gradio
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## **Inference Code**
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
import gradio as gr
|
| 61 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 62 |
+
from PIL import Image
|
| 63 |
+
import torch
|
| 64 |
+
|
| 65 |
+
# Load model and processor
|
| 66 |
+
model_name = "prithivMLmods/Formula-Text-Detection" # Replace with your model path if different
|
| 67 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 68 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 69 |
+
|
| 70 |
+
# Label mapping
|
| 71 |
+
id2label = {
|
| 72 |
+
"0": "formula",
|
| 73 |
+
"1": "text"
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def classify_formula_or_text(image):
|
| 77 |
+
image = Image.fromarray(image).convert("RGB")
|
| 78 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
outputs = model(**inputs)
|
| 82 |
+
logits = outputs.logits
|
| 83 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 84 |
+
|
| 85 |
+
prediction = {
|
| 86 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
return prediction
|
| 90 |
+
|
| 91 |
+
# Gradio Interface
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=classify_formula_or_text,
|
| 94 |
+
inputs=gr.Image(type="numpy"),
|
| 95 |
+
outputs=gr.Label(num_top_classes=2, label="Formula or Text"),
|
| 96 |
+
title="Formula-Text-Detection",
|
| 97 |
+
description="Upload an image region to classify whether it contains a mathematical formula or natural text."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
iface.launch()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## **Intended Use**
|
| 107 |
+
|
| 108 |
+
**Formula-Text-Detection** can be used in:
|
| 109 |
+
|
| 110 |
+
- **OCR Preprocessing** – Improve document OCR accuracy by separating formulas from text.
|
| 111 |
+
- **Scientific Document Analysis** – Automatically detect mathematical content.
|
| 112 |
+
- **Educational Platforms** – Classify and annotate scanned materials.
|
| 113 |
+
- **Layout Understanding** – Help AI systems interpret mixed-content documents.
|