Update README.md
Browse files
README.md
CHANGED
|
@@ -13,6 +13,9 @@ tags:
|
|
| 13 |
---
|
| 14 |
|
| 15 |

|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
```py
|
| 18 |
Classification Report:
|
|
@@ -39,4 +42,99 @@ listening_to_music 0.8494 0.7988 0.8233 840
|
|
| 39 |
weighted avg 0.8421 0.8327 0.8339 12600
|
| 40 |
```
|
| 41 |
|
| 42 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |

|
| 16 |
+
# **Human-Action-Recognition**
|
| 17 |
+
|
| 18 |
+
> **Human-Action-Recognition** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for multi-class human action recognition. It uses the **SiglipForImageClassification** architecture to predict human activities from still images.
|
| 19 |
|
| 20 |
```py
|
| 21 |
Classification Report:
|
|
|
|
| 42 |
weighted avg 0.8421 0.8327 0.8339 12600
|
| 43 |
```
|
| 44 |
|
| 45 |
+

|
| 46 |
+
|
| 47 |
+
The model categorizes images into 15 action classes:
|
| 48 |
+
|
| 49 |
+
- **0:** calling
|
| 50 |
+
- **1:** clapping
|
| 51 |
+
- **2:** cycling
|
| 52 |
+
- **3:** dancing
|
| 53 |
+
- **4:** drinking
|
| 54 |
+
- **5:** eating
|
| 55 |
+
- **6:** fighting
|
| 56 |
+
- **7:** hugging
|
| 57 |
+
- **8:** laughing
|
| 58 |
+
- **9:** listening_to_music
|
| 59 |
+
- **10:** running
|
| 60 |
+
- **11:** sitting
|
| 61 |
+
- **12:** sleeping
|
| 62 |
+
- **13:** texting
|
| 63 |
+
- **14:** using_laptop
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
# **Run with Transformers 🤗**
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
!pip install -q transformers torch pillow gradio
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
```python
|
| 74 |
+
import gradio as gr
|
| 75 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 76 |
+
from PIL import Image
|
| 77 |
+
import torch
|
| 78 |
+
|
| 79 |
+
# Load model and processor
|
| 80 |
+
model_name = "prithivMLmods/Human-Action-Recognition" # Change to your updated model path
|
| 81 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 82 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 83 |
+
|
| 84 |
+
# ID to Label mapping
|
| 85 |
+
id2label = {
|
| 86 |
+
0: "calling",
|
| 87 |
+
1: "clapping",
|
| 88 |
+
2: "cycling",
|
| 89 |
+
3: "dancing",
|
| 90 |
+
4: "drinking",
|
| 91 |
+
5: "eating",
|
| 92 |
+
6: "fighting",
|
| 93 |
+
7: "hugging",
|
| 94 |
+
8: "laughing",
|
| 95 |
+
9: "listening_to_music",
|
| 96 |
+
10: "running",
|
| 97 |
+
11: "sitting",
|
| 98 |
+
12: "sleeping",
|
| 99 |
+
13: "texting",
|
| 100 |
+
14: "using_laptop"
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
def classify_action(image):
|
| 104 |
+
"""Predicts the human action in the image."""
|
| 105 |
+
image = Image.fromarray(image).convert("RGB")
|
| 106 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 107 |
+
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
outputs = model(**inputs)
|
| 110 |
+
logits = outputs.logits
|
| 111 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 112 |
+
|
| 113 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
| 114 |
+
return predictions
|
| 115 |
+
|
| 116 |
+
# Gradio interface
|
| 117 |
+
iface = gr.Interface(
|
| 118 |
+
fn=classify_action,
|
| 119 |
+
inputs=gr.Image(type="numpy"),
|
| 120 |
+
outputs=gr.Label(label="Action Prediction Scores"),
|
| 121 |
+
title="Human Action Recognition",
|
| 122 |
+
description="Upload an image to recognize the human action (e.g., dancing, calling, sitting, etc.)."
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Launch the app
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
iface.launch()
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
# **Intended Use**
|
| 133 |
+
|
| 134 |
+
The **Human-Action-Recognition** model is designed to detect and classify human actions from images. Example applications:
|
| 135 |
+
|
| 136 |
+
- **Surveillance & Monitoring:** Recognizing suspicious or specific activities in public spaces.
|
| 137 |
+
- **Sports Analytics:** Identifying player activities or movements.
|
| 138 |
+
- **Social Media Insights:** Understanding trends in user-posted visuals.
|
| 139 |
+
- **Healthcare:** Monitoring elderly or patients for activity patterns.
|
| 140 |
+
- **Robotics & Automation:** Enabling context-aware AI systems with visual understanding.
|