Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,24 @@
|
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
datasets:
|
| 4 |
- uoft-cs/cifar10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```
|
| 8 |
Classification report:
|
| 9 |
|
|
@@ -25,4 +41,88 @@ Classification report:
|
|
| 25 |
weighted avg 0.9633 0.9631 0.9632 20000
|
| 26 |
```
|
| 27 |
|
| 28 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
datasets:
|
| 4 |
- uoft-cs/cifar10
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- facebook/metaclip-2-worldwide-s16
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- text-generation-inference
|
| 13 |
+
- cifar10
|
| 14 |
---
|
| 15 |
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
# **MetaCLIP-2-Cifar10**
|
| 19 |
+
|
| 20 |
+
> **MetaCLIP-2-Cifar10** is an image classification vision–language encoder model fine-tuned from **facebook/metaclip-2-worldwide-s16** for a single-label classification task.
|
| 21 |
+
> It is designed to identify and categorize images into the ten CIFAR-10 object classes using the **MetaClip2ForImageClassification** architecture.
|
| 22 |
+
|
| 23 |
```
|
| 24 |
Classification report:
|
| 25 |
|
|
|
|
| 41 |
weighted avg 0.9633 0.9631 0.9632 20000
|
| 42 |
```
|
| 43 |
|
| 44 |
+

|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
The model classifies images into the following categories:
|
| 49 |
+
|
| 50 |
+
* **Class 0:** airplane
|
| 51 |
+
* **Class 1:** automobile
|
| 52 |
+
* **Class 2:** bird
|
| 53 |
+
* **Class 3:** cat
|
| 54 |
+
* **Class 4:** deer
|
| 55 |
+
* **Class 5:** dog
|
| 56 |
+
* **Class 6:** frog
|
| 57 |
+
* **Class 7:** horse
|
| 58 |
+
* **Class 8:** ship
|
| 59 |
+
* **Class 9:** truck
|
| 60 |
+
|
| 61 |
+
# **Run with Transformers**
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
!pip install -q transformers torch pillow gradio
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
import gradio as gr
|
| 69 |
+
from transformers import AutoImageProcessor
|
| 70 |
+
from transformers import AutoModelForImageClassification
|
| 71 |
+
from transformers.image_utils import load_image
|
| 72 |
+
from PIL import Image
|
| 73 |
+
import torch
|
| 74 |
+
|
| 75 |
+
# Load model and processor
|
| 76 |
+
model_name = "prithivMLmods/MetaCLIP-2-Cifar10"
|
| 77 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 78 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 79 |
+
|
| 80 |
+
def cifar10_classification(image):
|
| 81 |
+
"""Predicts the CIFAR-10 class represented in an image."""
|
| 82 |
+
image = Image.fromarray(image).convert("RGB")
|
| 83 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**inputs)
|
| 87 |
+
logits = outputs.logits
|
| 88 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 89 |
+
|
| 90 |
+
labels = {
|
| 91 |
+
"0": "airplane",
|
| 92 |
+
"1": "automobile",
|
| 93 |
+
"2": "bird",
|
| 94 |
+
"3": "cat",
|
| 95 |
+
"4": "deer",
|
| 96 |
+
"5": "dog",
|
| 97 |
+
"6": "frog",
|
| 98 |
+
"7": "horse",
|
| 99 |
+
"8": "ship",
|
| 100 |
+
"9": "truck"
|
| 101 |
+
}
|
| 102 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 103 |
+
|
| 104 |
+
return predictions
|
| 105 |
+
|
| 106 |
+
# Create Gradio interface
|
| 107 |
+
iface = gr.Interface(
|
| 108 |
+
fn=cifar10_classification,
|
| 109 |
+
inputs=gr.Image(type="numpy"),
|
| 110 |
+
outputs=gr.Label(label="Prediction Scores"),
|
| 111 |
+
title="CIFAR-10 Classification",
|
| 112 |
+
description="Upload an image to classify it into one of the CIFAR-10 categories."
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Launch the app
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
iface.launch()
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
# **Intended Use:**
|
| 121 |
+
|
| 122 |
+
The **MetaCLIP-2-Cifar10** model is designed for object classification across the ten CIFAR-10 categories.
|
| 123 |
+
Potential use cases include:
|
| 124 |
+
|
| 125 |
+
* **Educational & Research Applications:** Benchmarking experiments, model comparison, and deep learning studies.
|
| 126 |
+
* **Lightweight Vision Systems:** Useful for systems requiring simple object recognition.
|
| 127 |
+
* **Dataset Exploration:** Assisting in data inspection, annotation, and visualization.
|
| 128 |
+
* **Prototype Systems:** Ideal for rapid prototyping in classification pipelines.
|