Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,28 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- prithivMLmods/Face-Age-10K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```py
|
| 8 |
Classification Report:
|
| 9 |
precision recall f1-score support
|
|
@@ -23,3 +43,93 @@ weighted avg 0.8226 0.8225 0.8223 9165
|
|
| 23 |
```
|
| 24 |
|
| 25 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- prithivMLmods/Face-Age-10K
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-512
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- age-detection
|
| 13 |
+
- SigLIP2
|
| 14 |
+
- biology
|
| 15 |
---
|
| 16 |
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
# facial-age-detection
|
| 20 |
+
|
| 21 |
+
> facial-age-detection is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **multi-class image classification**. It is trained to detect and classify human faces into **age groups** ranging from early childhood to elderly adults. The model uses the `SiglipForImageClassification` architecture.
|
| 22 |
+
|
| 23 |
+
> \[!note]
|
| 24 |
+
> SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
|
| 25 |
+
> [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786)
|
| 26 |
+
|
| 27 |
```py
|
| 28 |
Classification Report:
|
| 29 |
precision recall f1-score support
|
|
|
|
| 43 |
```
|
| 44 |
|
| 45 |

|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## Label Space: 8 Classes
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
Class 0: age 01-10
|
| 53 |
+
Class 1: age 11-20
|
| 54 |
+
Class 2: age 21-30
|
| 55 |
+
Class 3: age 31-40
|
| 56 |
+
Class 4: age 41-55
|
| 57 |
+
Class 5: age 56-65
|
| 58 |
+
Class 6: age 66-80
|
| 59 |
+
Class 7: age 80 +
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
## Install Dependencies
|
| 65 |
+
|
| 66 |
+
```bash
|
| 67 |
+
pip install -q transformers torch pillow gradio hf_xet
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
## Inference Code
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
import gradio as gr
|
| 76 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 77 |
+
from PIL import Image
|
| 78 |
+
import torch
|
| 79 |
+
|
| 80 |
+
# Load model and processor
|
| 81 |
+
model_name = "prithivMLmods/facial-age-detection" # Update with actual model name on Hugging Face
|
| 82 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 83 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 84 |
+
|
| 85 |
+
# Updated label mapping
|
| 86 |
+
id2label = {
|
| 87 |
+
"0": "age 01-10",
|
| 88 |
+
"1": "age 11-20",
|
| 89 |
+
"2": "age 21-30",
|
| 90 |
+
"3": "age 31-40",
|
| 91 |
+
"4": "age 41-55",
|
| 92 |
+
"5": "age 56-65",
|
| 93 |
+
"6": "age 66-80",
|
| 94 |
+
"7": "age 80 +"
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
def classify_image(image):
|
| 98 |
+
image = Image.fromarray(image).convert("RGB")
|
| 99 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 100 |
+
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
outputs = model(**inputs)
|
| 103 |
+
logits = outputs.logits
|
| 104 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 105 |
+
|
| 106 |
+
prediction = {
|
| 107 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
return prediction
|
| 111 |
+
|
| 112 |
+
# Gradio Interface
|
| 113 |
+
iface = gr.Interface(
|
| 114 |
+
fn=classify_image,
|
| 115 |
+
inputs=gr.Image(type="numpy"),
|
| 116 |
+
outputs=gr.Label(num_top_classes=8, label="Age Group Classification"),
|
| 117 |
+
title="Facial Age Detection",
|
| 118 |
+
description="Upload a face image to estimate the age group: 01β10, 11β20, 21β30, 31β40, 41β55, 56β65, 66β80, or 80+."
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
iface.launch()
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## Intended Use
|
| 128 |
+
|
| 129 |
+
`facial-age-detection` is designed for:
|
| 130 |
+
|
| 131 |
+
* **Demographic Analytics** β Estimate age distributions in image datasets for research and commercial analysis.
|
| 132 |
+
* **Access Control & Verification** β Enforce age-based access in digital or physical environments.
|
| 133 |
+
* **Retail & Marketing** β Understand customer demographics in retail spaces through camera-based analytics.
|
| 134 |
+
* **Surveillance & Security** β Enhance people classification systems by integrating age detection.
|
| 135 |
+
* **Human-Computer Interaction** β Adapt experiences and interfaces based on user age.
|