End of training
Browse files- README.md +69 -0
- deberta-v3-base-prompt-injection-v1_emissions.csv +2 -0
- emissions.csv +2 -0
README.md
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model: microsoft/deberta-v3-base
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
- recall
|
| 9 |
+
- precision
|
| 10 |
+
- f1
|
| 11 |
+
model-index:
|
| 12 |
+
- name: deberta-v3-base-prompt-injection-v1
|
| 13 |
+
results: []
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
+
|
| 19 |
+
# deberta-v3-base-prompt-injection-v1
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
| 22 |
+
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.0010
|
| 24 |
+
- Accuracy: 0.9999
|
| 25 |
+
- Recall: 0.9997
|
| 26 |
+
- Precision: 0.9998
|
| 27 |
+
- F1: 0.9998
|
| 28 |
+
|
| 29 |
+
## Model description
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Intended uses & limitations
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training and evaluation data
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training procedure
|
| 42 |
+
|
| 43 |
+
### Training hyperparameters
|
| 44 |
+
|
| 45 |
+
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 2e-05
|
| 47 |
+
- train_batch_size: 8
|
| 48 |
+
- eval_batch_size: 8
|
| 49 |
+
- seed: 42
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- lr_scheduler_warmup_steps: 500
|
| 53 |
+
- num_epochs: 3
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|
| 58 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 59 |
+
| 0.0038 | 1.0 | 36130 | 0.0026 | 0.9998 | 0.9994 | 0.9992 | 0.9993 |
|
| 60 |
+
| 0.0001 | 2.0 | 72260 | 0.0021 | 0.9998 | 0.9997 | 0.9989 | 0.9993 |
|
| 61 |
+
| 0.0 | 3.0 | 108390 | 0.0015 | 0.9999 | 0.9997 | 0.9995 | 0.9996 |
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
### Framework versions
|
| 65 |
+
|
| 66 |
+
- Transformers 4.35.2
|
| 67 |
+
- Pytorch 2.1.1+cu121
|
| 68 |
+
- Datasets 2.15.0
|
| 69 |
+
- Tokenizers 0.15.0
|
deberta-v3-base-prompt-injection-v1_emissions.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2023-11-25T17:36:56,deberta-v3-base-prompt-injection-v1_emissions,a3c7db83-094a-4990-b287-8b2287213c94,33721.252032995224,0.9992452046508414,2.9632506043165606e-05,42.5,62.06199585789132,5.787036895751953,0.39809487054447334,2.25471590377128,0.05418500960607557,2.706995783921832,United States,USA,virginia,,,Linux-5.10.198-187.748.amzn2.x86_64-x86_64-with-glibc2.26,3.10.13,2.3.1,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.4903,39.0469,15.432098388671875,machine,N,1.0
|
emissions.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2023-11-25T17:36:39,codecarbon,eb0935eb-df8e-40ce-bfb9-217b4447d621,33705.04844260216,0.9990662916168788,2.9641443575381107e-05,42.5,182.2944905268953,5.787036895751953,0.3979035085568824,2.254447534389918,0.05416005831018278,2.706511101256985,United States,USA,virginia,,,Linux-5.10.198-187.748.amzn2.x86_64-x86_64-with-glibc2.26,3.10.13,2.3.1,4,AMD EPYC 7R32,1,1 x NVIDIA A10G,-77.4903,39.0469,15.432098388671875,machine,N,1.0
|