File size: 7,158 Bytes
44681b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11603c2
44681b8
 
 
 
0495dcd
 
 
 
 
44681b8
 
 
 
 
 
a4b5d80
 
44681b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfca039
852ef75
 
 
cfca039
852ef75
a4b5d80
44681b8
11603c2
44681b8
 
 
 
 
0495dcd
 
 
 
 
bf9c44b
0495dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44681b8
 
 
 
 
 
 
 
 
 
 
 
 
 
0495dcd
44681b8
 
0495dcd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: pytorch
license: other
tags:
- llm
- generative_ai
- android
pipeline_tag: text-generation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/llama_v3_2_3b_instruct/web-assets/model_demo.png)

# Llama-v3.2-3B-Instruct: Optimized for Mobile Deployment
## State-of-the-art large language model useful on a variety of language understanding and generation tasks


Llama 3 is a family of LLMs. The model is quantized to w4a16 (4-bit weights and 16-bit activations) and part of the model is quantized to w8a16 (8-bit weights and 16-bit activations) making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Llama-PromptProcessor-Quantized's latency and average time per addition token is Llama-TokenGenerator-Quantized's latency.

This model is an implementation of Llama-v3.2-3B-Instruct found [here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/).


This repository provides scripts to run Llama-v3.2-3B-Instruct on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/llama_v3_2_3b_instruct).

**WARNING**: The model assets are not readily available for download due to licensing restrictions.

### Model Details

- **Model Type:** Model_use_case.text_generation
- **Model Stats:**
  - Input sequence length for Prompt Processor: 128
  - Maximum context length: 4096
  - Precision: w4 + w8 (few layers) with fp16 activations and w4a16 + w8a16 (few layers) are supported
  - Num of key-value heads: 8
  - Model-1 (Prompt Processor): Llama-PromptProcessor-Quantized
  - Prompt processor input: 128 tokens + position embeddings + attention mask + KV cache inputs
  - Prompt processor output: 128 output tokens + KV cache outputs
  - Model-2 (Token Generator): Llama-TokenGenerator-Quantized
  - Token generator input: 1 input token + position embeddings + attention mask + KV cache inputs
  - Token generator output: 1 output token + KV cache outputs
  - Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations.
  - Minimum QNN SDK version required: 2.27.7
  - Supported languages: English.
  - TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens).
  - Response Rate: Rate of response generation after the first response token.

| Model | Precision | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
|---|---|---|---|---|---|
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | GENIE | 29.48402 | 0.058016 - 1.856531 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | GENIE | 23.4718 | 0.088195 - 2.82225 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | GENIE | 18.4176 | 0.12593600000000002 - 4.029952000000001 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | SA8255P ADP | Qualcomm® SA8255P | GENIE | 14.02377 | 0.187414 - 5.997256999999999 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | GENIE | 18.00883 | 0.131546 - 4.209475 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | GENIE | 13.83 | 0.088195 - 2.82225 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | SA8295P ADP | Qualcomm® SA8295P | GENIE | 3.523 | 0.37311700000000003 - 2.9849360000000003 | -- | -- |

## Deploying Llama 3.2 3B on-device

Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps/tree/main/tutorials/llm_on_genie) tutorial.



## Installation


Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[llama-v3-2-3b-instruct]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.llama_v3_2_3b_instruct.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.llama_v3_2_3b_instruct.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.llama_v3_2_3b_instruct.export
```






## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Llama-v3.2-3B-Instruct's performance across various devices [here](https://aihub.qualcomm.com/models/llama_v3_2_3b_instruct).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Llama-v3.2-3B-Instruct can be found
  [here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt).
* The license for the compiled assets for on-device deployment can be found [here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt)



## References
* [LLaMA: Open and Efficient Foundation Language Models](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/)
* [Source Model Implementation](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).