File size: 7,158 Bytes
44681b8 11603c2 44681b8 0495dcd 44681b8 a4b5d80 44681b8 cfca039 852ef75 cfca039 852ef75 a4b5d80 44681b8 11603c2 44681b8 0495dcd bf9c44b 0495dcd 44681b8 0495dcd 44681b8 0495dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
library_name: pytorch
license: other
tags:
- llm
- generative_ai
- android
pipeline_tag: text-generation
---

# Llama-v3.2-3B-Instruct: Optimized for Mobile Deployment
## State-of-the-art large language model useful on a variety of language understanding and generation tasks
Llama 3 is a family of LLMs. The model is quantized to w4a16 (4-bit weights and 16-bit activations) and part of the model is quantized to w8a16 (8-bit weights and 16-bit activations) making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Llama-PromptProcessor-Quantized's latency and average time per addition token is Llama-TokenGenerator-Quantized's latency.
This model is an implementation of Llama-v3.2-3B-Instruct found [here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/).
This repository provides scripts to run Llama-v3.2-3B-Instruct on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/llama_v3_2_3b_instruct).
**WARNING**: The model assets are not readily available for download due to licensing restrictions.
### Model Details
- **Model Type:** Model_use_case.text_generation
- **Model Stats:**
- Input sequence length for Prompt Processor: 128
- Maximum context length: 4096
- Precision: w4 + w8 (few layers) with fp16 activations and w4a16 + w8a16 (few layers) are supported
- Num of key-value heads: 8
- Model-1 (Prompt Processor): Llama-PromptProcessor-Quantized
- Prompt processor input: 128 tokens + position embeddings + attention mask + KV cache inputs
- Prompt processor output: 128 output tokens + KV cache outputs
- Model-2 (Token Generator): Llama-TokenGenerator-Quantized
- Token generator input: 1 input token + position embeddings + attention mask + KV cache inputs
- Token generator output: 1 output token + KV cache outputs
- Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations.
- Minimum QNN SDK version required: 2.27.7
- Supported languages: English.
- TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens).
- Response Rate: Rate of response generation after the first response token.
| Model | Precision | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
|---|---|---|---|---|---|
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | GENIE | 29.48402 | 0.058016 - 1.856531 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | GENIE | 23.4718 | 0.088195 - 2.82225 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | GENIE | 18.4176 | 0.12593600000000002 - 4.029952000000001 | -- | -- |
| Llama-v3.2-3B-Instruct | w4a16 | SA8255P ADP | Qualcomm® SA8255P | GENIE | 14.02377 | 0.187414 - 5.997256999999999 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | GENIE | 18.00883 | 0.131546 - 4.209475 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | GENIE | 13.83 | 0.088195 - 2.82225 | -- | -- |
| Llama-v3.2-3B-Instruct | w4 | SA8295P ADP | Qualcomm® SA8295P | GENIE | 3.523 | 0.37311700000000003 - 2.9849360000000003 | -- | -- |
## Deploying Llama 3.2 3B on-device
Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps/tree/main/tutorials/llm_on_genie) tutorial.
## Installation
Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[llama-v3-2-3b-instruct]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.llama_v3_2_3b_instruct.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.llama_v3_2_3b_instruct.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.llama_v3_2_3b_instruct.export
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Llama-v3.2-3B-Instruct's performance across various devices [here](https://aihub.qualcomm.com/models/llama_v3_2_3b_instruct).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Llama-v3.2-3B-Instruct can be found
[here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt).
* The license for the compiled assets for on-device deployment can be found [here](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt)
## References
* [LLaMA: Open and Efficient Foundation Language Models](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/)
* [Source Model Implementation](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|