File size: 10,292 Bytes
3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf 2011e8a 3e7a3bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
"""
RND1 sampling module for masked diffusion generation.
This module implements entropy-based token selection for iterative denoising
in diffusion language models. Supports both greedy and stochastic sampling
with optional prefix/suffix constraints and infilling.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union
def apply_top_k_filtering(logits: torch.Tensor, k: int) -> torch.Tensor:
"""
Apply top-k filtering to logits: with non-top-k values set to -inf
"""
top_k_values, top_k_indices = torch.topk(logits, min(k, logits.size(-1)), dim=-1)
filtered_logits = torch.full_like(logits, float('-inf'))
filtered_logits.scatter_(-1, top_k_indices, top_k_values)
return filtered_logits
def apply_top_p_filtering(logits: torch.Tensor, p: float) -> torch.Tensor:
"""
Apply top-p (nucleus) filtering to logits: with tokens beyond threshold set to -inf
"""
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > p
sorted_indices_to_remove[..., 0] = False # Keep at least one token
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
return logits.masked_fill(indices_to_remove, float('-inf'))
@torch.no_grad()
def diffusion_sample(
model: nn.Module,
seq_len: int = 256,
num_steps: int = 256,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: float = 1.0,
greedy: bool = True,
mask_token_id: int = 151669,
prefix_ids: Optional[torch.LongTensor] = None,
suffix_ids: Optional[torch.LongTensor] = None,
infill_length: Optional[int] = None,
eos_token_id: int = 151645,
pad_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
generator: Optional[torch.Generator] = None,
visualizer: Optional['TerminalVisualizer'] = None,
) -> torch.LongTensor:
"""
Perform masked diffusion sampling with entropy-based token selection.
Args:
model: The RND1 language model
seq_len: Target sequence length
num_steps: Number of denoising steps
top_k: Optional top-k filtering for sampling (None = no filtering)
top_p: Optional nucleus (top-p) filtering for sampling (None = no filtering)
When both top_k and top_p are set, top_k is applied first, then top_p
temperature: Temperature for sampling (higher = more random, lower = more deterministic)
Values close to 0 are clamped to 1e-8 to avoid division by zero
greedy: Whether to use greedy sampling (True) or stochastic (False)
mask_token_id: Token ID for masked positions (default: 151669)
prefix_ids: Optional prefix token IDs to preserve
suffix_ids: Optional suffix token IDs to preserve
infill_length: Length of infill region between prefix/suffix
eos_token_id: End of sequence token ID (default: 151645)
pad_token_id: Padding token ID (default: None, uses 0 if needed)
bos_token_id: Beginning of sequence token ID (default: None)
device: Device for computation (None = infer from model)
generator: Optional torch generator for reproducible sampling
visualizer: Optional TerminalVisualizer for live visualization
Returns:
Generated token IDs as LongTensor
"""
model.eval()
if device is None:
device = next(model.parameters()).device
else:
device = torch.device(device)
dtype = next(model.parameters()).dtype
if pad_token_id is None:
pad_token_id = 0
# Build initial masked sequence
# When prefix_ids is provided, we create a sequence of length seq_len where:
# - The prefix occupies the first pre_len positions
# - The remaining (seq_len - pre_len) positions are filled with mask tokens to be generated
if prefix_ids is not None or suffix_ids is not None:
if prefix_ids is not None:
prefix_ids = prefix_ids.to(device) if isinstance(prefix_ids, torch.Tensor) else torch.tensor(prefix_ids, device=device)
pre_len = prefix_ids.shape[-1] if prefix_ids.dim() > 0 else 0
else:
pre_len = 0
if suffix_ids is not None:
suffix_ids = suffix_ids.to(device) if isinstance(suffix_ids, torch.Tensor) else torch.tensor(suffix_ids, device=device)
suf_len = suffix_ids.shape[-1] if suffix_ids.dim() > 0 else 0
else:
suf_len = 0
reserved = (1 if bos_token_id is not None else 0) + (1 if eos_token_id is not None else 0)
used = pre_len + suf_len + reserved
if used > seq_len:
raise ValueError(
f"Combined length of prefix ({pre_len}), suffix ({suf_len}), "
f"and special tokens ({reserved}) = {used} exceeds seq_len ({seq_len}). "
f"Please increase seq_len or reduce input lengths."
)
elif used == seq_len:
raise ValueError(
f"No space for generation: prefix ({pre_len}) + suffix ({suf_len}) "
f"+ special tokens ({reserved}) = seq_len ({seq_len}). "
f"Need at least 1 position for generation."
)
infill_length = min(infill_length or (seq_len - used), seq_len - used)
x = torch.full((1, seq_len), pad_token_id, dtype=torch.long, device=device)
pos = 0
if bos_token_id is not None:
x[0, pos] = bos_token_id; pos += 1
if pre_len > 0:
x[0, pos:pos+pre_len] = prefix_ids.flatten()[:pre_len]; pos += pre_len
fill_start, fill_end = pos, pos + infill_length
x[0, fill_start:fill_end] = mask_token_id
pos = fill_end
if suf_len > 0:
x[0, pos:pos+suf_len] = suffix_ids.flatten()[:suf_len]; pos += suf_len
if eos_token_id is not None and pos < seq_len:
if isinstance(eos_token_id, (list, tuple)):
x[0, pos] = eos_token_id[0]
else:
x[0, pos] = eos_token_id
init_maskable = torch.zeros_like(x, dtype=torch.bool)
init_maskable[0, fill_start:fill_end] = True
else:
x = torch.full((1, seq_len), mask_token_id, dtype=torch.long, device=device)
if bos_token_id is not None:
x[0, 0] = bos_token_id
if eos_token_id is not None:
x[0, -1] = eos_token_id
init_maskable = x.eq(mask_token_id)
if bos_token_id is not None:
init_maskable[:, 0] = False
if eos_token_id is not None:
init_maskable &= x.ne(eos_token_id)
init_maskable &= x.ne(pad_token_id)
maskable = init_maskable.clone()
xt = x.clone()
if visualizer:
visualizer.start_visualization(xt, maskable, num_steps)
def forward_scores(tokens):
"""Compute predictions and entropy scores for next tokens."""
# Try with input_ids parameter first (standard HF models)
try:
model_output = model(input_ids=tokens)
except TypeError:
# Fall back to positional argument
model_output = model(tokens)
# Apply temperature scaling (with safety for near-zero temperature)
safe_temperature = max(temperature, 1e-8) # Prevent division by zero
logits = model_output.logits / safe_temperature
# Apply filtering strategies
# Note: When both top_k and top_p are provided, they are applied sequentially:
# First top_k filters to k tokens, then top_p filters from those k tokens
if top_k is not None and top_k > 0:
logits = apply_top_k_filtering(logits, top_k)
if top_p is not None and 0 < top_p < 1.0:
logits = apply_top_p_filtering(logits, top_p)
# Convert to log probabilities
logp = torch.log_softmax(logits, dim=-1)
# Greedy or stochastic sampling
if greedy:
pred_next = logp.argmax(-1)
else:
pred_next = torch.distributions.Categorical(logits=logp).sample(generator=generator)
conf_next = torch.gather(logp, -1, pred_next.unsqueeze(-1)).squeeze(-1)
p = logp.exp()
ent_next = -(p * logp).sum(-1)
# Shift predictions: pos i predicts token i+1
pred_i = tokens.clone()
conf_i = torch.full_like(conf_next, torch.finfo(conf_next.dtype).min)
ent_i = torch.zeros_like(ent_next)
pred_i[:, 1:] = pred_next[:, :-1]
conf_i[:, 1:] = conf_next[:, :-1]
ent_i[:, 1:] = ent_next[:, :-1]
return pred_i, conf_i, ent_i
pred_i, conf_i, ent_i = forward_scores(xt)
total_masked = init_maskable.sum(1, keepdim=True)
finf = torch.finfo(conf_i.dtype)
for step in range(num_steps - 1, 0, -1):
rate = step / num_steps
cutoff_len = (total_masked * rate).long().clamp(min=0)
# Choose HIGH-entropy tokens to keep masked
sel_scores = ent_i.masked_fill(~maskable, -finf.max)
B, L = sel_scores.shape
k_max = cutoff_len.max().item()
if k_max > 0:
sss, idx = torch.topk(sel_scores, k_max, dim=-1, largest=True)
keep_mask = torch.zeros_like(sel_scores, dtype=torch.bool)
for b in range(B):
k_b = int(cutoff_len[b].item())
if k_b > 0:
keep_mask[b, idx[b, :k_b]] = True
else:
keep_mask = torch.zeros_like(sel_scores, dtype=torch.bool)
to_unmask = maskable & ~keep_mask
if to_unmask.any():
xt[to_unmask] = pred_i[to_unmask]
maskable[to_unmask] = False
if visualizer:
visualizer.update_step(xt, maskable, num_steps - step, ent_i, conf_i)
if maskable.any():
pred_i, conf_i, ent_i = forward_scores(xt)
if maskable.any():
xt[maskable] = pred_i[maskable]
if visualizer:
visualizer.stop_visualization()
return xt |