Upload folder using huggingface_hub
Browse files- README.md +295 -0
- adapter_config.json +26 -0
- adapter_model.safetensors +3 -0
- gitattributes +35 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +81 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: codellama/CodeLlama-7b-Instruct-hf
|
| 4 |
+
tags:
|
| 5 |
+
- terraform
|
| 6 |
+
- terraform-configuration
|
| 7 |
+
- infrastructure-as-code
|
| 8 |
+
- iac
|
| 9 |
+
- hashicorp
|
| 10 |
+
- codellama
|
| 11 |
+
- lora
|
| 12 |
+
- qlora
|
| 13 |
+
- peft
|
| 14 |
+
- code-generation
|
| 15 |
+
- devops
|
| 16 |
+
- cloud
|
| 17 |
+
- aws
|
| 18 |
+
- azure
|
| 19 |
+
- gcp
|
| 20 |
+
- multi-cloud
|
| 21 |
+
- automation
|
| 22 |
+
- configuration-management
|
| 23 |
+
- cloud-infrastructure
|
| 24 |
+
license: apache-2.0
|
| 25 |
+
language:
|
| 26 |
+
- en
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
# terraform-cloud-codellama-7b
|
| 31 |
+
|
| 32 |
+
**RECOMMENDED MODEL** - An advanced LoRA fine-tuned model for comprehensive Terraform infrastructure-as-code generation, supporting multiple cloud providers (AWS, Azure, GCP). This model generates Terraform configurations, HCL code, and multi-cloud infrastructure automation scripts.
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
This is the **enhanced model** - an advanced version of terraform-codellama-7b that has been additionally trained on AWS, Azure, and GCP public documentation. It provides superior performance for multi-cloud Terraform development with deep understanding of cloud provider-specific resources and best practices.
|
| 37 |
+
|
| 38 |
+
### Key Features
|
| 39 |
+
|
| 40 |
+
- **Multi-Cloud Support**: Trained on AWS, Azure, and GCP documentation
|
| 41 |
+
- **Enhanced Performance**: Superior to the base terraform-codellama-7b model
|
| 42 |
+
- **Production Ready**: Optimized for real-world multi-cloud infrastructure development
|
| 43 |
+
- **Comprehensive Coverage**: Handles complex cloud provider-specific configurations
|
| 44 |
+
- **Efficient Training**: Uses QLoRA (4-bit quantization + LoRA) for memory efficiency
|
| 45 |
+
|
| 46 |
+
## Model Details
|
| 47 |
+
|
| 48 |
+
- **Developed by**: Rafi Al Attrach, Patrick Schmitt, Nan Wu, Helena Schneider, Stefania Saju (TUM + IBM Research Project)
|
| 49 |
+
- **Model type**: LoRA fine-tuned CodeLlama (Enhanced)
|
| 50 |
+
- **Language(s)**: English
|
| 51 |
+
- **License**: Apache 2.0
|
| 52 |
+
- **Finetuned from**: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
|
| 53 |
+
- **Training method**: QLoRA (4-bit quantization + LoRA)
|
| 54 |
+
- **Base Model**: Built on [rafiaa/terraform-codellama-7b](https://huggingface.co/rafiaa/terraform-codellama-7b)
|
| 55 |
+
|
| 56 |
+
### Technical Specifications
|
| 57 |
+
|
| 58 |
+
- **Base Model**: CodeLlama-7b-Instruct-hf
|
| 59 |
+
- **LoRA Rank**: 64
|
| 60 |
+
- **LoRA Alpha**: 16
|
| 61 |
+
- **Target Modules**: q_proj, v_proj
|
| 62 |
+
- **Training Epochs**: 3 (Stage 1) + Additional training (Stage 2)
|
| 63 |
+
- **Max Sequence Length**: 512
|
| 64 |
+
- **Quantization**: 4-bit (fp4)
|
| 65 |
+
|
| 66 |
+
## Uses
|
| 67 |
+
|
| 68 |
+
### Direct Use
|
| 69 |
+
|
| 70 |
+
This model is designed for:
|
| 71 |
+
- **Multi-cloud Terraform development**
|
| 72 |
+
- **AWS resource configuration** (EC2, S3, RDS, Lambda, etc.)
|
| 73 |
+
- **Azure resource management** (Virtual Machines, Storage Accounts, App Services, etc.)
|
| 74 |
+
- **GCP resource deployment** (Compute Engine, Cloud Storage, Cloud SQL, etc.)
|
| 75 |
+
- **Complex infrastructure orchestration**
|
| 76 |
+
- **Cloud provider-specific best practices**
|
| 77 |
+
|
| 78 |
+
### Example Use Cases
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
# Generate AWS multi-service infrastructure
|
| 82 |
+
prompt = "Create a Terraform configuration for an AWS application with VPC, EC2, RDS, and S3"
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
# Generate Azure App Service with database
|
| 87 |
+
prompt = "Create a Terraform configuration for an Azure App Service with PostgreSQL database"
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
# Generate GCP Kubernetes cluster
|
| 92 |
+
prompt = "Create a Terraform configuration for a GCP GKE cluster with node pools"
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
# Generate multi-cloud setup
|
| 97 |
+
prompt = "Create a Terraform configuration for a hybrid cloud setup using AWS and Azure"
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## How to Get Started
|
| 101 |
+
|
| 102 |
+
### Installation
|
| 103 |
+
|
| 104 |
+
```bash
|
| 105 |
+
pip install transformers torch peft accelerate bitsandbytes
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Loading the Model
|
| 109 |
+
|
| 110 |
+
#### GPU Usage (Recommended)
|
| 111 |
+
```python
|
| 112 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 113 |
+
from peft import PeftModel
|
| 114 |
+
import torch
|
| 115 |
+
|
| 116 |
+
# Load base model with 4-bit quantization (GPU)
|
| 117 |
+
base_model = "codellama/CodeLlama-7b-Instruct-hf"
|
| 118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 119 |
+
base_model,
|
| 120 |
+
load_in_4bit=True,
|
| 121 |
+
torch_dtype=torch.float16,
|
| 122 |
+
device_map="auto"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Load LoRA adapter
|
| 126 |
+
model = PeftModel.from_pretrained(model, "rafiaa/terraform-cloud-codellama-7b")
|
| 127 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 128 |
+
|
| 129 |
+
# Set pad token
|
| 130 |
+
if tokenizer.pad_token is None:
|
| 131 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
#### CPU Usage (Alternative)
|
| 135 |
+
```python
|
| 136 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 137 |
+
from peft import PeftModel
|
| 138 |
+
import torch
|
| 139 |
+
|
| 140 |
+
# Load base model (CPU compatible)
|
| 141 |
+
base_model = "codellama/CodeLlama-7b-Instruct-hf"
|
| 142 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 143 |
+
base_model,
|
| 144 |
+
torch_dtype=torch.float32,
|
| 145 |
+
device_map="cpu"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Load LoRA adapter
|
| 149 |
+
model = PeftModel.from_pretrained(model, "rafiaa/terraform-cloud-codellama-7b")
|
| 150 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 151 |
+
|
| 152 |
+
# Set pad token
|
| 153 |
+
if tokenizer.pad_token is None:
|
| 154 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
### Usage Example
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
def generate_terraform(prompt, max_length=512):
|
| 161 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 162 |
+
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
outputs = model.generate(
|
| 165 |
+
**inputs,
|
| 166 |
+
max_length=max_length,
|
| 167 |
+
temperature=0.7,
|
| 168 |
+
do_sample=True,
|
| 169 |
+
pad_token_id=tokenizer.eos_token_id
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 173 |
+
|
| 174 |
+
# Example: Multi-cloud infrastructure
|
| 175 |
+
prompt = """
|
| 176 |
+
Create a Terraform configuration for a multi-cloud setup:
|
| 177 |
+
- AWS: VPC with public/private subnets, EC2 instances
|
| 178 |
+
- Azure: Storage account and App Service
|
| 179 |
+
- GCP: Cloud SQL database
|
| 180 |
+
"""
|
| 181 |
+
|
| 182 |
+
result = generate_terraform(prompt)
|
| 183 |
+
print(result)
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
### Advanced Usage
|
| 187 |
+
|
| 188 |
+
```python
|
| 189 |
+
# Cloud-specific prompts
|
| 190 |
+
aws_prompt = "Create a Terraform configuration for AWS EKS cluster with managed node groups"
|
| 191 |
+
azure_prompt = "Create a Terraform configuration for Azure Kubernetes Service (AKS)"
|
| 192 |
+
gcp_prompt = "Create a Terraform configuration for GCP Cloud Run service"
|
| 193 |
+
|
| 194 |
+
# Generate configurations
|
| 195 |
+
aws_config = generate_terraform(aws_prompt)
|
| 196 |
+
azure_config = generate_terraform(azure_prompt)
|
| 197 |
+
gcp_config = generate_terraform(gcp_prompt)
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
## Training Details
|
| 201 |
+
|
| 202 |
+
### Training Data
|
| 203 |
+
|
| 204 |
+
**Stage 1**: Public Terraform Registry documentation
|
| 205 |
+
**Stage 2**: Additional training on:
|
| 206 |
+
- **AWS Documentation**: EC2, S3, RDS, Lambda, VPC, IAM, etc.
|
| 207 |
+
- **Azure Documentation**: Virtual Machines, Storage Accounts, App Services, Key Vault, etc.
|
| 208 |
+
- **GCP Documentation**: Compute Engine, Cloud Storage, Cloud SQL, GKE, etc.
|
| 209 |
+
|
| 210 |
+
### Training Procedure
|
| 211 |
+
|
| 212 |
+
- **Method**: QLoRA (4-bit quantization + LoRA)
|
| 213 |
+
- **Two-Stage Training**:
|
| 214 |
+
1. Terraform Registry documentation
|
| 215 |
+
2. Cloud provider documentation (AWS, Azure, GCP)
|
| 216 |
+
- **LoRA Rank**: 64
|
| 217 |
+
- **LoRA Alpha**: 16
|
| 218 |
+
- **Target Modules**: q_proj, v_proj
|
| 219 |
+
- **Training Epochs**: 3 (Stage 1) + Additional training (Stage 2)
|
| 220 |
+
- **Max Sequence Length**: 512
|
| 221 |
+
- **Quantization**: 4-bit (fp4)
|
| 222 |
+
|
| 223 |
+
### Training Hyperparameters
|
| 224 |
+
|
| 225 |
+
- **Training regime**: 4-bit mixed precision
|
| 226 |
+
- **LoRA Dropout**: 0.0
|
| 227 |
+
- **Learning Rate**: Optimized for QLoRA training
|
| 228 |
+
- **Batch Size**: Optimized for memory efficiency
|
| 229 |
+
|
| 230 |
+
## Performance Comparison
|
| 231 |
+
|
| 232 |
+
| Model | Terraform Knowledge | AWS Support | Azure Support | GCP Support | Multi-Cloud Capability |
|
| 233 |
+
|-------|-------------------|-------------|---------------|-------------|-------------------|
|
| 234 |
+
| terraform-codellama-7b | Excellent | Limited | Limited | Limited | Basic |
|
| 235 |
+
| **terraform-cloud-codellama-7b** | Excellent | Excellent | Excellent | Excellent | Advanced |
|
| 236 |
+
|
| 237 |
+
## Limitations and Bias
|
| 238 |
+
|
| 239 |
+
### Known Limitations
|
| 240 |
+
|
| 241 |
+
- **Context Length**: Limited to 512 tokens due to training configuration
|
| 242 |
+
- **Domain Specificity**: Optimized for Terraform and cloud infrastructure
|
| 243 |
+
- **Base Model Limitations**: Inherits limitations from CodeLlama-7b-Instruct-hf
|
| 244 |
+
- **Cloud Provider Updates**: May not include the latest cloud provider features
|
| 245 |
+
|
| 246 |
+
### Recommendations
|
| 247 |
+
|
| 248 |
+
- Use for Terraform and cloud infrastructure tasks
|
| 249 |
+
- Validate generated configurations before deployment
|
| 250 |
+
- Consider the 512-token context limit for complex configurations
|
| 251 |
+
- For production use, always review and test generated code
|
| 252 |
+
- Stay updated with cloud provider documentation for latest features
|
| 253 |
+
|
| 254 |
+
## Environmental Impact
|
| 255 |
+
|
| 256 |
+
- **Training Method**: QLoRA reduces computational requirements significantly
|
| 257 |
+
- **Hardware**: Trained using efficient 4-bit quantization
|
| 258 |
+
- **Carbon Footprint**: Reduced compared to full fine-tuning due to QLoRA efficiency
|
| 259 |
+
- **Two-Stage Approach**: Efficient incremental training
|
| 260 |
+
|
| 261 |
+
## Citation
|
| 262 |
+
|
| 263 |
+
If you use this model in your research, please cite:
|
| 264 |
+
|
| 265 |
+
```bibtex
|
| 266 |
+
@misc{terraform-cloud-codellama-7b,
|
| 267 |
+
title={terraform-cloud-codellama-7b: A Multi-Cloud LoRA Fine-tuned Model for Terraform Code Generation},
|
| 268 |
+
author={Rafi Al Attrach and Patrick Schmitt and Nan Wu and Helena Schneider and Stefania Saju},
|
| 269 |
+
year={2024},
|
| 270 |
+
url={https://huggingface.co/rafiaa/terraform-cloud-codellama-7b}
|
| 271 |
+
}
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
## Related Models
|
| 275 |
+
|
| 276 |
+
- **Base Model**: [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
|
| 277 |
+
- **Stage 1 Model**: [rafiaa/terraform-codellama-7b](https://huggingface.co/rafiaa/terraform-codellama-7b)
|
| 278 |
+
- **This Model**: [rafiaa/terraform-cloud-codellama-7b](https://huggingface.co/rafiaa/terraform-cloud-codellama-7b) (Recommended)
|
| 279 |
+
|
| 280 |
+
## Model Card Contact
|
| 281 |
+
|
| 282 |
+
- **Author**: rafiaa
|
| 283 |
+
- **Model Repository**: [HuggingFace Model](https://huggingface.co/rafiaa/terraform-cloud-codellama-7b)
|
| 284 |
+
- **Issues**: Please report issues through the HuggingFace model page
|
| 285 |
+
|
| 286 |
+
## Acknowledgments
|
| 287 |
+
|
| 288 |
+
- **Research Project**: Early 2024 research project at TUM + IBM
|
| 289 |
+
- **Training Data**: Public documentation from Terraform Registry, AWS, Azure, and GCP
|
| 290 |
+
- **Base Model**: Meta's CodeLlama-7b-Instruct-hf
|
| 291 |
+
- **Training Method**: QLoRA for efficient fine-tuning
|
| 292 |
+
|
| 293 |
+
---
|
| 294 |
+
|
| 295 |
+
*This model represents the culmination of a two-stage fine-tuning approach, combining Terraform expertise with comprehensive cloud provider knowledge for superior infrastructure-as-code generation.*
|
adapter_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "codellama/CodeLlama-7b-Instruct-hf",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layers_pattern": null,
|
| 10 |
+
"layers_to_transform": null,
|
| 11 |
+
"loftq_config": {},
|
| 12 |
+
"lora_alpha": 16,
|
| 13 |
+
"lora_dropout": 0.0,
|
| 14 |
+
"megatron_config": null,
|
| 15 |
+
"megatron_core": "megatron.core",
|
| 16 |
+
"modules_to_save": null,
|
| 17 |
+
"peft_type": "LORA",
|
| 18 |
+
"r": 64,
|
| 19 |
+
"rank_pattern": {},
|
| 20 |
+
"revision": null,
|
| 21 |
+
"target_modules": [
|
| 22 |
+
"v_proj",
|
| 23 |
+
"q_proj"
|
| 24 |
+
],
|
| 25 |
+
"task_type": "CAUSAL_LM"
|
| 26 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ceed0c4c770992a0c222605208186092c792755c980836cab1628bf9988bee0
|
| 3 |
+
size 134235048
|
gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"β<PRE>",
|
| 4 |
+
"β<MID>",
|
| 5 |
+
"β<SUF>",
|
| 6 |
+
"β<EOT>"
|
| 7 |
+
],
|
| 8 |
+
"bos_token": {
|
| 9 |
+
"content": "<s>",
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"normalized": true,
|
| 12 |
+
"rstrip": false,
|
| 13 |
+
"single_word": false
|
| 14 |
+
},
|
| 15 |
+
"eos_token": {
|
| 16 |
+
"content": "</s>",
|
| 17 |
+
"lstrip": false,
|
| 18 |
+
"normalized": true,
|
| 19 |
+
"rstrip": false,
|
| 20 |
+
"single_word": false
|
| 21 |
+
},
|
| 22 |
+
"pad_token": "</s>",
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": true,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<unk>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": true,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"32007": {
|
| 28 |
+
"content": "β<PRE>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"32008": {
|
| 36 |
+
"content": "β<SUF>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"32009": {
|
| 44 |
+
"content": "β<MID>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"32010": {
|
| 52 |
+
"content": "β<EOT>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"additional_special_tokens": [
|
| 61 |
+
"β<PRE>",
|
| 62 |
+
"β<MID>",
|
| 63 |
+
"β<SUF>",
|
| 64 |
+
"β<EOT>"
|
| 65 |
+
],
|
| 66 |
+
"bos_token": "<s>",
|
| 67 |
+
"clean_up_tokenization_spaces": false,
|
| 68 |
+
"eos_token": "</s>",
|
| 69 |
+
"eot_token": "β<EOT>",
|
| 70 |
+
"fill_token": "<FILL_ME>",
|
| 71 |
+
"legacy": null,
|
| 72 |
+
"middle_token": "β<MID>",
|
| 73 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 74 |
+
"pad_token": "</s>",
|
| 75 |
+
"prefix_token": "β<PRE>",
|
| 76 |
+
"sp_model_kwargs": {},
|
| 77 |
+
"suffix_token": "β<SUF>",
|
| 78 |
+
"tokenizer_class": "CodeLlamaTokenizer",
|
| 79 |
+
"unk_token": "<unk>",
|
| 80 |
+
"use_default_system_prompt": false
|
| 81 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d6d743a5ea448e88622f69d8ee718438fcd05eddbd451faf76bb807b13a295a
|
| 3 |
+
size 4600
|