sd3.5_medium_finetuned_v7

This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-medium.

The main validation prompt used during training was:

A close-up photo of a tomato plant leaf with brown concentric ring lesions caused by early blight disease

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolutions: 256x256,512x256
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A close-up photo of a tomato plant leaf with brown concentric ring lesions caused by early blight disease
Negative Prompt
blurry, cropped, ugly
Prompt
A close-up photo of a tomato plant leaf with brown concentric ring lesions caused by early blight disease
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 1
  • Training steps: 2500
  • Learning rate: 1e-05
    • Learning rate schedule: cosine
    • Warmup steps: 500
  • Max grad value: 1.0
  • Effective batch size: 3
    • Micro-batch size: 3
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow-matching (extra parameters=['shift=3'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Base model precision: no_change
  • Caption dropout probability: 5.0%

LyCORIS Config:

{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 32,
    "linear_alpha": 16,
    "factor": 8,
    "apply_preset": {
        "target_module": [
            "Attention"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 8
            }
        }
    },
    "dropout": 0.1,
    "rank_dropout": 0.1,
    "module_dropout": 0.0
}

Datasets

Tomato_Early_Blight

  • Repeats: 3
  • Total number of images: 1000
  • Total number of aspect buckets: 1
  • Resolution: 0.065536 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_repo_id = 'rajarshiroydev/sd3.5_medium_finetuned_v7'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "A close-up photo of a tomato plant leaf with brown concentric ring lesions caused by early blight disease"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=256,
    height=256,
    guidance_scale=3.0,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
1
Inference Examples
Examples
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rajarshiroydev/sd3.5_medium_finetuned_v7

Adapter
(87)
this model