--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: distilbert-base-uncased metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8437 - Accuracy: {'accuracy': 0.881} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.3423 | {'accuracy': 0.886} | | 0.4235 | 2.0 | 500 | 0.3493 | {'accuracy': 0.892} | | 0.4235 | 3.0 | 750 | 0.5340 | {'accuracy': 0.881} | | 0.207 | 4.0 | 1000 | 0.6471 | {'accuracy': 0.868} | | 0.207 | 5.0 | 1250 | 0.7612 | {'accuracy': 0.874} | | 0.0831 | 6.0 | 1500 | 0.8176 | {'accuracy': 0.875} | | 0.0831 | 7.0 | 1750 | 0.8788 | {'accuracy': 0.872} | | 0.0284 | 8.0 | 2000 | 0.8236 | {'accuracy': 0.886} | | 0.0284 | 9.0 | 2250 | 0.8466 | {'accuracy': 0.881} | | 0.0128 | 10.0 | 2500 | 0.8437 | {'accuracy': 0.881} | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.1.0+cpu - Datasets 2.19.0 - Tokenizers 0.19.1