File size: 14,763 Bytes
3da37ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import time
from dataclasses import dataclass
from typing import List, Optional, Tuple
import nltk
from nltk.tokenize import sent_tokenize
nltk.download("punkt", quiet=True)
import torch
import torch.nn as nn
import torch.nn.functional as F
from .embedding_to_text_with_scores import EmbeddingToTextModelPipeline
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
class Projector(nn.Module):
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
self.linear = nn.Linear(in_dim, out_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear(x)
@dataclass
class SONARLLMGenerationConfig:
# Outer sentence-level beam
sentence_beam_size: int = 4
latent_samples_per_step: int = 4 # M latent variants per active beam state
# Token-level decoder params
decoder_beam_size: int = 5 # default in fairseq2
decoder_temperature: float = 1.0 # default in fairseq2
normalize_sentence_scores: bool = True # False → sum of token log-probs
decoder_max_len: int = 256
# Latent sampling
temperature: float = 0.4
latent_top_p: Optional[float] = None # 0<p<=1 or None for Gaussian
temperature_mode: str = "relative" # "absolute" | "relative"
# Repetition control in latent space
repetition_penalty: float = 0.0
repetition_memory: int = 0
# Termination
max_sentences: int = 32
eos_threshold: float = 0.98
class SONARLLMGenerator(torch.nn.Module):
"""Sentence-level beam over latent reversed embeddings using SONAR decoder.
For each step:
- Run LLaMA on the sentence embedding history to get final hidden.
- Sample multiple latent directions (temperature/latent_top_p, with repetition penalty).
- Project to `reversed_emb` and decode text via SONAR decoder.
- Score each candidate using decoder sentence logprob (+ optional shaping).
- Keep top `sentence_beam_size` states and continue until EOS or max sentences.
This class does NOT modify existing project files and can be used standalone.
"""
def __init__(
self,
llama_model: nn.Module,
forward_proj: nn.Module,
reverse_proj: nn.Module,
sonar_decoder: EmbeddingToTextModelPipeline,
t2vec_model: TextToEmbeddingModelPipeline,
device: torch.device,
add_begin: bool = False,
) -> None:
super().__init__()
self.llama_model = llama_model.eval()
self.forward_proj = forward_proj.eval()
self.reverse_proj = reverse_proj.eval()
self.sonar_decoder = sonar_decoder.eval()
self.t2vec = t2vec_model.eval()
self.device = device
self.add_begin = add_begin
@torch.no_grad()
def generate(self, prefix_text: str, eos_emb: torch.Tensor, cfg: Optional[SONARLLMGenerationConfig] = None) -> str:
# Normalize and attach config to the instance for helper use
if cfg is None:
cfg = SONARLLMGenerationConfig()
self._cfg = cfg
sents = sent_tokenize(prefix_text)
if self.add_begin:
sents = ["Begin of text."] + sents
if len(sents) == 0:
sents = [prefix_text.strip()]
# Initialize prefix embeddings
emb_seq = self.t2vec.predict(sents, source_lang="eng_Latn").to(self.device)
# Beam state tuple: (sentences, embeddings_seq, cumulative_score, recent_dirs)
beams: List[Tuple[List[str], torch.Tensor, float, List[torch.Tensor]]] = [
(sents[:], emb_seq, 0.0, [])
]
steps = 0
while steps < self._cfg.max_sentences:
steps += 1
candidates: List[Tuple[List[str], torch.Tensor, float, List[torch.Tensor]]] = []
for (hist_sents, hist_emb, score, recent_dirs) in beams:
candidates.extend(
self._expand_beam_state(hist_sents, hist_emb, score, recent_dirs, eos_emb)
)
# Keep top-k beams
if len(candidates) == 0:
break
candidates.sort(key=lambda b: b[2], reverse=True)
beams = candidates[: int(self._cfg.sentence_beam_size)]
# If all beams look ended by EOS threshold, stop early
if self._all_close_to_eos(beams, eos_emb):
break
best = max(beams, key=lambda b: b[2])
result = self._join_sentences(best[0])
if self.add_begin:
result = result[len("Begin of text."):]
return result
# --- internals ---
@torch.no_grad()
def _forward_hidden(self, emb_seq: torch.Tensor) -> torch.Tensor:
proj = self.forward_proj(emb_seq.unsqueeze(0)) if emb_seq.ndim == 2 else self.forward_proj(emb_seq)
out = self.llama_model(inputs_embeds=proj, output_hidden_states=True)
hidden = out.hidden_states[-1]
return hidden[0, -1, :]
def _join_sentences(self, sents: List[str]) -> str:
return " ".join(sents)
def _update_recent_dirs(
self, recent: List[torch.Tensor], u: torch.Tensor, memory_cap: int
) -> List[torch.Tensor]:
if memory_cap <= 0:
return recent
if not torch.isfinite(u).all():
return recent
new_recent = recent + [u.detach().to("cpu")]
if len(new_recent) > int(memory_cap):
new_recent = new_recent[-int(memory_cap) :]
return new_recent
def _sample_noise_direction(
self, final_hidden: torch.Tensor, recent_dirs: List[torch.Tensor]
) -> torch.Tensor:
g = torch.randn_like(final_hidden)
if (
self._cfg.repetition_penalty is not None
and float(self._cfg.repetition_penalty) != 1.0
and self._cfg.repetition_memory > 0
and len(recent_dirs) > 0
):
g = self._apply_repetition_penalty_to_direction(
g, float(self._cfg.repetition_penalty), int(self._cfg.repetition_memory), recent_dirs
)
return g / (g.norm(p=2) + 1e-12)
def _sample_noise(
self, final_hidden: torch.Tensor, dir_unit: torch.Tensor
) -> torch.Tensor:
t = float(self._cfg.temperature)
if t <= 0.0:
return torch.zeros_like(final_hidden)
if self._cfg.temperature_mode not in ("absolute", "relative"):
raise ValueError(f"Unsupported temperature_mode: {self._cfg.temperature_mode}")
if self._cfg.temperature_mode == "absolute":
sigma = torch.tensor(t, device=final_hidden.device, dtype=final_hidden.dtype)
else:
rms = torch.sqrt(torch.mean(final_hidden.to(torch.float32) ** 2))
rms = torch.clamp(rms, min=1e-12).to(dtype=final_hidden.dtype, device=final_hidden.device)
sigma = rms * t
top_p = self._cfg.latent_top_p
if top_p is None:
top_p = 1.0
return self._sample_truncated_normal_like(final_hidden, float(top_p), sigma, dir_unit)
def _sample_truncated_normal_like(
self, base_vector: torch.Tensor, top_p: float, sigma: torch.Tensor, dir_unit: torch.Tensor
) -> torch.Tensor:
# Wilson–Hilferty approximation for ChiSquare quantiles
dim = base_vector.numel()
device = base_vector.device
u = torch.rand((), device=device, dtype=torch.float32)
p = torch.clamp(u * float(top_p), min=1e-12, max=1.0 - 1e-12)
k = torch.tensor(float(dim), device=device, dtype=torch.float32)
z = torch.sqrt(torch.tensor(2.0, device=device, dtype=torch.float32)) * torch.special.erfinv(2.0 * p - 1.0)
term = 1.0 - 2.0 / (9.0 * k) + z * torch.sqrt(2.0 / (9.0 * k))
term = torch.clamp(term, min=1e-12)
s = k * (term ** 3)
r = torch.sqrt(torch.clamp(s, min=1e-12)).to(dtype=base_vector.dtype)
return dir_unit * (r * sigma)
def _expand_beam_state(
self,
hist_sents: List[str],
hist_emb: torch.Tensor,
score: float,
recent_dirs: List[torch.Tensor],
eos_emb: torch.Tensor,
) -> List[Tuple[List[str], torch.Tensor, float, List[torch.Tensor]]]:
"""Expand one beam state into candidate next states.
Returns a list of (new_hist_sents, new_hist_emb, new_score, new_recent_dirs).
"""
final_hidden = self._forward_hidden(hist_emb)
out: List[Tuple[List[str], torch.Tensor, float, List[torch.Tensor]]] = []
for _ in range(max(1, int(self._cfg.latent_samples_per_step))):
dir_unit = self._sample_noise_direction(final_hidden, recent_dirs)
noise = self._sample_noise(final_hidden, dir_unit)
h_perturbed = final_hidden + noise
z = self.reverse_proj(h_perturbed.unsqueeze(0))
texts, scores = self.sonar_decoder.predict(
z,
target_lang="eng_Latn",
beam_size=int(self._cfg.decoder_beam_size),
normalize_scores=bool(self._cfg.normalize_sentence_scores),
max_seq_len=self._cfg.decoder_max_len,
temperature=float(self._cfg.decoder_temperature),
return_scores=True,
)
text = texts[0]
sent_logprob = float(scores[0])
z_re = self.t2vec.predict([text], source_lang="eng_Latn").to(self.device)
cand_score = score + sent_logprob
new_recent = self._update_recent_dirs(recent_dirs, dir_unit, self._cfg.repetition_memory)
new_hist_sents = hist_sents + [text]
new_hist_emb = torch.cat([hist_emb, z_re], dim=0)
out.append((new_hist_sents, new_hist_emb, cand_score, new_recent))
return out
def _apply_repetition_penalty_to_direction(
self, g: torch.Tensor, penalty: float, memory_cap: int, recent_dirs: List[torch.Tensor]
) -> torch.Tensor:
"""Mean-shift (A+) repetition penalty in latent direction space.
- penalty is clamped to [0, 1].
- penalty = 0 → no shift (q = 0.5).
- penalty = 1 → maximum shift (q ≈ q_min).
Mapping: q = 0.5^(1-penalty) * q_min^(penalty), beta = Phi^{-1}(1 - q),
and we set g' = g - beta * b_unit, where b_unit is the normalized average of recent directions.
"""
if memory_cap <= 0 or len(recent_dirs) == 0:
return g
# Aggregate and normalize recent directions
B = torch.stack(
[u.to(device=g.device, dtype=g.dtype) for u in recent_dirs[-int(memory_cap):]], dim=0
)
b = B.mean(dim=0)
bn = b.norm(p=2)
if not torch.isfinite(bn) or bn <= 1e-12:
return g
b_unit = b / bn
# Clamp and map penalty → beta via q
rp = float(penalty)
if rp < 0.0:
rp = 0.0
if rp > 1.0:
rp = 1.0
q_min = 1e-12
log_q = (1.0 - rp) * torch.log(torch.tensor(0.5, device=g.device, dtype=torch.float32))
log_q = log_q + rp * torch.log(torch.tensor(q_min, device=g.device, dtype=torch.float32))
q = torch.exp(log_q)
p = torch.clamp(1.0 - q, 1e-12, 1.0 - 1e-12)
beta = torch.sqrt(torch.tensor(2.0, device=g.device, dtype=g.dtype)) * torch.special.erfinv(2.0 * p - 1.0)
beta = torch.clamp(beta, 0.0, 7.5)
return g - (beta * b_unit)
def _all_close_to_eos(self, beams, eos_emb: torch.Tensor) -> bool:
for (_, emb, _, _) in beams:
last = emb[-1:, :]
sim = F.cosine_similarity(last, eos_emb, dim=1).item()
if sim < float(self._cfg.eos_threshold):
return False
return True
# --- factory ---
@classmethod
def load_from_checkpoint(
cls,
checkpoint_dir: str,
device: Optional[torch.device] = None,
generation_config: Optional[SONARLLMGenerationConfig] = None,
) -> "SONARLLMGenerator":
"""Load generator from a folder with config.json and weights.
The folder is expected to contain:
- config.json (with keys: pretrained_model_name_or_path, llama_config?, embed_dim)
- pytorch_model.bin (or model_state_dict inside the saved file)
"""
import json
import os
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
from .embedding_to_text_with_scores import EmbeddingToTextModelPipeline
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cfg_path = os.path.join(checkpoint_dir, "config.json")
with open(cfg_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
tokenizer = AutoTokenizer.from_pretrained(cfg["pretrained_model_name_or_path"])
tokenizer.pad_token = tokenizer.eos_token
llama_cfg_dict = cfg.get("llama_config", {})
if "vocab_size" not in llama_cfg_dict:
llama_cfg_dict["vocab_size"] = len(tokenizer)
# llama_cfg_dict["pad_token_id"] = tokenizer.pad_token_id
# llama_cfg_dict["bos_token_id"] = tokenizer.bos_token_id if tokenizer.bos_token_id is not None else 128000
# llama_cfg_dict["eos_token_id"] = tokenizer.eos_token_id if tokenizer.eos_token_id is not None else 128001
llama_cfg = LlamaConfig(**llama_cfg_dict) if "llama_config" in cfg else LlamaConfig()
llama_model = LlamaForCausalLM(llama_cfg).to(device).eval()
hidden_size = llama_cfg.hidden_size
embed_dim = cfg.get("embed_dim", 1024)
t2vec_model = TextToEmbeddingModelPipeline(
encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder",
device=device,
).eval()
vec2text_model = EmbeddingToTextModelPipeline(
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_encoder",
device=device,
).eval()
forward_projector = Projector(embed_dim, hidden_size).to(device).eval()
reverse_projector = Projector(hidden_size, embed_dim).to(device).eval()
gen = cls(
llama_model,
forward_projector,
reverse_projector,
vec2text_model,
t2vec_model,
device,
add_begin=cfg.get("add_begin", False),
)
# Load weights into generator to cover llama + projectors
ckpt_bin = os.path.join(checkpoint_dir, "pytorch_model.bin")
state = torch.load(ckpt_bin, map_location=device, weights_only=True)
state = state.get("model_state_dict", state)
raw = gen.module if hasattr(gen, "module") else gen
raw.load_state_dict(state, strict=False)
return gen
|