Added embedding handler
Browse files- handler.py +31 -0
- requirements.txt +3 -0
handler.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class EndpointHandler():
|
| 5 |
+
def __init__(self, path=""):
|
| 6 |
+
# Initialize the tokenizer and model with pre-trained weights
|
| 7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 8 |
+
self.model = AutoModel.from_pretrained(path)
|
| 9 |
+
|
| 10 |
+
def __call__(self, data):
|
| 11 |
+
# Extract text input from the request data
|
| 12 |
+
inputs = data['inputs']
|
| 13 |
+
|
| 14 |
+
# Define a prompt to provide context
|
| 15 |
+
prompt = "Contextual understanding of the following text, from the perspective of Chassidic philosophy: "
|
| 16 |
+
|
| 17 |
+
# Combine prompt with the actual input
|
| 18 |
+
combined_input = prompt + inputs
|
| 19 |
+
|
| 20 |
+
# Prepare the text for the model
|
| 21 |
+
encoded_input = self.tokenizer(combined_input, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
| 22 |
+
|
| 23 |
+
# Generate embeddings without updating gradients
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = self.model(**encoded_input)
|
| 26 |
+
|
| 27 |
+
# Extract embeddings from the last hidden layer
|
| 28 |
+
embeddings = outputs.last_hidden_state.squeeze().tolist()
|
| 29 |
+
|
| 30 |
+
# Return the embeddings as a list (serialized format)
|
| 31 |
+
return {'embeddings': embeddings}
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.11.0
|
| 2 |
+
transformers==4.18.0
|
| 3 |
+
numpy==1.22.3
|