File size: 2,058 Bytes
			
			| 692331d | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | ---
library_name: transformers
language:
- tg
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: whisper-tajik-moar-low-lr
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: tg_tj
      split: None
      args: tg_tj
    metrics:
    - name: Wer
      type: wer
      value: 16.43159922928709
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tajik-moar-low-lr
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2667
- Wer: 16.4316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1505        | 1.0   | 704  | 0.3244          | 23.0135 |
| 0.1011        | 2.0   | 1408 | 0.2744          | 18.8362 |
| 0.0635        | 3.0   | 2112 | 0.2646          | 17.0636 |
| 0.0328        | 4.0   | 2816 | 0.2667          | 16.4316 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4
 | 
