File size: 1,890 Bytes
bf89a26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: peft
base_model: michiyasunaga/BioLinkBERT-large
tags:
- medical
- cardiology
- embeddings
- domain-adaptation
- lora
- sentence-transformers
- sentence-similarity
language:
- en
license: apache-2.0
---
# CardioEmbed-BioLinkBERT
**Domain-specialized cardiology text embeddings using LoRA-adapted BioLinkBERT-large**
This is the **best performing model** from our comparative study of 10 embedding architectures for clinical cardiology.
## Performance
| Metric | Score |
|--------|-------|
| Separation Score | **0.510** |
| Similar Pair Avg | 0.811 |
| Different Pair Avg | 0.301 |
| Throughput | 143.5 emb/sec |
| Memory | 1.51 GB |
## Usage
```python
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModel.from_pretrained("michiyasunaga/BioLinkBERT-large")
tokenizer = AutoTokenizer.from_pretrained("michiyasunaga/BioLinkBERT-large")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "richardyoung/CardioEmbed-BioLinkBERT")
# Generate embeddings
text = "Atrial fibrillation with rapid ventricular response"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
```
## Training
- **Training Data**: 106,535 cardiology text pairs from medical textbooks
- **Method**: LoRA fine-tuning (r=16, alpha=32)
- **Loss**: Multiple Negatives Ranking Loss (InfoNCE)
## Citation
```bibtex
@article{young2024comparative,
title={Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation},
author={Young, Richard J and Matthews, Alice M},
journal={arXiv preprint},
year={2024}
}
```
## Related Models
This is part of the CardioEmbed model family. See [richardyoung/CardioEmbed](https://huggingface.co/richardyoung/CardioEmbed) for more models.
|