rmdhirr commited on
Commit
6d5b356
·
verified ·
1 Parent(s): 0a77bb9

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-3-12b-it
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-3-12b-it",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 48,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "lm_head",
22
+ "embed_tokens"
23
+ ],
24
+ "peft_type": "LORA",
25
+ "r": 16,
26
+ "rank_pattern": {},
27
+ "revision": null,
28
+ "target_modules": [
29
+ "gate_proj",
30
+ "up_proj",
31
+ "o_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "down_proj",
35
+ "q_proj"
36
+ ],
37
+ "task_type": "CAUSAL_LM",
38
+ "use_dora": false,
39
+ "use_rslora": false
40
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:604c3b790b74ce6d0269f7c3a24dce55d8b104b774167a56142363906c4b1104
3
+ size 4301469136
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d5a78e158d1343eb96c55a70d3c3a10b76e0ad5cf7e51815483ebe349b7905
3
+ size 8341591628
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:328481d74ce23d4f60dedbfde589c06e8f0b8a215e7a1442d471c526f07a1b92
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39dd723af97f1fe81f5caa6a398fa43ee685546e1d60eac8df498a260d3ead8
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.5086182537439955,
6
+ "eval_steps": 300,
7
+ "global_step": 900,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0028256569652444193,
14
+ "grad_norm": 125.03303527832031,
15
+ "learning_rate": 6.666666666666666e-07,
16
+ "loss": 19.3957,
17
+ "mean_token_accuracy": 0.443931570649147,
18
+ "step": 5
19
+ },
20
+ {
21
+ "epoch": 0.005651313930488839,
22
+ "grad_norm": 179.0009765625,
23
+ "learning_rate": 1.5e-06,
24
+ "loss": 19.1611,
25
+ "mean_token_accuracy": 0.4493979915976524,
26
+ "step": 10
27
+ },
28
+ {
29
+ "epoch": 0.008476970895733259,
30
+ "grad_norm": 117.55085754394531,
31
+ "learning_rate": 2.3333333333333336e-06,
32
+ "loss": 19.097,
33
+ "mean_token_accuracy": 0.45788785591721537,
34
+ "step": 15
35
+ },
36
+ {
37
+ "epoch": 0.011302627860977677,
38
+ "grad_norm": 109.04960632324219,
39
+ "learning_rate": 3.1666666666666667e-06,
40
+ "loss": 19.207,
41
+ "mean_token_accuracy": 0.4440133422613144,
42
+ "step": 20
43
+ },
44
+ {
45
+ "epoch": 0.014128284826222097,
46
+ "grad_norm": 118.16978454589844,
47
+ "learning_rate": 4e-06,
48
+ "loss": 17.2711,
49
+ "mean_token_accuracy": 0.4634488716721535,
50
+ "step": 25
51
+ },
52
+ {
53
+ "epoch": 0.016953941791466517,
54
+ "grad_norm": 161.21022033691406,
55
+ "learning_rate": 4.833333333333333e-06,
56
+ "loss": 17.7255,
57
+ "mean_token_accuracy": 0.4570723704993725,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.019779598756710936,
62
+ "grad_norm": 111.49407958984375,
63
+ "learning_rate": 5.666666666666667e-06,
64
+ "loss": 18.1505,
65
+ "mean_token_accuracy": 0.46947305351495744,
66
+ "step": 35
67
+ },
68
+ {
69
+ "epoch": 0.022605255721955354,
70
+ "grad_norm": 94.02478790283203,
71
+ "learning_rate": 5.999955686683124e-06,
72
+ "loss": 16.5811,
73
+ "mean_token_accuracy": 0.4923714891076088,
74
+ "step": 40
75
+ },
76
+ {
77
+ "epoch": 0.025430912687199773,
78
+ "grad_norm": 93.49138641357422,
79
+ "learning_rate": 5.999684887820798e-06,
80
+ "loss": 14.6779,
81
+ "mean_token_accuracy": 0.4900531888008118,
82
+ "step": 45
83
+ },
84
+ {
85
+ "epoch": 0.028256569652444195,
86
+ "grad_norm": 89.19295501708984,
87
+ "learning_rate": 5.9991679308007015e-06,
88
+ "loss": 15.0693,
89
+ "mean_token_accuracy": 0.48212875574827196,
90
+ "step": 50
91
+ },
92
+ {
93
+ "epoch": 0.031082226617688613,
94
+ "grad_norm": 117.02027130126953,
95
+ "learning_rate": 5.998404858045021e-06,
96
+ "loss": 14.6772,
97
+ "mean_token_accuracy": 0.4899917796254158,
98
+ "step": 55
99
+ },
100
+ {
101
+ "epoch": 0.033907883582933035,
102
+ "grad_norm": 72.73108673095703,
103
+ "learning_rate": 5.997395732172529e-06,
104
+ "loss": 13.4677,
105
+ "mean_token_accuracy": 0.4900201290845871,
106
+ "step": 60
107
+ },
108
+ {
109
+ "epoch": 0.03673354054817745,
110
+ "grad_norm": 77.72334289550781,
111
+ "learning_rate": 5.996140635993444e-06,
112
+ "loss": 13.2612,
113
+ "mean_token_accuracy": 0.5328952759504318,
114
+ "step": 65
115
+ },
116
+ {
117
+ "epoch": 0.03955919751342187,
118
+ "grad_norm": 80.2801284790039,
119
+ "learning_rate": 5.994639672502639e-06,
120
+ "loss": 11.504,
121
+ "mean_token_accuracy": 0.559516441822052,
122
+ "step": 70
123
+ },
124
+ {
125
+ "epoch": 0.04238485447866629,
126
+ "grad_norm": 61.040287017822266,
127
+ "learning_rate": 5.992892964871187e-06,
128
+ "loss": 11.0794,
129
+ "mean_token_accuracy": 0.5566341817378998,
130
+ "step": 75
131
+ },
132
+ {
133
+ "epoch": 0.04521051144391071,
134
+ "grad_norm": 61.21868896484375,
135
+ "learning_rate": 5.990900656436255e-06,
136
+ "loss": 11.9816,
137
+ "mean_token_accuracy": 0.5282905742526054,
138
+ "step": 80
139
+ },
140
+ {
141
+ "epoch": 0.04803616840915513,
142
+ "grad_norm": 114.57307434082031,
143
+ "learning_rate": 5.988662910689342e-06,
144
+ "loss": 10.3066,
145
+ "mean_token_accuracy": 0.5789915665984153,
146
+ "step": 85
147
+ },
148
+ {
149
+ "epoch": 0.050861825374399545,
150
+ "grad_norm": 76.79177856445312,
151
+ "learning_rate": 5.986179911262859e-06,
152
+ "loss": 10.7346,
153
+ "mean_token_accuracy": 0.5474225521087647,
154
+ "step": 90
155
+ },
156
+ {
157
+ "epoch": 0.05368748233964397,
158
+ "grad_norm": 50.477203369140625,
159
+ "learning_rate": 5.983451861915061e-06,
160
+ "loss": 11.5344,
161
+ "mean_token_accuracy": 0.5186601117253303,
162
+ "step": 95
163
+ },
164
+ {
165
+ "epoch": 0.05651313930488839,
166
+ "grad_norm": 65.024169921875,
167
+ "learning_rate": 5.980478986513332e-06,
168
+ "loss": 10.1865,
169
+ "mean_token_accuracy": 0.5476699441671371,
170
+ "step": 100
171
+ },
172
+ {
173
+ "epoch": 0.059338796270132804,
174
+ "grad_norm": 78.97113037109375,
175
+ "learning_rate": 5.977261529015807e-06,
176
+ "loss": 10.5502,
177
+ "mean_token_accuracy": 0.5594380274415016,
178
+ "step": 105
179
+ },
180
+ {
181
+ "epoch": 0.062164453235377226,
182
+ "grad_norm": 63.45710372924805,
183
+ "learning_rate": 5.9737997534513565e-06,
184
+ "loss": 10.1732,
185
+ "mean_token_accuracy": 0.5498600453138351,
186
+ "step": 110
187
+ },
188
+ {
189
+ "epoch": 0.06499011020062165,
190
+ "grad_norm": 43.65032958984375,
191
+ "learning_rate": 5.970093943897915e-06,
192
+ "loss": 9.483,
193
+ "mean_token_accuracy": 0.5819845095276832,
194
+ "step": 115
195
+ },
196
+ {
197
+ "epoch": 0.06781576716586607,
198
+ "grad_norm": 65.38373565673828,
199
+ "learning_rate": 5.966144404459178e-06,
200
+ "loss": 9.8998,
201
+ "mean_token_accuracy": 0.5803950399160385,
202
+ "step": 120
203
+ },
204
+ {
205
+ "epoch": 0.07064142413111048,
206
+ "grad_norm": 51.20427703857422,
207
+ "learning_rate": 5.96195145923964e-06,
208
+ "loss": 9.5007,
209
+ "mean_token_accuracy": 0.5401258394122124,
210
+ "step": 125
211
+ },
212
+ {
213
+ "epoch": 0.0734670810963549,
214
+ "grad_norm": 43.631324768066406,
215
+ "learning_rate": 5.957515452317996e-06,
216
+ "loss": 9.3663,
217
+ "mean_token_accuracy": 0.5585527911782264,
218
+ "step": 130
219
+ },
220
+ {
221
+ "epoch": 0.07629273806159932,
222
+ "grad_norm": 49.34850311279297,
223
+ "learning_rate": 5.952836747718916e-06,
224
+ "loss": 10.0569,
225
+ "mean_token_accuracy": 0.5572537362575531,
226
+ "step": 135
227
+ },
228
+ {
229
+ "epoch": 0.07911839502684374,
230
+ "grad_norm": 56.23272705078125,
231
+ "learning_rate": 5.947915729383162e-06,
232
+ "loss": 9.1624,
233
+ "mean_token_accuracy": 0.6116252914071083,
234
+ "step": 140
235
+ },
236
+ {
237
+ "epoch": 0.08194405199208817,
238
+ "grad_norm": 54.321495056152344,
239
+ "learning_rate": 5.942752801136086e-06,
240
+ "loss": 9.0426,
241
+ "mean_token_accuracy": 0.5830309092998505,
242
+ "step": 145
243
+ },
244
+ {
245
+ "epoch": 0.08476970895733257,
246
+ "grad_norm": 49.35163116455078,
247
+ "learning_rate": 5.937348386654492e-06,
248
+ "loss": 8.7897,
249
+ "mean_token_accuracy": 0.5833149090409279,
250
+ "step": 150
251
+ },
252
+ {
253
+ "epoch": 0.087595365922577,
254
+ "grad_norm": 41.16096878051758,
255
+ "learning_rate": 5.9317029294318685e-06,
256
+ "loss": 9.2698,
257
+ "mean_token_accuracy": 0.5732270866632462,
258
+ "step": 155
259
+ },
260
+ {
261
+ "epoch": 0.09042102288782142,
262
+ "grad_norm": 56.901546478271484,
263
+ "learning_rate": 5.925816892741992e-06,
264
+ "loss": 8.8971,
265
+ "mean_token_accuracy": 0.5911598846316337,
266
+ "step": 160
267
+ },
268
+ {
269
+ "epoch": 0.09324667985306584,
270
+ "grad_norm": 37.740020751953125,
271
+ "learning_rate": 5.919690759600914e-06,
272
+ "loss": 9.3825,
273
+ "mean_token_accuracy": 0.5646735802292824,
274
+ "step": 165
275
+ },
276
+ {
277
+ "epoch": 0.09607233681831026,
278
+ "grad_norm": 43.82129669189453,
279
+ "learning_rate": 5.913325032727323e-06,
280
+ "loss": 8.921,
281
+ "mean_token_accuracy": 0.5748174145817757,
282
+ "step": 170
283
+ },
284
+ {
285
+ "epoch": 0.09889799378355468,
286
+ "grad_norm": 43.662750244140625,
287
+ "learning_rate": 5.906720234501286e-06,
288
+ "loss": 8.329,
289
+ "mean_token_accuracy": 0.5832746580243111,
290
+ "step": 175
291
+ },
292
+ {
293
+ "epoch": 0.10172365074879909,
294
+ "grad_norm": 63.78599548339844,
295
+ "learning_rate": 5.899876906921388e-06,
296
+ "loss": 9.403,
297
+ "mean_token_accuracy": 0.5746660903096199,
298
+ "step": 180
299
+ },
300
+ {
301
+ "epoch": 0.10454930771404351,
302
+ "grad_norm": 38.50173568725586,
303
+ "learning_rate": 5.892795611560252e-06,
304
+ "loss": 7.9569,
305
+ "mean_token_accuracy": 0.6175401106476783,
306
+ "step": 185
307
+ },
308
+ {
309
+ "epoch": 0.10737496467928793,
310
+ "grad_norm": 46.76047134399414,
311
+ "learning_rate": 5.885476929518457e-06,
312
+ "loss": 8.8664,
313
+ "mean_token_accuracy": 0.5698649421334266,
314
+ "step": 190
315
+ },
316
+ {
317
+ "epoch": 0.11020062164453236,
318
+ "grad_norm": 34.551719665527344,
319
+ "learning_rate": 5.877921461376848e-06,
320
+ "loss": 8.9507,
321
+ "mean_token_accuracy": 0.5774942457675933,
322
+ "step": 195
323
+ },
324
+ {
325
+ "epoch": 0.11302627860977678,
326
+ "grad_norm": 46.14909362792969,
327
+ "learning_rate": 5.8701298271472565e-06,
328
+ "loss": 8.3937,
329
+ "mean_token_accuracy": 0.5869078159332275,
330
+ "step": 200
331
+ },
332
+ {
333
+ "epoch": 0.11585193557502119,
334
+ "grad_norm": 38.04121017456055,
335
+ "learning_rate": 5.862102666221617e-06,
336
+ "loss": 9.1566,
337
+ "mean_token_accuracy": 0.5589849069714546,
338
+ "step": 205
339
+ },
340
+ {
341
+ "epoch": 0.11867759254026561,
342
+ "grad_norm": 47.98865509033203,
343
+ "learning_rate": 5.853840637319504e-06,
344
+ "loss": 8.3272,
345
+ "mean_token_accuracy": 0.613035187125206,
346
+ "step": 210
347
+ },
348
+ {
349
+ "epoch": 0.12150324950551003,
350
+ "grad_norm": 52.02131271362305,
351
+ "learning_rate": 5.845344418434068e-06,
352
+ "loss": 9.2413,
353
+ "mean_token_accuracy": 0.5741102159023285,
354
+ "step": 215
355
+ },
356
+ {
357
+ "epoch": 0.12432890647075445,
358
+ "grad_norm": 46.88343048095703,
359
+ "learning_rate": 5.8366147067764056e-06,
360
+ "loss": 8.468,
361
+ "mean_token_accuracy": 0.5816206842660904,
362
+ "step": 220
363
+ },
364
+ {
365
+ "epoch": 0.12715456343599887,
366
+ "grad_norm": 43.369300842285156,
367
+ "learning_rate": 5.8276522187183435e-06,
368
+ "loss": 7.4452,
369
+ "mean_token_accuracy": 0.6464217156171799,
370
+ "step": 225
371
+ },
372
+ {
373
+ "epoch": 0.1299802204012433,
374
+ "grad_norm": 46.008766174316406,
375
+ "learning_rate": 5.818457689733649e-06,
376
+ "loss": 8.2276,
377
+ "mean_token_accuracy": 0.6063334688544273,
378
+ "step": 230
379
+ },
380
+ {
381
+ "epoch": 0.13280587736648772,
382
+ "grad_norm": 38.97382736206055,
383
+ "learning_rate": 5.809031874337681e-06,
384
+ "loss": 8.029,
385
+ "mean_token_accuracy": 0.6226910144090653,
386
+ "step": 235
387
+ },
388
+ {
389
+ "epoch": 0.13563153433173214,
390
+ "grad_norm": 44.3059196472168,
391
+ "learning_rate": 5.7993755460254685e-06,
392
+ "loss": 8.4051,
393
+ "mean_token_accuracy": 0.5975374907255173,
394
+ "step": 240
395
+ },
396
+ {
397
+ "epoch": 0.13845719129697653,
398
+ "grad_norm": 56.00782012939453,
399
+ "learning_rate": 5.789489497208243e-06,
400
+ "loss": 8.6075,
401
+ "mean_token_accuracy": 0.5798447385430336,
402
+ "step": 245
403
+ },
404
+ {
405
+ "epoch": 0.14128284826222096,
406
+ "grad_norm": 39.610755920410156,
407
+ "learning_rate": 5.779374539148403e-06,
408
+ "loss": 7.9846,
409
+ "mean_token_accuracy": 0.593911099433899,
410
+ "step": 250
411
+ },
412
+ {
413
+ "epoch": 0.14410850522746538,
414
+ "grad_norm": 40.99591827392578,
415
+ "learning_rate": 5.769031501892949e-06,
416
+ "loss": 8.3259,
417
+ "mean_token_accuracy": 0.5966995969414711,
418
+ "step": 255
419
+ },
420
+ {
421
+ "epoch": 0.1469341621927098,
422
+ "grad_norm": 37.0196533203125,
423
+ "learning_rate": 5.7584612342053655e-06,
424
+ "loss": 7.7289,
425
+ "mean_token_accuracy": 0.6313483536243438,
426
+ "step": 260
427
+ },
428
+ {
429
+ "epoch": 0.14975981915795422,
430
+ "grad_norm": 36.436134338378906,
431
+ "learning_rate": 5.7476646034959705e-06,
432
+ "loss": 9.042,
433
+ "mean_token_accuracy": 0.5726025938987732,
434
+ "step": 265
435
+ },
436
+ {
437
+ "epoch": 0.15258547612319864,
438
+ "grad_norm": 49.964351654052734,
439
+ "learning_rate": 5.736642495750733e-06,
440
+ "loss": 7.8111,
441
+ "mean_token_accuracy": 0.6032327204942703,
442
+ "step": 270
443
+ },
444
+ {
445
+ "epoch": 0.15541113308844307,
446
+ "grad_norm": 37.209232330322266,
447
+ "learning_rate": 5.725395815458571e-06,
448
+ "loss": 6.2546,
449
+ "mean_token_accuracy": 0.6550982385873795,
450
+ "step": 275
451
+ },
452
+ {
453
+ "epoch": 0.1582367900536875,
454
+ "grad_norm": 39.0145149230957,
455
+ "learning_rate": 5.713925485537126e-06,
456
+ "loss": 8.2466,
457
+ "mean_token_accuracy": 0.5892508149147033,
458
+ "step": 280
459
+ },
460
+ {
461
+ "epoch": 0.1610624470189319,
462
+ "grad_norm": 46.74445724487305,
463
+ "learning_rate": 5.702232447257029e-06,
464
+ "loss": 8.1135,
465
+ "mean_token_accuracy": 0.6003284469246865,
466
+ "step": 285
467
+ },
468
+ {
469
+ "epoch": 0.16388810398417633,
470
+ "grad_norm": 61.96944046020508,
471
+ "learning_rate": 5.6903176601646535e-06,
472
+ "loss": 8.0814,
473
+ "mean_token_accuracy": 0.6058224648237228,
474
+ "step": 290
475
+ },
476
+ {
477
+ "epoch": 0.16671376094942075,
478
+ "grad_norm": 41.85062026977539,
479
+ "learning_rate": 5.6781821020033794e-06,
480
+ "loss": 7.7756,
481
+ "mean_token_accuracy": 0.6040422543883324,
482
+ "step": 295
483
+ },
484
+ {
485
+ "epoch": 0.16953941791466515,
486
+ "grad_norm": 37.07870864868164,
487
+ "learning_rate": 5.665826768633358e-06,
488
+ "loss": 7.4973,
489
+ "mean_token_accuracy": 0.6139729157090187,
490
+ "step": 300
491
+ },
492
+ {
493
+ "epoch": 0.16953941791466515,
494
+ "eval_loss": 1.9660394191741943,
495
+ "eval_mean_token_accuracy": 0.6081940480295172,
496
+ "eval_runtime": 60.361,
497
+ "eval_samples_per_second": 26.06,
498
+ "eval_steps_per_second": 3.264,
499
+ "step": 300
500
+ },
501
+ {
502
+ "epoch": 0.17236507487990957,
503
+ "grad_norm": 36.64670181274414,
504
+ "learning_rate": 5.6532526739497834e-06,
505
+ "loss": 7.6396,
506
+ "mean_token_accuracy": 0.6107118725776672,
507
+ "step": 305
508
+ },
509
+ {
510
+ "epoch": 0.175190731845154,
511
+ "grad_norm": 54.716243743896484,
512
+ "learning_rate": 5.640460849799702e-06,
513
+ "loss": 7.2263,
514
+ "mean_token_accuracy": 0.6144478976726532,
515
+ "step": 310
516
+ },
517
+ {
518
+ "epoch": 0.1780163888103984,
519
+ "grad_norm": 55.097808837890625,
520
+ "learning_rate": 5.627452345897328e-06,
521
+ "loss": 7.0887,
522
+ "mean_token_accuracy": 0.6283742040395737,
523
+ "step": 315
524
+ },
525
+ {
526
+ "epoch": 0.18084204577564283,
527
+ "grad_norm": 61.68784713745117,
528
+ "learning_rate": 5.614228229737906e-06,
529
+ "loss": 7.8888,
530
+ "mean_token_accuracy": 0.6202467530965805,
531
+ "step": 320
532
+ },
533
+ {
534
+ "epoch": 0.18366770274088726,
535
+ "grad_norm": 50.16268539428711,
536
+ "learning_rate": 5.600789586510113e-06,
537
+ "loss": 8.1697,
538
+ "mean_token_accuracy": 0.6052482485771179,
539
+ "step": 325
540
+ },
541
+ {
542
+ "epoch": 0.18649335970613168,
543
+ "grad_norm": 34.98442840576172,
544
+ "learning_rate": 5.587137519007004e-06,
545
+ "loss": 7.6766,
546
+ "mean_token_accuracy": 0.610385374724865,
547
+ "step": 330
548
+ },
549
+ {
550
+ "epoch": 0.1893190166713761,
551
+ "grad_norm": 54.69295120239258,
552
+ "learning_rate": 5.5732731475355135e-06,
553
+ "loss": 7.4116,
554
+ "mean_token_accuracy": 0.6147442162036896,
555
+ "step": 335
556
+ },
557
+ {
558
+ "epoch": 0.19214467363662052,
559
+ "grad_norm": 36.03273391723633,
560
+ "learning_rate": 5.559197609824526e-06,
561
+ "loss": 7.7704,
562
+ "mean_token_accuracy": 0.6110788837075234,
563
+ "step": 340
564
+ },
565
+ {
566
+ "epoch": 0.19497033060186494,
567
+ "grad_norm": 45.89215087890625,
568
+ "learning_rate": 5.544912060931511e-06,
569
+ "loss": 6.0621,
570
+ "mean_token_accuracy": 0.6817868202924728,
571
+ "step": 345
572
+ },
573
+ {
574
+ "epoch": 0.19779598756710937,
575
+ "grad_norm": 43.32875442504883,
576
+ "learning_rate": 5.530417673147736e-06,
577
+ "loss": 7.5385,
578
+ "mean_token_accuracy": 0.6150149628520012,
579
+ "step": 350
580
+ },
581
+ {
582
+ "epoch": 0.20062164453235376,
583
+ "grad_norm": 35.37779998779297,
584
+ "learning_rate": 5.515715635902064e-06,
585
+ "loss": 6.6067,
586
+ "mean_token_accuracy": 0.6687664300203323,
587
+ "step": 355
588
+ },
589
+ {
590
+ "epoch": 0.20344730149759818,
591
+ "grad_norm": 44.46392822265625,
592
+ "learning_rate": 5.500807155663359e-06,
593
+ "loss": 6.2822,
594
+ "mean_token_accuracy": 0.6637924790382386,
595
+ "step": 360
596
+ },
597
+ {
598
+ "epoch": 0.2062729584628426,
599
+ "grad_norm": 36.08877182006836,
600
+ "learning_rate": 5.485693455841464e-06,
601
+ "loss": 6.894,
602
+ "mean_token_accuracy": 0.6358136102557183,
603
+ "step": 365
604
+ },
605
+ {
606
+ "epoch": 0.20909861542808703,
607
+ "grad_norm": 34.14577865600586,
608
+ "learning_rate": 5.470375776686822e-06,
609
+ "loss": 7.4445,
610
+ "mean_token_accuracy": 0.6168029010295868,
611
+ "step": 370
612
+ },
613
+ {
614
+ "epoch": 0.21192427239333145,
615
+ "grad_norm": 40.84408950805664,
616
+ "learning_rate": 5.454855375188691e-06,
617
+ "loss": 7.0881,
618
+ "mean_token_accuracy": 0.6331988245248794,
619
+ "step": 375
620
+ },
621
+ {
622
+ "epoch": 0.21474992935857587,
623
+ "grad_norm": 47.68820571899414,
624
+ "learning_rate": 5.439133524971994e-06,
625
+ "loss": 7.1198,
626
+ "mean_token_accuracy": 0.6500597685575485,
627
+ "step": 380
628
+ },
629
+ {
630
+ "epoch": 0.2175755863238203,
631
+ "grad_norm": 62.971771240234375,
632
+ "learning_rate": 5.4232115161928125e-06,
633
+ "loss": 7.3537,
634
+ "mean_token_accuracy": 0.6475826740264893,
635
+ "step": 385
636
+ },
637
+ {
638
+ "epoch": 0.2204012432890647,
639
+ "grad_norm": 47.17545700073242,
640
+ "learning_rate": 5.407090655432498e-06,
641
+ "loss": 6.484,
642
+ "mean_token_accuracy": 0.6483543753623963,
643
+ "step": 390
644
+ },
645
+ {
646
+ "epoch": 0.22322690025430914,
647
+ "grad_norm": 47.76310348510742,
648
+ "learning_rate": 5.390772265590469e-06,
649
+ "loss": 7.1721,
650
+ "mean_token_accuracy": 0.6379205271601677,
651
+ "step": 395
652
+ },
653
+ {
654
+ "epoch": 0.22605255721955356,
655
+ "grad_norm": 41.001304626464844,
656
+ "learning_rate": 5.374257685775642e-06,
657
+ "loss": 7.3882,
658
+ "mean_token_accuracy": 0.6161196917295456,
659
+ "step": 400
660
+ },
661
+ {
662
+ "epoch": 0.22887821418479798,
663
+ "grad_norm": 41.1621208190918,
664
+ "learning_rate": 5.357548271196545e-06,
665
+ "loss": 6.6539,
666
+ "mean_token_accuracy": 0.6448143661022187,
667
+ "step": 405
668
+ },
669
+ {
670
+ "epoch": 0.23170387115004237,
671
+ "grad_norm": 56.77714920043945,
672
+ "learning_rate": 5.34064539305011e-06,
673
+ "loss": 6.7501,
674
+ "mean_token_accuracy": 0.6442455291748047,
675
+ "step": 410
676
+ },
677
+ {
678
+ "epoch": 0.2345295281152868,
679
+ "grad_norm": 34.29147720336914,
680
+ "learning_rate": 5.323550438409145e-06,
681
+ "loss": 7.1571,
682
+ "mean_token_accuracy": 0.6502243876457214,
683
+ "step": 415
684
+ },
685
+ {
686
+ "epoch": 0.23735518508053122,
687
+ "grad_norm": 38.84526824951172,
688
+ "learning_rate": 5.306264810108515e-06,
689
+ "loss": 7.4697,
690
+ "mean_token_accuracy": 0.6136257261037826,
691
+ "step": 420
692
+ },
693
+ {
694
+ "epoch": 0.24018084204577564,
695
+ "grad_norm": 39.21842575073242,
696
+ "learning_rate": 5.288789926630018e-06,
697
+ "loss": 5.6676,
698
+ "mean_token_accuracy": 0.6803564548492431,
699
+ "step": 425
700
+ },
701
+ {
702
+ "epoch": 0.24300649901102006,
703
+ "grad_norm": 43.55912780761719,
704
+ "learning_rate": 5.27112722198599e-06,
705
+ "loss": 7.6674,
706
+ "mean_token_accuracy": 0.6143711119890213,
707
+ "step": 430
708
+ },
709
+ {
710
+ "epoch": 0.24583215597626448,
711
+ "grad_norm": 47.082237243652344,
712
+ "learning_rate": 5.253278145601618e-06,
713
+ "loss": 6.9372,
714
+ "mean_token_accuracy": 0.6543397754430771,
715
+ "step": 435
716
+ },
717
+ {
718
+ "epoch": 0.2486578129415089,
719
+ "grad_norm": 71.78733825683594,
720
+ "learning_rate": 5.235244162196007e-06,
721
+ "loss": 6.3831,
722
+ "mean_token_accuracy": 0.6731083989143372,
723
+ "step": 440
724
+ },
725
+ {
726
+ "epoch": 0.2514834699067533,
727
+ "grad_norm": 41.5792121887207,
728
+ "learning_rate": 5.217026751661978e-06,
729
+ "loss": 5.9193,
730
+ "mean_token_accuracy": 0.6984533488750457,
731
+ "step": 445
732
+ },
733
+ {
734
+ "epoch": 0.25430912687199775,
735
+ "grad_norm": 32.45619201660156,
736
+ "learning_rate": 5.198627408944628e-06,
737
+ "loss": 6.1931,
738
+ "mean_token_accuracy": 0.6726161792874337,
739
+ "step": 450
740
+ },
741
+ {
742
+ "epoch": 0.25713478383724214,
743
+ "grad_norm": 54.69667434692383,
744
+ "learning_rate": 5.180047643918653e-06,
745
+ "loss": 5.6802,
746
+ "mean_token_accuracy": 0.700816172361374,
747
+ "step": 455
748
+ },
749
+ {
750
+ "epoch": 0.2599604408024866,
751
+ "grad_norm": 52.139469146728516,
752
+ "learning_rate": 5.161288981264445e-06,
753
+ "loss": 7.4401,
754
+ "mean_token_accuracy": 0.6105516791343689,
755
+ "step": 460
756
+ },
757
+ {
758
+ "epoch": 0.262786097767731,
759
+ "grad_norm": 38.770294189453125,
760
+ "learning_rate": 5.142352960342976e-06,
761
+ "loss": 6.3299,
762
+ "mean_token_accuracy": 0.6778733760118485,
763
+ "step": 465
764
+ },
765
+ {
766
+ "epoch": 0.26561175473297544,
767
+ "grad_norm": 44.44423294067383,
768
+ "learning_rate": 5.123241135069471e-06,
769
+ "loss": 6.3576,
770
+ "mean_token_accuracy": 0.6793156564235687,
771
+ "step": 470
772
+ },
773
+ {
774
+ "epoch": 0.26843741169821983,
775
+ "grad_norm": 52.27141189575195,
776
+ "learning_rate": 5.103955073785902e-06,
777
+ "loss": 5.4571,
778
+ "mean_token_accuracy": 0.7010635808110237,
779
+ "step": 475
780
+ },
781
+ {
782
+ "epoch": 0.2712630686634643,
783
+ "grad_norm": 41.901485443115234,
784
+ "learning_rate": 5.084496359132275e-06,
785
+ "loss": 6.2462,
786
+ "mean_token_accuracy": 0.6626246273517609,
787
+ "step": 480
788
+ },
789
+ {
790
+ "epoch": 0.2740887256287087,
791
+ "grad_norm": 39.49611282348633,
792
+ "learning_rate": 5.064866587916764e-06,
793
+ "loss": 6.3324,
794
+ "mean_token_accuracy": 0.6691112801432609,
795
+ "step": 485
796
+ },
797
+ {
798
+ "epoch": 0.27691438259395307,
799
+ "grad_norm": 41.7744140625,
800
+ "learning_rate": 5.045067370984676e-06,
801
+ "loss": 7.2696,
802
+ "mean_token_accuracy": 0.6365453451871872,
803
+ "step": 490
804
+ },
805
+ {
806
+ "epoch": 0.2797400395591975,
807
+ "grad_norm": 49.72770690917969,
808
+ "learning_rate": 5.02510033308626e-06,
809
+ "loss": 6.5657,
810
+ "mean_token_accuracy": 0.6508561789989471,
811
+ "step": 495
812
+ },
813
+ {
814
+ "epoch": 0.2825656965244419,
815
+ "grad_norm": 32.61491394042969,
816
+ "learning_rate": 5.004967112743376e-06,
817
+ "loss": 6.6128,
818
+ "mean_token_accuracy": 0.6579498335719108,
819
+ "step": 500
820
+ },
821
+ {
822
+ "epoch": 0.28539135348968636,
823
+ "grad_norm": 49.389400482177734,
824
+ "learning_rate": 4.984669362115039e-06,
825
+ "loss": 6.7253,
826
+ "mean_token_accuracy": 0.6457798436284066,
827
+ "step": 505
828
+ },
829
+ {
830
+ "epoch": 0.28821701045493076,
831
+ "grad_norm": 51.6247673034668,
832
+ "learning_rate": 4.964208746861841e-06,
833
+ "loss": 6.2031,
834
+ "mean_token_accuracy": 0.6751710534095764,
835
+ "step": 510
836
+ },
837
+ {
838
+ "epoch": 0.2910426674201752,
839
+ "grad_norm": 28.600732803344727,
840
+ "learning_rate": 4.943586946009259e-06,
841
+ "loss": 6.6904,
842
+ "mean_token_accuracy": 0.6619319871068001,
843
+ "step": 515
844
+ },
845
+ {
846
+ "epoch": 0.2938683243854196,
847
+ "grad_norm": 43.22124481201172,
848
+ "learning_rate": 4.92280565180988e-06,
849
+ "loss": 6.7604,
850
+ "mean_token_accuracy": 0.6478939458727837,
851
+ "step": 520
852
+ },
853
+ {
854
+ "epoch": 0.29669398135066405,
855
+ "grad_norm": 41.86116027832031,
856
+ "learning_rate": 4.901866569604527e-06,
857
+ "loss": 6.0308,
858
+ "mean_token_accuracy": 0.6734458118677139,
859
+ "step": 525
860
+ },
861
+ {
862
+ "epoch": 0.29951963831590844,
863
+ "grad_norm": 41.02956771850586,
864
+ "learning_rate": 4.8807714176823205e-06,
865
+ "loss": 7.0681,
866
+ "mean_token_accuracy": 0.6355025738477706,
867
+ "step": 530
868
+ },
869
+ {
870
+ "epoch": 0.3023452952811529,
871
+ "grad_norm": 44.11521530151367,
872
+ "learning_rate": 4.859521927139664e-06,
873
+ "loss": 6.1855,
874
+ "mean_token_accuracy": 0.6703523576259613,
875
+ "step": 535
876
+ },
877
+ {
878
+ "epoch": 0.3051709522463973,
879
+ "grad_norm": 32.89723587036133,
880
+ "learning_rate": 4.838119841738205e-06,
881
+ "loss": 6.0888,
882
+ "mean_token_accuracy": 0.6834497556090355,
883
+ "step": 540
884
+ },
885
+ {
886
+ "epoch": 0.3079966092116417,
887
+ "grad_norm": 32.18568420410156,
888
+ "learning_rate": 4.816566917761719e-06,
889
+ "loss": 6.9014,
890
+ "mean_token_accuracy": 0.6485872358083725,
891
+ "step": 545
892
+ },
893
+ {
894
+ "epoch": 0.31082226617688613,
895
+ "grad_norm": 46.209686279296875,
896
+ "learning_rate": 4.794864923872006e-06,
897
+ "loss": 6.1183,
898
+ "mean_token_accuracy": 0.6952649801969528,
899
+ "step": 550
900
+ },
901
+ {
902
+ "epoch": 0.3136479231421305,
903
+ "grad_norm": 42.59083938598633,
904
+ "learning_rate": 4.773015640963735e-06,
905
+ "loss": 6.1898,
906
+ "mean_token_accuracy": 0.6966498523950577,
907
+ "step": 555
908
+ },
909
+ {
910
+ "epoch": 0.316473580107375,
911
+ "grad_norm": 34.99408721923828,
912
+ "learning_rate": 4.751020862018315e-06,
913
+ "loss": 6.4017,
914
+ "mean_token_accuracy": 0.6635166749358177,
915
+ "step": 560
916
+ },
917
+ {
918
+ "epoch": 0.31929923707261937,
919
+ "grad_norm": 44.781253814697266,
920
+ "learning_rate": 4.728882391956751e-06,
921
+ "loss": 6.294,
922
+ "mean_token_accuracy": 0.6908501267433167,
923
+ "step": 565
924
+ },
925
+ {
926
+ "epoch": 0.3221248940378638,
927
+ "grad_norm": 38.54107666015625,
928
+ "learning_rate": 4.706602047491535e-06,
929
+ "loss": 6.3961,
930
+ "mean_token_accuracy": 0.6642886430025101,
931
+ "step": 570
932
+ },
933
+ {
934
+ "epoch": 0.3249505510031082,
935
+ "grad_norm": 39.30413055419922,
936
+ "learning_rate": 4.68418165697756e-06,
937
+ "loss": 7.0987,
938
+ "mean_token_accuracy": 0.6421632379293442,
939
+ "step": 575
940
+ },
941
+ {
942
+ "epoch": 0.32777620796835266,
943
+ "grad_norm": 32.5236930847168,
944
+ "learning_rate": 4.66162306026209e-06,
945
+ "loss": 6.3601,
946
+ "mean_token_accuracy": 0.6777586549520492,
947
+ "step": 580
948
+ },
949
+ {
950
+ "epoch": 0.33060186493359706,
951
+ "grad_norm": 44.02008056640625,
952
+ "learning_rate": 4.638928108533771e-06,
953
+ "loss": 6.7745,
954
+ "mean_token_accuracy": 0.6339758485555649,
955
+ "step": 585
956
+ },
957
+ {
958
+ "epoch": 0.3334275218988415,
959
+ "grad_norm": 42.38660430908203,
960
+ "learning_rate": 4.616098664170726e-06,
961
+ "loss": 6.7977,
962
+ "mean_token_accuracy": 0.6368318185210228,
963
+ "step": 590
964
+ },
965
+ {
966
+ "epoch": 0.3362531788640859,
967
+ "grad_norm": 56.86142349243164,
968
+ "learning_rate": 4.5931366005877205e-06,
969
+ "loss": 6.5369,
970
+ "mean_token_accuracy": 0.6513374149799347,
971
+ "step": 595
972
+ },
973
+ {
974
+ "epoch": 0.3390788358293303,
975
+ "grad_norm": 46.34036636352539,
976
+ "learning_rate": 4.570043802082435e-06,
977
+ "loss": 6.975,
978
+ "mean_token_accuracy": 0.6324821501970291,
979
+ "step": 600
980
+ },
981
+ {
982
+ "epoch": 0.3390788358293303,
983
+ "eval_loss": 1.6515789031982422,
984
+ "eval_mean_token_accuracy": 0.6573993170321896,
985
+ "eval_runtime": 60.1378,
986
+ "eval_samples_per_second": 26.157,
987
+ "eval_steps_per_second": 3.276,
988
+ "step": 600
989
+ },
990
+ {
991
+ "epoch": 0.34190449279457474,
992
+ "grad_norm": 34.469337463378906,
993
+ "learning_rate": 4.546822163680829e-06,
994
+ "loss": 5.6408,
995
+ "mean_token_accuracy": 0.6926419764757157,
996
+ "step": 605
997
+ },
998
+ {
999
+ "epoch": 0.34473014975981914,
1000
+ "grad_norm": 54.577877044677734,
1001
+ "learning_rate": 4.523473590981639e-06,
1002
+ "loss": 5.1717,
1003
+ "mean_token_accuracy": 0.708769902586937,
1004
+ "step": 610
1005
+ },
1006
+ {
1007
+ "epoch": 0.3475558067250636,
1008
+ "grad_norm": 42.55693817138672,
1009
+ "learning_rate": 4.5e-06,
1010
+ "loss": 6.131,
1011
+ "mean_token_accuracy": 0.6689537853002548,
1012
+ "step": 615
1013
+ },
1014
+ {
1015
+ "epoch": 0.350381463690308,
1016
+ "grad_norm": 32.82284927368164,
1017
+ "learning_rate": 4.476403317010212e-06,
1018
+ "loss": 6.4724,
1019
+ "mean_token_accuracy": 0.6572571873664856,
1020
+ "step": 620
1021
+ },
1022
+ {
1023
+ "epoch": 0.35320712065555243,
1024
+ "grad_norm": 40.628170013427734,
1025
+ "learning_rate": 4.452685478387672e-06,
1026
+ "loss": 7.2712,
1027
+ "mean_token_accuracy": 0.6308314383029938,
1028
+ "step": 625
1029
+ },
1030
+ {
1031
+ "epoch": 0.3560327776207968,
1032
+ "grad_norm": 32.64014434814453,
1033
+ "learning_rate": 4.4288484304499706e-06,
1034
+ "loss": 5.8603,
1035
+ "mean_token_accuracy": 0.6960221052169799,
1036
+ "step": 630
1037
+ },
1038
+ {
1039
+ "epoch": 0.3588584345860413,
1040
+ "grad_norm": 45.46329116821289,
1041
+ "learning_rate": 4.404894129297172e-06,
1042
+ "loss": 6.1867,
1043
+ "mean_token_accuracy": 0.6657388493418693,
1044
+ "step": 635
1045
+ },
1046
+ {
1047
+ "epoch": 0.36168409155128567,
1048
+ "grad_norm": 105.43537139892578,
1049
+ "learning_rate": 4.380824540651301e-06,
1050
+ "loss": 6.4694,
1051
+ "mean_token_accuracy": 0.6702811747789383,
1052
+ "step": 640
1053
+ },
1054
+ {
1055
+ "epoch": 0.3645097485165301,
1056
+ "grad_norm": 41.170921325683594,
1057
+ "learning_rate": 4.356641639695022e-06,
1058
+ "loss": 6.4786,
1059
+ "mean_token_accuracy": 0.6519061028957367,
1060
+ "step": 645
1061
+ },
1062
+ {
1063
+ "epoch": 0.3673354054817745,
1064
+ "grad_norm": 33.53129959106445,
1065
+ "learning_rate": 4.332347410909566e-06,
1066
+ "loss": 6.4479,
1067
+ "mean_token_accuracy": 0.6696308821439743,
1068
+ "step": 650
1069
+ },
1070
+ {
1071
+ "epoch": 0.3701610624470189,
1072
+ "grad_norm": 44.768699645996094,
1073
+ "learning_rate": 4.307943847911868e-06,
1074
+ "loss": 6.6492,
1075
+ "mean_token_accuracy": 0.6501506567001343,
1076
+ "step": 655
1077
+ },
1078
+ {
1079
+ "epoch": 0.37298671941226336,
1080
+ "grad_norm": 38.888816833496094,
1081
+ "learning_rate": 4.283432953290981e-06,
1082
+ "loss": 6.7759,
1083
+ "mean_token_accuracy": 0.6582424193620682,
1084
+ "step": 660
1085
+ },
1086
+ {
1087
+ "epoch": 0.37581237637750775,
1088
+ "grad_norm": 42.18849563598633,
1089
+ "learning_rate": 4.258816738443731e-06,
1090
+ "loss": 6.0352,
1091
+ "mean_token_accuracy": 0.672022745013237,
1092
+ "step": 665
1093
+ },
1094
+ {
1095
+ "epoch": 0.3786380333427522,
1096
+ "grad_norm": 32.39656066894531,
1097
+ "learning_rate": 4.234097223409664e-06,
1098
+ "loss": 6.2633,
1099
+ "mean_token_accuracy": 0.6928743287920952,
1100
+ "step": 670
1101
+ },
1102
+ {
1103
+ "epoch": 0.3814636903079966,
1104
+ "grad_norm": 38.409385681152344,
1105
+ "learning_rate": 4.209276436705276e-06,
1106
+ "loss": 6.2866,
1107
+ "mean_token_accuracy": 0.6808415204286575,
1108
+ "step": 675
1109
+ },
1110
+ {
1111
+ "epoch": 0.38428934727324104,
1112
+ "grad_norm": 41.57419204711914,
1113
+ "learning_rate": 4.184356415157556e-06,
1114
+ "loss": 5.9778,
1115
+ "mean_token_accuracy": 0.7001727074384689,
1116
+ "step": 680
1117
+ },
1118
+ {
1119
+ "epoch": 0.38711500423848544,
1120
+ "grad_norm": 34.73065185546875,
1121
+ "learning_rate": 4.159339203736831e-06,
1122
+ "loss": 6.0301,
1123
+ "mean_token_accuracy": 0.6711145430803299,
1124
+ "step": 685
1125
+ },
1126
+ {
1127
+ "epoch": 0.3899406612037299,
1128
+ "grad_norm": 40.23607635498047,
1129
+ "learning_rate": 4.134226855388963e-06,
1130
+ "loss": 5.7109,
1131
+ "mean_token_accuracy": 0.7057820171117782,
1132
+ "step": 690
1133
+ },
1134
+ {
1135
+ "epoch": 0.3927663181689743,
1136
+ "grad_norm": 38.31148910522461,
1137
+ "learning_rate": 4.10902143086688e-06,
1138
+ "loss": 6.6394,
1139
+ "mean_token_accuracy": 0.6580009430646896,
1140
+ "step": 695
1141
+ },
1142
+ {
1143
+ "epoch": 0.39559197513421873,
1144
+ "grad_norm": 50.16755676269531,
1145
+ "learning_rate": 4.08372499856146e-06,
1146
+ "loss": 5.611,
1147
+ "mean_token_accuracy": 0.7013431131839752,
1148
+ "step": 700
1149
+ },
1150
+ {
1151
+ "epoch": 0.3984176320994631,
1152
+ "grad_norm": 30.385122299194336,
1153
+ "learning_rate": 4.0583396343318025e-06,
1154
+ "loss": 6.5846,
1155
+ "mean_token_accuracy": 0.6525479450821876,
1156
+ "step": 705
1157
+ },
1158
+ {
1159
+ "epoch": 0.4012432890647075,
1160
+ "grad_norm": 40.52418518066406,
1161
+ "learning_rate": 4.032867421334884e-06,
1162
+ "loss": 5.4611,
1163
+ "mean_token_accuracy": 0.698312160372734,
1164
+ "step": 710
1165
+ },
1166
+ {
1167
+ "epoch": 0.40406894602995197,
1168
+ "grad_norm": 39.72053146362305,
1169
+ "learning_rate": 4.0073104498546036e-06,
1170
+ "loss": 5.9016,
1171
+ "mean_token_accuracy": 0.6850436985492706,
1172
+ "step": 715
1173
+ },
1174
+ {
1175
+ "epoch": 0.40689460299519636,
1176
+ "grad_norm": 38.679527282714844,
1177
+ "learning_rate": 3.981670817130255e-06,
1178
+ "loss": 6.0392,
1179
+ "mean_token_accuracy": 0.6699395298957824,
1180
+ "step": 720
1181
+ },
1182
+ {
1183
+ "epoch": 0.4097202599604408,
1184
+ "grad_norm": 42.41149139404297,
1185
+ "learning_rate": 3.955950627184426e-06,
1186
+ "loss": 6.2423,
1187
+ "mean_token_accuracy": 0.6726677268743515,
1188
+ "step": 725
1189
+ },
1190
+ {
1191
+ "epoch": 0.4125459169256852,
1192
+ "grad_norm": 36.73404312133789,
1193
+ "learning_rate": 3.930151990650336e-06,
1194
+ "loss": 5.0402,
1195
+ "mean_token_accuracy": 0.7204348385334015,
1196
+ "step": 730
1197
+ },
1198
+ {
1199
+ "epoch": 0.41537157389092966,
1200
+ "grad_norm": 33.893760681152344,
1201
+ "learning_rate": 3.904277024598638e-06,
1202
+ "loss": 5.5147,
1203
+ "mean_token_accuracy": 0.6979331076145172,
1204
+ "step": 735
1205
+ },
1206
+ {
1207
+ "epoch": 0.41819723085617405,
1208
+ "grad_norm": 47.56764602661133,
1209
+ "learning_rate": 3.878327852363686e-06,
1210
+ "loss": 5.7995,
1211
+ "mean_token_accuracy": 0.7078070282936096,
1212
+ "step": 740
1213
+ },
1214
+ {
1215
+ "epoch": 0.4210228878214185,
1216
+ "grad_norm": 31.648059844970703,
1217
+ "learning_rate": 3.852306603369294e-06,
1218
+ "loss": 6.8761,
1219
+ "mean_token_accuracy": 0.665014611184597,
1220
+ "step": 745
1221
+ },
1222
+ {
1223
+ "epoch": 0.4238485447866629,
1224
+ "grad_norm": 38.39750289916992,
1225
+ "learning_rate": 3.826215412953991e-06,
1226
+ "loss": 6.0653,
1227
+ "mean_token_accuracy": 0.6770342886447906,
1228
+ "step": 750
1229
+ },
1230
+ {
1231
+ "epoch": 0.42667420175190734,
1232
+ "grad_norm": 30.88237190246582,
1233
+ "learning_rate": 3.800056422195792e-06,
1234
+ "loss": 6.535,
1235
+ "mean_token_accuracy": 0.6590037375688553,
1236
+ "step": 755
1237
+ },
1238
+ {
1239
+ "epoch": 0.42949985871715174,
1240
+ "grad_norm": 63.2603874206543,
1241
+ "learning_rate": 3.773831777736499e-06,
1242
+ "loss": 6.5161,
1243
+ "mean_token_accuracy": 0.6474016666412353,
1244
+ "step": 760
1245
+ },
1246
+ {
1247
+ "epoch": 0.43232551568239613,
1248
+ "grad_norm": 50.654457092285156,
1249
+ "learning_rate": 3.747543631605547e-06,
1250
+ "loss": 6.7369,
1251
+ "mean_token_accuracy": 0.6452984467148781,
1252
+ "step": 765
1253
+ },
1254
+ {
1255
+ "epoch": 0.4351511726476406,
1256
+ "grad_norm": 37.10031509399414,
1257
+ "learning_rate": 3.721194141043398e-06,
1258
+ "loss": 6.2939,
1259
+ "mean_token_accuracy": 0.6634088665246963,
1260
+ "step": 770
1261
+ },
1262
+ {
1263
+ "epoch": 0.437976829612885,
1264
+ "grad_norm": 32.4448356628418,
1265
+ "learning_rate": 3.694785468324526e-06,
1266
+ "loss": 5.3857,
1267
+ "mean_token_accuracy": 0.7086734473705292,
1268
+ "step": 775
1269
+ },
1270
+ {
1271
+ "epoch": 0.4408024865781294,
1272
+ "grad_norm": 37.90336990356445,
1273
+ "learning_rate": 3.6683197805799684e-06,
1274
+ "loss": 5.5692,
1275
+ "mean_token_accuracy": 0.691333469748497,
1276
+ "step": 780
1277
+ },
1278
+ {
1279
+ "epoch": 0.4436281435433738,
1280
+ "grad_norm": 33.28772735595703,
1281
+ "learning_rate": 3.641799249619492e-06,
1282
+ "loss": 5.7555,
1283
+ "mean_token_accuracy": 0.6938249558210373,
1284
+ "step": 785
1285
+ },
1286
+ {
1287
+ "epoch": 0.44645380050861827,
1288
+ "grad_norm": 40.561336517333984,
1289
+ "learning_rate": 3.6152260517533743e-06,
1290
+ "loss": 6.5292,
1291
+ "mean_token_accuracy": 0.6575401365756989,
1292
+ "step": 790
1293
+ },
1294
+ {
1295
+ "epoch": 0.44927945747386266,
1296
+ "grad_norm": 34.72788619995117,
1297
+ "learning_rate": 3.588602367613805e-06,
1298
+ "loss": 5.6275,
1299
+ "mean_token_accuracy": 0.6937674105167388,
1300
+ "step": 795
1301
+ },
1302
+ {
1303
+ "epoch": 0.4521051144391071,
1304
+ "grad_norm": 51.351802825927734,
1305
+ "learning_rate": 3.56193038197595e-06,
1306
+ "loss": 5.8965,
1307
+ "mean_token_accuracy": 0.7013622283935547,
1308
+ "step": 800
1309
+ },
1310
+ {
1311
+ "epoch": 0.4549307714043515,
1312
+ "grad_norm": 34.20261001586914,
1313
+ "learning_rate": 3.5352122835786555e-06,
1314
+ "loss": 6.2313,
1315
+ "mean_token_accuracy": 0.6691349744796753,
1316
+ "step": 805
1317
+ },
1318
+ {
1319
+ "epoch": 0.45775642836959596,
1320
+ "grad_norm": 32.29352951049805,
1321
+ "learning_rate": 3.508450264944848e-06,
1322
+ "loss": 6.0912,
1323
+ "mean_token_accuracy": 0.6840269297361374,
1324
+ "step": 810
1325
+ },
1326
+ {
1327
+ "epoch": 0.46058208533484035,
1328
+ "grad_norm": 39.749229431152344,
1329
+ "learning_rate": 3.481646522201602e-06,
1330
+ "loss": 5.9559,
1331
+ "mean_token_accuracy": 0.6829979822039605,
1332
+ "step": 815
1333
+ },
1334
+ {
1335
+ "epoch": 0.46340774230008475,
1336
+ "grad_norm": 39.798587799072266,
1337
+ "learning_rate": 3.4548032548999336e-06,
1338
+ "loss": 6.161,
1339
+ "mean_token_accuracy": 0.6791020795702934,
1340
+ "step": 820
1341
+ },
1342
+ {
1343
+ "epoch": 0.4662333992653292,
1344
+ "grad_norm": 51.893211364746094,
1345
+ "learning_rate": 3.4279226658342925e-06,
1346
+ "loss": 6.3016,
1347
+ "mean_token_accuracy": 0.6657601609826088,
1348
+ "step": 825
1349
+ },
1350
+ {
1351
+ "epoch": 0.4690590562305736,
1352
+ "grad_norm": 50.02108383178711,
1353
+ "learning_rate": 3.4010069608618056e-06,
1354
+ "loss": 6.0286,
1355
+ "mean_token_accuracy": 0.6940437912940979,
1356
+ "step": 830
1357
+ },
1358
+ {
1359
+ "epoch": 0.47188471319581804,
1360
+ "grad_norm": 55.37822723388672,
1361
+ "learning_rate": 3.374058348721255e-06,
1362
+ "loss": 6.2305,
1363
+ "mean_token_accuracy": 0.6752733439207077,
1364
+ "step": 835
1365
+ },
1366
+ {
1367
+ "epoch": 0.47471037016106243,
1368
+ "grad_norm": 39.274688720703125,
1369
+ "learning_rate": 3.347079040851833e-06,
1370
+ "loss": 6.4344,
1371
+ "mean_token_accuracy": 0.6463314086198807,
1372
+ "step": 840
1373
+ },
1374
+ {
1375
+ "epoch": 0.4775360271263069,
1376
+ "grad_norm": 33.772884368896484,
1377
+ "learning_rate": 3.3200712512116598e-06,
1378
+ "loss": 4.5399,
1379
+ "mean_token_accuracy": 0.7319628089666367,
1380
+ "step": 845
1381
+ },
1382
+ {
1383
+ "epoch": 0.4803616840915513,
1384
+ "grad_norm": 47.047767639160156,
1385
+ "learning_rate": 3.293037196096113e-06,
1386
+ "loss": 6.0456,
1387
+ "mean_token_accuracy": 0.664868313074112,
1388
+ "step": 850
1389
+ },
1390
+ {
1391
+ "epoch": 0.4831873410567957,
1392
+ "grad_norm": 41.05727767944336,
1393
+ "learning_rate": 3.2659790939559453e-06,
1394
+ "loss": 5.7682,
1395
+ "mean_token_accuracy": 0.7045676440000535,
1396
+ "step": 855
1397
+ },
1398
+ {
1399
+ "epoch": 0.4860129980220401,
1400
+ "grad_norm": 37.37389373779297,
1401
+ "learning_rate": 3.238899165215245e-06,
1402
+ "loss": 5.2326,
1403
+ "mean_token_accuracy": 0.7269378632307053,
1404
+ "step": 860
1405
+ },
1406
+ {
1407
+ "epoch": 0.48883865498728457,
1408
+ "grad_norm": 39.5576286315918,
1409
+ "learning_rate": 3.211799632089216e-06,
1410
+ "loss": 5.1324,
1411
+ "mean_token_accuracy": 0.7152336061000824,
1412
+ "step": 865
1413
+ },
1414
+ {
1415
+ "epoch": 0.49166431195252897,
1416
+ "grad_norm": 41.0853157043457,
1417
+ "learning_rate": 3.1846827184018294e-06,
1418
+ "loss": 5.7599,
1419
+ "mean_token_accuracy": 0.6923278480768204,
1420
+ "step": 870
1421
+ },
1422
+ {
1423
+ "epoch": 0.49448996891777336,
1424
+ "grad_norm": 51.03715896606445,
1425
+ "learning_rate": 3.157550649403322e-06,
1426
+ "loss": 4.9395,
1427
+ "mean_token_accuracy": 0.7514464080333709,
1428
+ "step": 875
1429
+ },
1430
+ {
1431
+ "epoch": 0.4973156258830178,
1432
+ "grad_norm": 37.161231994628906,
1433
+ "learning_rate": 3.1304056515876024e-06,
1434
+ "loss": 7.0247,
1435
+ "mean_token_accuracy": 0.6437601447105408,
1436
+ "step": 880
1437
+ },
1438
+ {
1439
+ "epoch": 0.5001412828482622,
1440
+ "grad_norm": 47.0338134765625,
1441
+ "learning_rate": 3.1032499525095303e-06,
1442
+ "loss": 5.647,
1443
+ "mean_token_accuracy": 0.6982032418251037,
1444
+ "step": 885
1445
+ },
1446
+ {
1447
+ "epoch": 0.5029669398135066,
1448
+ "grad_norm": 32.64208221435547,
1449
+ "learning_rate": 3.076085780602128e-06,
1450
+ "loss": 5.6704,
1451
+ "mean_token_accuracy": 0.6939798533916474,
1452
+ "step": 890
1453
+ },
1454
+ {
1455
+ "epoch": 0.5057925967787511,
1456
+ "grad_norm": 32.635005950927734,
1457
+ "learning_rate": 3.048915364993708e-06,
1458
+ "loss": 5.2166,
1459
+ "mean_token_accuracy": 0.7231873899698258,
1460
+ "step": 895
1461
+ },
1462
+ {
1463
+ "epoch": 0.5086182537439955,
1464
+ "grad_norm": 29.856887817382812,
1465
+ "learning_rate": 3.0217409353249512e-06,
1466
+ "loss": 5.9994,
1467
+ "mean_token_accuracy": 0.6912487387657166,
1468
+ "step": 900
1469
+ },
1470
+ {
1471
+ "epoch": 0.5086182537439955,
1472
+ "eval_loss": 1.5281765460968018,
1473
+ "eval_mean_token_accuracy": 0.6797472610691477,
1474
+ "eval_runtime": 60.4506,
1475
+ "eval_samples_per_second": 26.021,
1476
+ "eval_steps_per_second": 3.259,
1477
+ "step": 900
1478
+ }
1479
+ ],
1480
+ "logging_steps": 5,
1481
+ "max_steps": 1770,
1482
+ "num_input_tokens_seen": 0,
1483
+ "num_train_epochs": 1,
1484
+ "save_steps": 300,
1485
+ "stateful_callbacks": {
1486
+ "TrainerControl": {
1487
+ "args": {
1488
+ "should_epoch_stop": false,
1489
+ "should_evaluate": false,
1490
+ "should_log": false,
1491
+ "should_save": true,
1492
+ "should_training_stop": false
1493
+ },
1494
+ "attributes": {}
1495
+ }
1496
+ },
1497
+ "total_flos": 5.657153711785286e+16,
1498
+ "train_batch_size": 2,
1499
+ "trial_name": null,
1500
+ "trial_params": null
1501
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bd56f5e149cf0b150f90ab3dcb1fdb48f7680a084d366beb4c63c4d56318225
3
+ size 5624