Dimple-7B
Browse files- README.md +199 -0
- added_tokens.json +26 -0
- chat_template.json +3 -0
- image_processing_dimple.py +458 -0
- merges.txt +0 -0
- preprocessor_config.json +33 -0
- processing_dimple.py +178 -0
- processor_config.json +6 -0
- special_tokens_map.json +37 -0
- tokenization_dimple.py +340 -0
- tokenizer_config.json +225 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
added_tokens.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|beginoftext|>": 151665,
|
| 5 |
+
"<|box_end|>": 151649,
|
| 6 |
+
"<|box_start|>": 151648,
|
| 7 |
+
"<|endoftext|>": 151643,
|
| 8 |
+
"<|file_sep|>": 151664,
|
| 9 |
+
"<|fim_middle|>": 151660,
|
| 10 |
+
"<|fim_pad|>": 151662,
|
| 11 |
+
"<|fim_prefix|>": 151659,
|
| 12 |
+
"<|fim_suffix|>": 151661,
|
| 13 |
+
"<|im_end|>": 151645,
|
| 14 |
+
"<|im_start|>": 151644,
|
| 15 |
+
"<|image_pad|>": 151655,
|
| 16 |
+
"<|mask|>": 151666,
|
| 17 |
+
"<|object_ref_end|>": 151647,
|
| 18 |
+
"<|object_ref_start|>": 151646,
|
| 19 |
+
"<|quad_end|>": 151651,
|
| 20 |
+
"<|quad_start|>": 151650,
|
| 21 |
+
"<|repo_name|>": 151663,
|
| 22 |
+
"<|video_pad|>": 151656,
|
| 23 |
+
"<|vision_end|>": 151653,
|
| 24 |
+
"<|vision_pad|>": 151654,
|
| 25 |
+
"<|vision_start|>": 151652
|
| 26 |
+
}
|
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
| 3 |
+
}
|
image_processing_dimple.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""Image processor class for Dimple."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from typing import Dict, List, Optional, Union
|
| 24 |
+
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 28 |
+
from transformers.image_transforms import (
|
| 29 |
+
convert_to_rgb,
|
| 30 |
+
resize,
|
| 31 |
+
to_channel_dimension_format,
|
| 32 |
+
)
|
| 33 |
+
from transformers.image_utils import (
|
| 34 |
+
OPENAI_CLIP_MEAN,
|
| 35 |
+
OPENAI_CLIP_STD,
|
| 36 |
+
ChannelDimension,
|
| 37 |
+
ImageInput,
|
| 38 |
+
PILImageResampling,
|
| 39 |
+
VideoInput,
|
| 40 |
+
get_image_size,
|
| 41 |
+
infer_channel_dimension_format,
|
| 42 |
+
is_scaled_image,
|
| 43 |
+
is_valid_image,
|
| 44 |
+
make_list_of_images,
|
| 45 |
+
to_numpy_array,
|
| 46 |
+
valid_images,
|
| 47 |
+
validate_preprocess_arguments,
|
| 48 |
+
)
|
| 49 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if is_vision_available():
|
| 56 |
+
from PIL import Image
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 60 |
+
"""
|
| 61 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 65 |
+
The input image.
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
list: A list of images.
|
| 69 |
+
"""
|
| 70 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 71 |
+
return [img for img_list in images for img in img_list]
|
| 72 |
+
|
| 73 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 74 |
+
return images
|
| 75 |
+
|
| 76 |
+
elif is_valid_image(images):
|
| 77 |
+
return [images]
|
| 78 |
+
|
| 79 |
+
raise ValueError(f"Could not make batched images from {images}")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
|
| 83 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
| 84 |
+
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
| 85 |
+
return videos
|
| 86 |
+
|
| 87 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
| 88 |
+
if isinstance(videos[0], Image.Image):
|
| 89 |
+
return [videos]
|
| 90 |
+
elif len(videos[0].shape) == 4:
|
| 91 |
+
return [list(video) for video in videos]
|
| 92 |
+
|
| 93 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
| 94 |
+
return [list(videos)]
|
| 95 |
+
|
| 96 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def smart_resize(
|
| 100 |
+
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
|
| 101 |
+
):
|
| 102 |
+
"""Rescales the image so that the following conditions are met:
|
| 103 |
+
|
| 104 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 105 |
+
|
| 106 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 107 |
+
|
| 108 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 109 |
+
|
| 110 |
+
"""
|
| 111 |
+
if height < factor or width < factor:
|
| 112 |
+
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 113 |
+
elif max(height, width) / min(height, width) > 200:
|
| 114 |
+
raise ValueError(
|
| 115 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 116 |
+
)
|
| 117 |
+
h_bar = round(height / factor) * factor
|
| 118 |
+
w_bar = round(width / factor) * factor
|
| 119 |
+
if h_bar * w_bar > max_pixels:
|
| 120 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 121 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 122 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 123 |
+
elif h_bar * w_bar < min_pixels:
|
| 124 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 125 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 126 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 127 |
+
return h_bar, w_bar
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class DimpleImageProcessor(BaseImageProcessor):
|
| 131 |
+
r"""
|
| 132 |
+
Constructs a Dimple image processor that dynamically resizes images based on the original images.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 136 |
+
Whether to resize the image's (height, width) dimensions.
|
| 137 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 138 |
+
Resampling filter to use when resizing the image.
|
| 139 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 140 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 141 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 142 |
+
Scale factor to use if rescaling the image.
|
| 143 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 144 |
+
Whether to normalize the image.
|
| 145 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
| 146 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 147 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
| 148 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 149 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 150 |
+
Whether to convert the image to RGB.
|
| 151 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
| 152 |
+
The min pixels of the image to resize the image.
|
| 153 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
| 154 |
+
The max pixels of the image to resize the image.
|
| 155 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 156 |
+
The spacial patch size of the vision encoder.
|
| 157 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
| 158 |
+
The temporal patch size of the vision encoder.
|
| 159 |
+
merge_size (`int`, *optional*, defaults to 2):
|
| 160 |
+
The merge size of the vision encoder to llm encoder.
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
| 164 |
+
|
| 165 |
+
def __init__(
|
| 166 |
+
self,
|
| 167 |
+
do_resize: bool = True,
|
| 168 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 169 |
+
do_rescale: bool = True,
|
| 170 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 171 |
+
do_normalize: bool = True,
|
| 172 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 173 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 174 |
+
do_convert_rgb: bool = True,
|
| 175 |
+
min_pixels: int = 56 * 56,
|
| 176 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 177 |
+
patch_size: int = 14,
|
| 178 |
+
temporal_patch_size: int = 2,
|
| 179 |
+
merge_size: int = 2,
|
| 180 |
+
**kwargs,
|
| 181 |
+
) -> None:
|
| 182 |
+
super().__init__(**kwargs)
|
| 183 |
+
self.do_resize = do_resize
|
| 184 |
+
self.resample = resample
|
| 185 |
+
self.do_rescale = do_rescale
|
| 186 |
+
self.rescale_factor = rescale_factor
|
| 187 |
+
self.do_normalize = do_normalize
|
| 188 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 189 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 190 |
+
self.min_pixels = min_pixels
|
| 191 |
+
self.max_pixels = max_pixels
|
| 192 |
+
self.patch_size = patch_size
|
| 193 |
+
self.temporal_patch_size = temporal_patch_size
|
| 194 |
+
self.merge_size = merge_size
|
| 195 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 196 |
+
self.do_convert_rgb = do_convert_rgb
|
| 197 |
+
|
| 198 |
+
def _preprocess(
|
| 199 |
+
self,
|
| 200 |
+
images: Union[ImageInput, VideoInput],
|
| 201 |
+
do_resize: bool = None,
|
| 202 |
+
resample: PILImageResampling = None,
|
| 203 |
+
do_rescale: bool = None,
|
| 204 |
+
rescale_factor: float = None,
|
| 205 |
+
do_normalize: bool = None,
|
| 206 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 207 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 208 |
+
do_convert_rgb: bool = None,
|
| 209 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 210 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 211 |
+
):
|
| 212 |
+
"""
|
| 213 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
images (`ImageInput`):
|
| 217 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 218 |
+
vision_info (`List[Dict]`, *optional*):
|
| 219 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
| 220 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 221 |
+
Whether to resize the image.
|
| 222 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 223 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 224 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 225 |
+
Whether to rescale the image.
|
| 226 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 227 |
+
Scale factor to use if rescaling the image.
|
| 228 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 229 |
+
Whether to normalize the image.
|
| 230 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 231 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 232 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 233 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 234 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 235 |
+
Whether to convert the image to RGB.
|
| 236 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 237 |
+
The channel dimension format for the output image. Can be one of:
|
| 238 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 239 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 240 |
+
- Unset: Use the channel dimension format of the input image.
|
| 241 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 242 |
+
The channel dimension format for the input image. Can be one of:
|
| 243 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 244 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 245 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 246 |
+
"""
|
| 247 |
+
images = make_list_of_images(images)
|
| 248 |
+
|
| 249 |
+
if do_convert_rgb:
|
| 250 |
+
images = [convert_to_rgb(image) for image in images]
|
| 251 |
+
|
| 252 |
+
# All transformations expect numpy arrays.
|
| 253 |
+
images = [to_numpy_array(image) for image in images]
|
| 254 |
+
|
| 255 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 256 |
+
logger.warning_once(
|
| 257 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 258 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 259 |
+
)
|
| 260 |
+
if input_data_format is None:
|
| 261 |
+
# We assume that all images have the same channel dimension format.
|
| 262 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 263 |
+
|
| 264 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 265 |
+
resized_height, resized_width = height, width
|
| 266 |
+
processed_images = []
|
| 267 |
+
for image in images:
|
| 268 |
+
if do_resize:
|
| 269 |
+
resized_height, resized_width = smart_resize(
|
| 270 |
+
height,
|
| 271 |
+
width,
|
| 272 |
+
factor=self.patch_size * self.merge_size,
|
| 273 |
+
min_pixels=self.min_pixels,
|
| 274 |
+
max_pixels=self.max_pixels,
|
| 275 |
+
)
|
| 276 |
+
image = resize(
|
| 277 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if do_rescale:
|
| 281 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 282 |
+
|
| 283 |
+
if do_normalize:
|
| 284 |
+
image = self.normalize(
|
| 285 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
| 289 |
+
processed_images.append(image)
|
| 290 |
+
|
| 291 |
+
patches = np.array(processed_images)
|
| 292 |
+
if data_format == ChannelDimension.LAST:
|
| 293 |
+
patches = patches.transpose(0, 3, 1, 2)
|
| 294 |
+
if patches.shape[0] == 1:
|
| 295 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
| 296 |
+
channel = patches.shape[1]
|
| 297 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
| 298 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
| 299 |
+
patches = patches.reshape(
|
| 300 |
+
grid_t,
|
| 301 |
+
self.temporal_patch_size,
|
| 302 |
+
channel,
|
| 303 |
+
grid_h // self.merge_size,
|
| 304 |
+
self.merge_size,
|
| 305 |
+
self.patch_size,
|
| 306 |
+
grid_w // self.merge_size,
|
| 307 |
+
self.merge_size,
|
| 308 |
+
self.patch_size,
|
| 309 |
+
)
|
| 310 |
+
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
| 311 |
+
flatten_patches = patches.reshape(
|
| 312 |
+
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
| 316 |
+
|
| 317 |
+
def preprocess(
|
| 318 |
+
self,
|
| 319 |
+
images: ImageInput,
|
| 320 |
+
videos: VideoInput = None,
|
| 321 |
+
do_resize: bool = None,
|
| 322 |
+
size: Dict[str, int] = None,
|
| 323 |
+
resample: PILImageResampling = None,
|
| 324 |
+
do_rescale: bool = None,
|
| 325 |
+
rescale_factor: float = None,
|
| 326 |
+
do_normalize: bool = None,
|
| 327 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 328 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 329 |
+
do_convert_rgb: bool = None,
|
| 330 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 331 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 332 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 333 |
+
):
|
| 334 |
+
"""
|
| 335 |
+
Args:
|
| 336 |
+
images (`ImageInput`):
|
| 337 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 338 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 339 |
+
videos (`VideoInput`):
|
| 340 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
| 341 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
| 342 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 343 |
+
Whether to resize the image.
|
| 344 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
| 345 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
| 346 |
+
the longest edge resized to keep the input aspect ratio.
|
| 347 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 348 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 349 |
+
has an effect if `do_resize` is set to `True`.
|
| 350 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 351 |
+
Whether to rescale the image.
|
| 352 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 353 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 354 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 355 |
+
Whether to normalize the image.
|
| 356 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 357 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 358 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 359 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 360 |
+
`True`.
|
| 361 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 362 |
+
Whether to convert the image to RGB.
|
| 363 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 364 |
+
The type of tensors to return. Can be one of:
|
| 365 |
+
- Unset: Return a list of `np.ndarray`.
|
| 366 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 367 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 368 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 369 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 370 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 371 |
+
The channel dimension format for the output image. Can be one of:
|
| 372 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 373 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 374 |
+
- Unset: Use the channel dimension format of the input image.
|
| 375 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 376 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 377 |
+
from the input image. Can be one of:
|
| 378 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 379 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 380 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 381 |
+
|
| 382 |
+
"""
|
| 383 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 384 |
+
size = size if size is not None else self.size
|
| 385 |
+
resample = resample if resample is not None else self.resample
|
| 386 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 387 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 388 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 389 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 390 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 391 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 392 |
+
|
| 393 |
+
if images is not None:
|
| 394 |
+
images = make_batched_images(images)
|
| 395 |
+
if videos is not None:
|
| 396 |
+
videos = make_batched_videos(videos)
|
| 397 |
+
|
| 398 |
+
if images is not None and not valid_images(images):
|
| 399 |
+
raise ValueError(
|
| 400 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 401 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
validate_preprocess_arguments(
|
| 405 |
+
rescale_factor=rescale_factor,
|
| 406 |
+
do_normalize=do_normalize,
|
| 407 |
+
image_mean=image_mean,
|
| 408 |
+
image_std=image_std,
|
| 409 |
+
do_resize=do_resize,
|
| 410 |
+
size=size,
|
| 411 |
+
resample=resample,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
if images is not None:
|
| 415 |
+
pixel_values, vision_grid_thws = [], []
|
| 416 |
+
for image in images:
|
| 417 |
+
patches, image_grid_thw = self._preprocess(
|
| 418 |
+
image,
|
| 419 |
+
do_resize=do_resize,
|
| 420 |
+
resample=resample,
|
| 421 |
+
do_rescale=do_rescale,
|
| 422 |
+
rescale_factor=rescale_factor,
|
| 423 |
+
do_normalize=do_normalize,
|
| 424 |
+
image_mean=image_mean,
|
| 425 |
+
image_std=image_std,
|
| 426 |
+
data_format=data_format,
|
| 427 |
+
do_convert_rgb=do_convert_rgb,
|
| 428 |
+
input_data_format=input_data_format,
|
| 429 |
+
)
|
| 430 |
+
pixel_values.extend(patches)
|
| 431 |
+
vision_grid_thws.append(image_grid_thw)
|
| 432 |
+
pixel_values = np.array(pixel_values)
|
| 433 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 434 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
| 435 |
+
|
| 436 |
+
if videos is not None:
|
| 437 |
+
pixel_values, vision_grid_thws = [], []
|
| 438 |
+
for images in videos:
|
| 439 |
+
patches, video_grid_thw = self._preprocess(
|
| 440 |
+
images,
|
| 441 |
+
do_resize=do_resize,
|
| 442 |
+
resample=resample,
|
| 443 |
+
do_rescale=do_rescale,
|
| 444 |
+
rescale_factor=rescale_factor,
|
| 445 |
+
do_normalize=do_normalize,
|
| 446 |
+
image_mean=image_mean,
|
| 447 |
+
image_std=image_std,
|
| 448 |
+
data_format=data_format,
|
| 449 |
+
do_convert_rgb=do_convert_rgb,
|
| 450 |
+
input_data_format=input_data_format,
|
| 451 |
+
)
|
| 452 |
+
pixel_values.extend(patches)
|
| 453 |
+
vision_grid_thws.append(video_grid_thw)
|
| 454 |
+
pixel_values = np.array(pixel_values)
|
| 455 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
| 456 |
+
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
| 457 |
+
|
| 458 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_dimple.DimpleImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_dimple.DimpleProcessor"
|
| 5 |
+
},
|
| 6 |
+
"do_convert_rgb": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.48145466,
|
| 12 |
+
0.4578275,
|
| 13 |
+
0.40821073
|
| 14 |
+
],
|
| 15 |
+
"image_processor_type": "DimpleImageProcessor",
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.26862954,
|
| 18 |
+
0.26130258,
|
| 19 |
+
0.27577711
|
| 20 |
+
],
|
| 21 |
+
"max_pixels": 112896.0,
|
| 22 |
+
"merge_size": 2,
|
| 23 |
+
"min_pixels": 3136,
|
| 24 |
+
"patch_size": 14,
|
| 25 |
+
"processor_class": "DimpleProcessor",
|
| 26 |
+
"resample": 3,
|
| 27 |
+
"rescale_factor": 0.00392156862745098,
|
| 28 |
+
"size": {
|
| 29 |
+
"max_pixels": 112896.0,
|
| 30 |
+
"min_pixels": 3136
|
| 31 |
+
},
|
| 32 |
+
"temporal_patch_size": 2
|
| 33 |
+
}
|
processing_dimple.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""
|
| 21 |
+
Processor class for Dimple.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
from typing import List, Union
|
| 25 |
+
|
| 26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 27 |
+
from transformers.image_utils import ImageInput, VideoInput
|
| 28 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 29 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 30 |
+
from transformers.utils import logging
|
| 31 |
+
|
| 32 |
+
from .image_processing_dimple import DimpleImageProcessor
|
| 33 |
+
from .tokenization_dimple import DimpleTokenizer
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class DimpleProcessorKwargs(ProcessingKwargs, total=False):
|
| 40 |
+
_defaults = {
|
| 41 |
+
"text_kwargs": {
|
| 42 |
+
"padding": False,
|
| 43 |
+
},
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class DimpleProcessor(ProcessorMixin):
|
| 48 |
+
r"""
|
| 49 |
+
Constructs a Dimple processor which wraps a Dimple image processor and a Dimple tokenizer into a single processor.
|
| 50 |
+
[`DimpleProcessor`] offers all the functionalities of [`DimpleImageProcessor`] and [`DimpleTokenizer`]. See the
|
| 51 |
+
[`~DimpleProcessor.__call__`] and [`~DimpleProcessor.decode`] for more information.
|
| 52 |
+
Args:
|
| 53 |
+
image_processor ([`DimpleImageProcessor`], *optional*):
|
| 54 |
+
The image processor is a required input.
|
| 55 |
+
tokenizer ([`DimpleTokenizer`], *optional*):
|
| 56 |
+
The tokenizer is a required input.
|
| 57 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
| 58 |
+
in a chat into a tokenizable string.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
attributes = ["image_processor", "tokenizer"]
|
| 62 |
+
valid_kwargs = ["chat_template"]
|
| 63 |
+
image_processor_class = "AutoImageProcessor"
|
| 64 |
+
tokenizer_class = "AutoTokenizer"
|
| 65 |
+
|
| 66 |
+
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
| 67 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 68 |
+
|
| 69 |
+
def __call__(
|
| 70 |
+
self,
|
| 71 |
+
images: ImageInput = None,
|
| 72 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 73 |
+
videos: VideoInput = None,
|
| 74 |
+
**kwargs: Unpack[DimpleProcessorKwargs],
|
| 75 |
+
) -> BatchFeature:
|
| 76 |
+
"""
|
| 77 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 78 |
+
and `kwargs` arguments to DimpleTokenizer's [`~DimpleTokenizer.__call__`] if `text` is not `None` to encode
|
| 79 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
| 80 |
+
DimpleImageProcessor's [`~DimpleImageProcessor.__call__`] if `vision_infos` is not `None`.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 84 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 85 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 86 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 87 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 88 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 89 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 90 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 91 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
| 92 |
+
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
| 93 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 94 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 95 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 96 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 97 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 98 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 102 |
+
|
| 103 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 104 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 105 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 106 |
+
`None`).
|
| 107 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 108 |
+
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
| 109 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
| 110 |
+
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
| 111 |
+
"""
|
| 112 |
+
output_kwargs = self._merge_kwargs(
|
| 113 |
+
DimpleProcessorKwargs,
|
| 114 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 115 |
+
**kwargs,
|
| 116 |
+
)
|
| 117 |
+
if images is not None:
|
| 118 |
+
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
|
| 119 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
| 120 |
+
else:
|
| 121 |
+
image_inputs = {}
|
| 122 |
+
image_grid_thw = None
|
| 123 |
+
|
| 124 |
+
if videos is not None:
|
| 125 |
+
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["videos_kwargs"])
|
| 126 |
+
video_grid_thw = videos_inputs["video_grid_thw"]
|
| 127 |
+
else:
|
| 128 |
+
videos_inputs = {}
|
| 129 |
+
video_grid_thw = None
|
| 130 |
+
|
| 131 |
+
if not isinstance(text, list):
|
| 132 |
+
text = [text]
|
| 133 |
+
|
| 134 |
+
if image_grid_thw is not None:
|
| 135 |
+
merge_length = self.image_processor.merge_size**2
|
| 136 |
+
index = 0
|
| 137 |
+
for i in range(len(text)):
|
| 138 |
+
while "<|image_pad|>" in text[i]:
|
| 139 |
+
text[i] = text[i].replace(
|
| 140 |
+
"<|image_pad|>", "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length), 1
|
| 141 |
+
)
|
| 142 |
+
index += 1
|
| 143 |
+
text[i] = text[i].replace("<|placeholder|>", "<|image_pad|>")
|
| 144 |
+
|
| 145 |
+
if video_grid_thw is not None:
|
| 146 |
+
merge_length = self.image_processor.merge_size**2
|
| 147 |
+
index = 0
|
| 148 |
+
for i in range(len(text)):
|
| 149 |
+
while "<|video_pad|>" in text[i]:
|
| 150 |
+
text[i] = text[i].replace(
|
| 151 |
+
"<|video_pad|>", "<|placeholder|>" * (video_grid_thw[index].prod() // merge_length), 1
|
| 152 |
+
)
|
| 153 |
+
index += 1
|
| 154 |
+
text[i] = text[i].replace("<|placeholder|>", "<|video_pad|>")
|
| 155 |
+
|
| 156 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 157 |
+
|
| 158 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
| 159 |
+
|
| 160 |
+
def batch_decode(self, *args, **kwargs):
|
| 161 |
+
"""
|
| 162 |
+
This method forwards all its arguments to DimpleTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 163 |
+
refer to the docstring of this method for more information.
|
| 164 |
+
"""
|
| 165 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 166 |
+
|
| 167 |
+
def decode(self, *args, **kwargs):
|
| 168 |
+
"""
|
| 169 |
+
This method forwards all its arguments to DimpleTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 170 |
+
the docstring of this method for more information.
|
| 171 |
+
"""
|
| 172 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 173 |
+
|
| 174 |
+
@property
|
| 175 |
+
def model_input_names(self):
|
| 176 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 177 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 178 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_dimple.DimpleProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "DimpleProcessor"
|
| 6 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|vision_start|>",
|
| 4 |
+
"<|vision_end|>",
|
| 5 |
+
"<|vision_pad|>",
|
| 6 |
+
"<|image_pad|>",
|
| 7 |
+
"<|video_pad|>"
|
| 8 |
+
],
|
| 9 |
+
"bos_token": {
|
| 10 |
+
"content": "<|beginoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<|mask|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenization_dimple.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on Qwen's implementations in this library.
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""Tokenization classes for Dimple."""
|
| 17 |
+
|
| 18 |
+
import json
|
| 19 |
+
import os
|
| 20 |
+
import unicodedata
|
| 21 |
+
from functools import lru_cache
|
| 22 |
+
from typing import Optional, Tuple
|
| 23 |
+
|
| 24 |
+
import regex as re
|
| 25 |
+
|
| 26 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 27 |
+
from transformers.utils import logging
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 31 |
+
|
| 32 |
+
VOCAB_FILES_NAMES = {
|
| 33 |
+
"vocab_file": "vocab.json",
|
| 34 |
+
"merges_file": "merges.txt",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
MAX_MODEL_INPUT_SIZES = {"rp-yu/Dimple-v0-Base-7B": 32768}
|
| 39 |
+
|
| 40 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@lru_cache()
|
| 44 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
| 45 |
+
def bytes_to_unicode():
|
| 46 |
+
"""
|
| 47 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 48 |
+
characters the bpe code barfs on.
|
| 49 |
+
|
| 50 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 51 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 52 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 53 |
+
tables between utf-8 bytes and unicode strings.
|
| 54 |
+
"""
|
| 55 |
+
bs = (
|
| 56 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
| 57 |
+
)
|
| 58 |
+
cs = bs[:]
|
| 59 |
+
n = 0
|
| 60 |
+
for b in range(2**8):
|
| 61 |
+
if b not in bs:
|
| 62 |
+
bs.append(b)
|
| 63 |
+
cs.append(2**8 + n)
|
| 64 |
+
n += 1
|
| 65 |
+
cs = [chr(n) for n in cs]
|
| 66 |
+
return dict(zip(bs, cs))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
| 70 |
+
def get_pairs(word):
|
| 71 |
+
"""
|
| 72 |
+
Return set of symbol pairs in a word.
|
| 73 |
+
|
| 74 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 75 |
+
"""
|
| 76 |
+
pairs = set()
|
| 77 |
+
prev_char = word[0]
|
| 78 |
+
for char in word[1:]:
|
| 79 |
+
pairs.add((prev_char, char))
|
| 80 |
+
prev_char = char
|
| 81 |
+
return pairs
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class DimpleTokenizer(PreTrainedTokenizer):
|
| 85 |
+
"""
|
| 86 |
+
Construct a Dimple tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 87 |
+
|
| 88 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 89 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
>>> from transformers import AutoTokenizer
|
| 93 |
+
|
| 94 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("rp-yu/Dimple-v0-Base-7B", trust_remote_code=True)
|
| 95 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 96 |
+
[9707, 1879]
|
| 97 |
+
|
| 98 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 99 |
+
[21927, 1879]
|
| 100 |
+
```
|
| 101 |
+
This is expected.
|
| 102 |
+
|
| 103 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
| 104 |
+
|
| 105 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 106 |
+
this superclass for more information regarding those methods.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
vocab_file (`str`):
|
| 110 |
+
Path to the vocabulary file.
|
| 111 |
+
merges_file (`str`):
|
| 112 |
+
Path to the merges file.
|
| 113 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
| 114 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
| 115 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 116 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 117 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 118 |
+
token instead.
|
| 119 |
+
bos_token (`str`, *optional*):
|
| 120 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 121 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 122 |
+
The end of sequence token.
|
| 123 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 124 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 125 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 126 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
| 127 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
| 128 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 129 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
| 130 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
| 131 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
| 132 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 136 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 137 |
+
|
| 138 |
+
def __init__(
|
| 139 |
+
self,
|
| 140 |
+
vocab_file,
|
| 141 |
+
merges_file,
|
| 142 |
+
errors="replace",
|
| 143 |
+
unk_token="<|endoftext|>",
|
| 144 |
+
bos_token=None,
|
| 145 |
+
eos_token="<|endoftext|>",
|
| 146 |
+
pad_token="<|endoftext|>",
|
| 147 |
+
clean_up_tokenization_spaces=False,
|
| 148 |
+
split_special_tokens=False,
|
| 149 |
+
**kwargs,
|
| 150 |
+
):
|
| 151 |
+
# Dimple vocab does not contain control tokens; added tokens need to be special
|
| 152 |
+
bos_token = (
|
| 153 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 154 |
+
if isinstance(bos_token, str)
|
| 155 |
+
else bos_token
|
| 156 |
+
)
|
| 157 |
+
eos_token = (
|
| 158 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 159 |
+
if isinstance(eos_token, str)
|
| 160 |
+
else eos_token
|
| 161 |
+
)
|
| 162 |
+
unk_token = (
|
| 163 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 164 |
+
if isinstance(unk_token, str)
|
| 165 |
+
else unk_token
|
| 166 |
+
)
|
| 167 |
+
pad_token = (
|
| 168 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 169 |
+
if isinstance(pad_token, str)
|
| 170 |
+
else pad_token
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 174 |
+
self.encoder = json.load(vocab_handle)
|
| 175 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 176 |
+
self.errors = errors # how to handle errors in decoding
|
| 177 |
+
self.byte_encoder = bytes_to_unicode()
|
| 178 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 179 |
+
bpe_merges = []
|
| 180 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
| 181 |
+
for i, line in enumerate(merges_handle):
|
| 182 |
+
line = line.strip()
|
| 183 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
| 184 |
+
continue
|
| 185 |
+
bpe_merges.append(tuple(line.split()))
|
| 186 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 187 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
| 188 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
| 189 |
+
# not a memory leak but appears as one.
|
| 190 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
| 191 |
+
self.cache = {}
|
| 192 |
+
|
| 193 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
| 194 |
+
|
| 195 |
+
if kwargs.get("add_prefix_space", False):
|
| 196 |
+
logger.warning_once(
|
| 197 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
super().__init__(
|
| 201 |
+
errors=errors,
|
| 202 |
+
bos_token=bos_token,
|
| 203 |
+
eos_token=eos_token,
|
| 204 |
+
pad_token=pad_token,
|
| 205 |
+
unk_token=unk_token,
|
| 206 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 207 |
+
split_special_tokens=split_special_tokens,
|
| 208 |
+
**kwargs,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
@property
|
| 212 |
+
def vocab_size(self) -> int:
|
| 213 |
+
return len(self.encoder)
|
| 214 |
+
|
| 215 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
| 216 |
+
def get_vocab(self):
|
| 217 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 218 |
+
|
| 219 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
| 220 |
+
def bpe(self, token):
|
| 221 |
+
if token in self.cache:
|
| 222 |
+
return self.cache[token]
|
| 223 |
+
word = tuple(token)
|
| 224 |
+
pairs = get_pairs(word)
|
| 225 |
+
|
| 226 |
+
if not pairs:
|
| 227 |
+
return token
|
| 228 |
+
|
| 229 |
+
while True:
|
| 230 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 231 |
+
if bigram not in self.bpe_ranks:
|
| 232 |
+
break
|
| 233 |
+
first, second = bigram
|
| 234 |
+
new_word = []
|
| 235 |
+
i = 0
|
| 236 |
+
while i < len(word):
|
| 237 |
+
try:
|
| 238 |
+
j = word.index(first, i)
|
| 239 |
+
except ValueError:
|
| 240 |
+
new_word.extend(word[i:])
|
| 241 |
+
break
|
| 242 |
+
else:
|
| 243 |
+
new_word.extend(word[i:j])
|
| 244 |
+
i = j
|
| 245 |
+
|
| 246 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 247 |
+
new_word.append(first + second)
|
| 248 |
+
i += 2
|
| 249 |
+
else:
|
| 250 |
+
new_word.append(word[i])
|
| 251 |
+
i += 1
|
| 252 |
+
new_word = tuple(new_word)
|
| 253 |
+
word = new_word
|
| 254 |
+
if len(word) == 1:
|
| 255 |
+
break
|
| 256 |
+
else:
|
| 257 |
+
pairs = get_pairs(word)
|
| 258 |
+
word = " ".join(word)
|
| 259 |
+
self.cache[token] = word
|
| 260 |
+
return word
|
| 261 |
+
|
| 262 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
| 263 |
+
def _tokenize(self, text):
|
| 264 |
+
"""Tokenize a string."""
|
| 265 |
+
bpe_tokens = []
|
| 266 |
+
for token in re.findall(self.pat, text):
|
| 267 |
+
token = "".join(
|
| 268 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
| 269 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
| 270 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
| 271 |
+
return bpe_tokens
|
| 272 |
+
|
| 273 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
| 274 |
+
def _convert_token_to_id(self, token):
|
| 275 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 276 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 277 |
+
|
| 278 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
| 279 |
+
def _convert_id_to_token(self, index):
|
| 280 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 281 |
+
return self.decoder.get(index)
|
| 282 |
+
|
| 283 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
| 284 |
+
def convert_tokens_to_string(self, tokens):
|
| 285 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 286 |
+
text = "".join(tokens)
|
| 287 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
| 288 |
+
return text
|
| 289 |
+
|
| 290 |
+
def decode(
|
| 291 |
+
self,
|
| 292 |
+
token_ids,
|
| 293 |
+
skip_special_tokens: bool = False,
|
| 294 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
| 295 |
+
spaces_between_special_tokens: bool = False,
|
| 296 |
+
**kwargs,
|
| 297 |
+
) -> str:
|
| 298 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
| 299 |
+
# and cannot be configured elsewhere, but it should default to False for DiM15Tokenizer
|
| 300 |
+
return super().decode(
|
| 301 |
+
token_ids,
|
| 302 |
+
skip_special_tokens=skip_special_tokens,
|
| 303 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 304 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 305 |
+
**kwargs,
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
| 309 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 310 |
+
if not os.path.isdir(save_directory):
|
| 311 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 312 |
+
return
|
| 313 |
+
vocab_file = os.path.join(
|
| 314 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 315 |
+
)
|
| 316 |
+
merge_file = os.path.join(
|
| 317 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 321 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 322 |
+
|
| 323 |
+
index = 0
|
| 324 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 325 |
+
writer.write("#version: 0.2\n")
|
| 326 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
| 327 |
+
if index != token_index:
|
| 328 |
+
logger.warning(
|
| 329 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
| 330 |
+
" Please check that the tokenizer is not corrupted!"
|
| 331 |
+
)
|
| 332 |
+
index = token_index
|
| 333 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
| 334 |
+
index += 1
|
| 335 |
+
|
| 336 |
+
return vocab_file, merge_file
|
| 337 |
+
|
| 338 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
| 339 |
+
text = unicodedata.normalize("NFC", text)
|
| 340 |
+
return (text, kwargs)
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<|beginoftext|>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "<|mask|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": true
|
| 196 |
+
}
|
| 197 |
+
},
|
| 198 |
+
"additional_special_tokens": [
|
| 199 |
+
"<|vision_start|>",
|
| 200 |
+
"<|vision_end|>",
|
| 201 |
+
"<|vision_pad|>",
|
| 202 |
+
"<|image_pad|>",
|
| 203 |
+
"<|video_pad|>"
|
| 204 |
+
],
|
| 205 |
+
"auto_map": {
|
| 206 |
+
"AutoProcessor": "processing_dimple.DimpleProcessor",
|
| 207 |
+
"AutoTokenizer": [
|
| 208 |
+
"tokenization_dimple.DimpleTokenizer",
|
| 209 |
+
null
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
"bos_token": "<|beginoftext|>",
|
| 213 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
| 214 |
+
"clean_up_tokenization_spaces": false,
|
| 215 |
+
"eos_token": "<|endoftext|>",
|
| 216 |
+
"errors": "replace",
|
| 217 |
+
"mask_token": "<|mask|>",
|
| 218 |
+
"model_max_length": 131072,
|
| 219 |
+
"pad_token": "<|endoftext|>",
|
| 220 |
+
"padding_side": "left",
|
| 221 |
+
"processor_class": "DimpleProcessor",
|
| 222 |
+
"split_special_tokens": false,
|
| 223 |
+
"tokenizer_class": "DimpleTokenizer",
|
| 224 |
+
"unk_token": null
|
| 225 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|