Create handler.py
Browse files- handler.py +116 -0
handler.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
import base64
|
| 5 |
+
import io
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import logging
|
| 8 |
+
import requests
|
| 9 |
+
import traceback # For formatting exception tracebacks
|
| 10 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 11 |
+
from qwen_vl_utils import process_vision_info
|
| 12 |
+
|
| 13 |
+
class EndpointHandler():
|
| 14 |
+
"""
|
| 15 |
+
Handler class for the Qwen2-VL-7B-Instruct model on Hugging Face Inference Endpoints.
|
| 16 |
+
This handler processes text, image, and video inputs, leveraging the Qwen2-VL model
|
| 17 |
+
for multimodal understanding and generation.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(self, path=""):
|
| 21 |
+
"""
|
| 22 |
+
Initializes the handler and loads the Qwen2-VL model.
|
| 23 |
+
Args:
|
| 24 |
+
path (str, optional): The path to the Qwen2-VL model directory. Defaults to "".
|
| 25 |
+
"""
|
| 26 |
+
self.model_dir = path
|
| 27 |
+
|
| 28 |
+
# Load the Qwen2-VL model
|
| 29 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 30 |
+
self.model_dir, torch_dtype="auto", device_map="auto"
|
| 31 |
+
)
|
| 32 |
+
self.processor = AutoProcessor.from_pretrained(self.model_dir)
|
| 33 |
+
|
| 34 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 35 |
+
"""
|
| 36 |
+
Processes the input data and returns the Qwen2-VL model's output.
|
| 37 |
+
Args:
|
| 38 |
+
data (Dict[str, Any]): A dictionary containing the input data.
|
| 39 |
+
- "inputs" (str): The input text, including image/video references.
|
| 40 |
+
- "max_new_tokens" (int, optional): Max tokens to generate (default: 128).
|
| 41 |
+
Returns:
|
| 42 |
+
Dict[str, Any]: A dictionary containing the generated text.
|
| 43 |
+
"""
|
| 44 |
+
inputs = data.get("inputs")
|
| 45 |
+
max_new_tokens = data.get("max_new_tokens", 128)
|
| 46 |
+
|
| 47 |
+
# Construct the messages list from the input string
|
| 48 |
+
messages = [{"role": "user", "content": self._parse_input(inputs)}]
|
| 49 |
+
|
| 50 |
+
# Prepare for inference (using qwen_vl_utils)
|
| 51 |
+
text = self.processor.apply_chat_template(
|
| 52 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 53 |
+
)
|
| 54 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 55 |
+
|
| 56 |
+
inputs = self.processor(
|
| 57 |
+
text=[text],
|
| 58 |
+
images=image_inputs,
|
| 59 |
+
videos=video_inputs,
|
| 60 |
+
padding=True,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
)
|
| 63 |
+
inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
|
| 65 |
+
# Inference
|
| 66 |
+
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
| 67 |
+
generated_ids_trimmed = [
|
| 68 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 69 |
+
]
|
| 70 |
+
output_text = self.processor.batch_decode(
|
| 71 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 72 |
+
)[0]
|
| 73 |
+
|
| 74 |
+
return {"generated_text": output_text}
|
| 75 |
+
|
| 76 |
+
def _parse_input(self, input_string):
|
| 77 |
+
"""
|
| 78 |
+
Parses the input string to identify image/video references and text.
|
| 79 |
+
Args:
|
| 80 |
+
input_string (str): The input string containing text, image, and video references.
|
| 81 |
+
Returns:
|
| 82 |
+
list: A list of dictionaries representing the parsed content.
|
| 83 |
+
"""
|
| 84 |
+
content = []
|
| 85 |
+
parts = input_string.split("<image>")
|
| 86 |
+
for i, part in enumerate(parts):
|
| 87 |
+
if i == 0: # Text part
|
| 88 |
+
content.append({"type": "text", "text": part.strip()})
|
| 89 |
+
else: # Image part
|
| 90 |
+
image = self._load_image(part.strip())
|
| 91 |
+
if image:
|
| 92 |
+
content.append({"type": "image", "image": image})
|
| 93 |
+
return content
|
| 94 |
+
|
| 95 |
+
def _load_image(self, image_data):
|
| 96 |
+
"""
|
| 97 |
+
Loads an image from a URL or base64 encoded string.
|
| 98 |
+
Args:
|
| 99 |
+
image_data (str): The image data, either a URL or a base64 encoded string.
|
| 100 |
+
Returns:
|
| 101 |
+
PIL.Image.Image or None: The loaded image, or None if loading fails.
|
| 102 |
+
"""
|
| 103 |
+
try:
|
| 104 |
+
if image_data.startswith("http"):
|
| 105 |
+
response = requests.get(image_data, stream=True)
|
| 106 |
+
response.raise_for_status() # Check for HTTP errors
|
| 107 |
+
return Image.open(response.raw)
|
| 108 |
+
elif image_data.startswith("data:image"):
|
| 109 |
+
base64_data = image_data.split(",")[1]
|
| 110 |
+
image_bytes = base64.b64decode(base64_data)
|
| 111 |
+
return Image.open(io.BytesIO(image_bytes))
|
| 112 |
+
except requests.exceptions.RequestException as e:
|
| 113 |
+
logging.error(f"HTTP error occurred while loading image: {e}")
|
| 114 |
+
except IOError as e:
|
| 115 |
+
logging.error(f"Error opening image: {e}")
|
| 116 |
+
return None
|