Commit
·
499f0dc
1
Parent(s):
49cca10
FER alpha 0.1
Browse files- .gitignore +2 -1
- FER/data_preprocessing/__pycache__/sam.cpython-311.pyc +0 -0
- FER/data_preprocessing/sam.py +63 -0
- FER/detectfaces.py +9 -10
- FER/main.py +1 -1
- FER/models/PosterV2_7cls.py +3 -3
- FER/models/PosterV2_8cls.py +182 -66
- FER/models/vit_model.py +235 -124
- FER/models/vit_model_8.py +235 -124
- FER/prediction.py +1 -1
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
FER/models/__pycache__
|
| 2 |
FER/__pycache__
|
| 3 |
.env
|
| 4 |
-
.venv
|
|
|
|
|
|
| 1 |
FER/models/__pycache__
|
| 2 |
FER/__pycache__
|
| 3 |
.env
|
| 4 |
+
.venv
|
| 5 |
+
FER/Images/
|
FER/data_preprocessing/__pycache__/sam.cpython-311.pyc
ADDED
|
Binary file (4.7 kB). View file
|
|
|
FER/data_preprocessing/sam.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class SAM(torch.optim.Optimizer):
|
| 5 |
+
def __init__(self, params, base_optimizer, rho=0.05, adaptive=False, **kwargs):
|
| 6 |
+
assert rho >= 0.0, f"Invalid rho, should be non-negative: {rho}"
|
| 7 |
+
|
| 8 |
+
defaults = dict(rho=rho, adaptive=adaptive, **kwargs)
|
| 9 |
+
super(SAM, self).__init__(params, defaults)
|
| 10 |
+
|
| 11 |
+
self.base_optimizer = base_optimizer(self.param_groups, **kwargs)
|
| 12 |
+
self.param_groups = self.base_optimizer.param_groups
|
| 13 |
+
|
| 14 |
+
@torch.no_grad()
|
| 15 |
+
def first_step(self, zero_grad=False):
|
| 16 |
+
grad_norm = self._grad_norm()
|
| 17 |
+
for group in self.param_groups:
|
| 18 |
+
scale = group["rho"] / (grad_norm + 1e-12)
|
| 19 |
+
|
| 20 |
+
for p in group["params"]:
|
| 21 |
+
if p.grad is None: continue
|
| 22 |
+
self.state[p]["old_p"] = p.data.clone()
|
| 23 |
+
e_w = (torch.pow(p, 2) if group["adaptive"] else 1.0) * p.grad * scale.to(p)
|
| 24 |
+
p.add_(e_w) # climb to the local maximum "w + e(w)"
|
| 25 |
+
|
| 26 |
+
if zero_grad: self.zero_grad()
|
| 27 |
+
|
| 28 |
+
@torch.no_grad()
|
| 29 |
+
def second_step(self, zero_grad=False):
|
| 30 |
+
for group in self.param_groups:
|
| 31 |
+
for p in group["params"]:
|
| 32 |
+
if p.grad is None: continue
|
| 33 |
+
p.data = self.state[p]["old_p"] # get back to "w" from "w + e(w)"
|
| 34 |
+
|
| 35 |
+
self.base_optimizer.step() # do the actual "sharpness-aware" update
|
| 36 |
+
|
| 37 |
+
if zero_grad: self.zero_grad()
|
| 38 |
+
|
| 39 |
+
@torch.no_grad()
|
| 40 |
+
def step(self, closure=None):
|
| 41 |
+
assert closure is not None, "Sharpness Aware Minimization requires closure, but it was not provided"
|
| 42 |
+
closure = torch.enable_grad()(closure) # the closure should do a full forward-backward pass
|
| 43 |
+
|
| 44 |
+
self.first_step(zero_grad=True)
|
| 45 |
+
closure()
|
| 46 |
+
self.second_step()
|
| 47 |
+
|
| 48 |
+
def _grad_norm(self):
|
| 49 |
+
shared_device = self.param_groups[0]["params"][0].device # put everything on the same device, in case of model parallelism
|
| 50 |
+
norm = torch.norm(
|
| 51 |
+
torch.stack([
|
| 52 |
+
((torch.abs(p) if group["adaptive"] else 1.0) * p.grad).norm(p=2).to(shared_device)
|
| 53 |
+
for group in self.param_groups for p in group["params"]
|
| 54 |
+
if p.grad is not None
|
| 55 |
+
]),
|
| 56 |
+
p=2
|
| 57 |
+
)
|
| 58 |
+
return norm
|
| 59 |
+
|
| 60 |
+
def load_state_dict(self, state_dict):
|
| 61 |
+
super().load_state_dict(state_dict)
|
| 62 |
+
self.base_optimizer.param_groups = self.param_groups
|
| 63 |
+
|
FER/detectfaces.py
CHANGED
|
@@ -4,13 +4,10 @@ import torch
|
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
|
| 8 |
# Define the path to the model checkpoint
|
| 9 |
-
|
| 10 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 11 |
-
|
| 12 |
-
# Construct the full path to the model file
|
| 13 |
-
model_path = os.path.join(script_dir, r"models\checkpoints\raf-db-model_best.pth")
|
| 14 |
|
| 15 |
# Determine the available device for model execution
|
| 16 |
if torch.backends.mps.is_available():
|
|
@@ -39,7 +36,7 @@ def main():
|
|
| 39 |
if model_path is not None:
|
| 40 |
if os.path.isfile(model_path):
|
| 41 |
print("=> loading checkpoint '{}'".format(model_path))
|
| 42 |
-
checkpoint = torch.load(model_path, map_location=device)
|
| 43 |
best_acc = checkpoint["best_acc"]
|
| 44 |
best_acc = best_acc.to()
|
| 45 |
print(f"best_acc:{best_acc}")
|
|
@@ -50,7 +47,9 @@ def main():
|
|
| 50 |
)
|
| 51 |
)
|
| 52 |
else:
|
| 53 |
-
print(
|
|
|
|
|
|
|
| 54 |
# Start webcam capture and prediction
|
| 55 |
imagecapture(model)
|
| 56 |
return
|
|
@@ -92,7 +91,7 @@ def imagecapture(model):
|
|
| 92 |
|
| 93 |
# If faces are detected, proceed with prediction
|
| 94 |
if len(faces) > 0:
|
| 95 |
-
currtimeimg = time.strftime("%H:%M:%S
|
| 96 |
print(f"[!]Face detected at {currtimeimg}")
|
| 97 |
# Crop the face region
|
| 98 |
face_region = frame[
|
|
@@ -105,12 +104,12 @@ def imagecapture(model):
|
|
| 105 |
)
|
| 106 |
print("[!]Start Expressions")
|
| 107 |
# Record the prediction start time
|
| 108 |
-
starttime = time.strftime("%H:%M:%S
|
| 109 |
print(f"-->Prediction starting at {starttime}")
|
| 110 |
# Perform emotion prediction
|
| 111 |
predict(model, image_path=face_pil_image)
|
| 112 |
# Record the prediction end time
|
| 113 |
-
endtime = time.strftime("%H:%M:%S
|
| 114 |
print(f"-->Done prediction at {endtime}")
|
| 115 |
|
| 116 |
# Stop capturing once prediction is complete
|
|
|
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
from PIL import Image
|
| 7 |
+
from main import RecorderMeter1, RecorderMeter
|
| 8 |
|
| 9 |
# Define the path to the model checkpoint
|
| 10 |
+
model_path = os.path.abspath(r"FER\models\checkpoints\raf-db-model_best.pth")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Determine the available device for model execution
|
| 13 |
if torch.backends.mps.is_available():
|
|
|
|
| 36 |
if model_path is not None:
|
| 37 |
if os.path.isfile(model_path):
|
| 38 |
print("=> loading checkpoint '{}'".format(model_path))
|
| 39 |
+
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
|
| 40 |
best_acc = checkpoint["best_acc"]
|
| 41 |
best_acc = best_acc.to()
|
| 42 |
print(f"best_acc:{best_acc}")
|
|
|
|
| 47 |
)
|
| 48 |
)
|
| 49 |
else:
|
| 50 |
+
print(
|
| 51 |
+
"[!] detectfaces.py => no checkpoint found at '{}'".format(model_path)
|
| 52 |
+
)
|
| 53 |
# Start webcam capture and prediction
|
| 54 |
imagecapture(model)
|
| 55 |
return
|
|
|
|
| 91 |
|
| 92 |
# If faces are detected, proceed with prediction
|
| 93 |
if len(faces) > 0:
|
| 94 |
+
currtimeimg = time.strftime("%H:%M:%S")
|
| 95 |
print(f"[!]Face detected at {currtimeimg}")
|
| 96 |
# Crop the face region
|
| 97 |
face_region = frame[
|
|
|
|
| 104 |
)
|
| 105 |
print("[!]Start Expressions")
|
| 106 |
# Record the prediction start time
|
| 107 |
+
starttime = time.strftime("%H:%M:%S")
|
| 108 |
print(f"-->Prediction starting at {starttime}")
|
| 109 |
# Perform emotion prediction
|
| 110 |
predict(model, image_path=face_pil_image)
|
| 111 |
# Record the prediction end time
|
| 112 |
+
endtime = time.strftime("%H:%M:%S")
|
| 113 |
print(f"-->Done prediction at {endtime}")
|
| 114 |
|
| 115 |
# Stop capturing once prediction is complete
|
FER/main.py
CHANGED
|
@@ -21,7 +21,7 @@ import torchvision.transforms as transforms
|
|
| 21 |
import numpy as np
|
| 22 |
import datetime
|
| 23 |
from torchsampler import ImbalancedDatasetSampler
|
| 24 |
-
from models.PosterV2_7cls import
|
| 25 |
|
| 26 |
|
| 27 |
warnings.filterwarnings("ignore", category=UserWarning)
|
|
|
|
| 21 |
import numpy as np
|
| 22 |
import datetime
|
| 23 |
from torchsampler import ImbalancedDatasetSampler
|
| 24 |
+
from models.PosterV2_7cls import pyramid_trans_expr2
|
| 25 |
|
| 26 |
|
| 27 |
warnings.filterwarnings("ignore", category=UserWarning)
|
FER/models/PosterV2_7cls.py
CHANGED
|
@@ -5,7 +5,7 @@ from torch.nn import functional as F
|
|
| 5 |
from .mobilefacenet import MobileFaceNet
|
| 6 |
from .ir50 import Backbone
|
| 7 |
from .vit_model import VisionTransformer, PatchEmbed
|
| 8 |
-
from timm.
|
| 9 |
from thop import profile
|
| 10 |
|
| 11 |
|
|
@@ -315,6 +315,7 @@ class pyramid_trans_expr2(nn.Module):
|
|
| 315 |
face_landback_checkpoint = torch.load(
|
| 316 |
mobilefacenet_path,
|
| 317 |
map_location=lambda storage, loc: storage,
|
|
|
|
| 318 |
)
|
| 319 |
self.face_landback.load_state_dict(face_landback_checkpoint["state_dict"])
|
| 320 |
|
|
@@ -325,8 +326,7 @@ class pyramid_trans_expr2(nn.Module):
|
|
| 325 |
|
| 326 |
self.ir_back = Backbone(50, 0.0, "ir")
|
| 327 |
ir_checkpoint = torch.load(
|
| 328 |
-
ir50_path,
|
| 329 |
-
map_location=lambda storage, loc: storage,
|
| 330 |
)
|
| 331 |
|
| 332 |
self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)
|
|
|
|
| 5 |
from .mobilefacenet import MobileFaceNet
|
| 6 |
from .ir50 import Backbone
|
| 7 |
from .vit_model import VisionTransformer, PatchEmbed
|
| 8 |
+
from timm.layers import trunc_normal_, DropPath
|
| 9 |
from thop import profile
|
| 10 |
|
| 11 |
|
|
|
|
| 315 |
face_landback_checkpoint = torch.load(
|
| 316 |
mobilefacenet_path,
|
| 317 |
map_location=lambda storage, loc: storage,
|
| 318 |
+
weights_only=False,
|
| 319 |
)
|
| 320 |
self.face_landback.load_state_dict(face_landback_checkpoint["state_dict"])
|
| 321 |
|
|
|
|
| 326 |
|
| 327 |
self.ir_back = Backbone(50, 0.0, "ir")
|
| 328 |
ir_checkpoint = torch.load(
|
| 329 |
+
ir50_path, map_location=lambda storage, loc: storage, weights_only=False
|
|
|
|
| 330 |
)
|
| 331 |
|
| 332 |
self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)
|
FER/models/PosterV2_8cls.py
CHANGED
|
@@ -4,13 +4,15 @@ from torch.nn import functional as F
|
|
| 4 |
from .mobilefacenet import MobileFaceNet
|
| 5 |
from .ir50 import Backbone
|
| 6 |
from .vit_model_8 import VisionTransformer, PatchEmbed
|
| 7 |
-
from timm.
|
| 8 |
from thop import profile
|
| 9 |
|
|
|
|
| 10 |
def load_pretrained_weights(model, checkpoint):
|
| 11 |
import collections
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
else:
|
| 15 |
state_dict = checkpoint
|
| 16 |
model_dict = model.state_dict()
|
|
@@ -19,7 +21,7 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 19 |
for k, v in state_dict.items():
|
| 20 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 21 |
# keys would contain "module.", which should be ignored.
|
| 22 |
-
if k.startswith(
|
| 23 |
k = k[7:]
|
| 24 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 25 |
new_state_dict[k] = v
|
|
@@ -30,9 +32,10 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 30 |
model_dict.update(new_state_dict)
|
| 31 |
|
| 32 |
model.load_state_dict(model_dict)
|
| 33 |
-
print(
|
| 34 |
return model
|
| 35 |
|
|
|
|
| 36 |
def window_partition(x, window_size, h_w, w_w):
|
| 37 |
"""
|
| 38 |
Args:
|
|
@@ -44,14 +47,18 @@ def window_partition(x, window_size, h_w, w_w):
|
|
| 44 |
"""
|
| 45 |
B, H, W, C = x.shape
|
| 46 |
x = x.view(B, h_w, window_size, w_w, window_size, C)
|
| 47 |
-
windows =
|
|
|
|
|
|
|
| 48 |
return windows
|
| 49 |
|
|
|
|
| 50 |
class window(nn.Module):
|
| 51 |
def __init__(self, window_size, dim):
|
| 52 |
super(window, self).__init__()
|
| 53 |
self.window_size = window_size
|
| 54 |
self.norm = nn.LayerNorm(dim)
|
|
|
|
| 55 |
def forward(self, x):
|
| 56 |
x = x.permute(0, 2, 3, 1)
|
| 57 |
B, H, W, C = x.shape
|
|
@@ -63,21 +70,23 @@ class window(nn.Module):
|
|
| 63 |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
| 64 |
return x_windows, shortcut
|
| 65 |
|
|
|
|
| 66 |
class WindowAttentionGlobal(nn.Module):
|
| 67 |
"""
|
| 68 |
Global window attention based on: "Hatamizadeh et al.,
|
| 69 |
Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>"
|
| 70 |
"""
|
| 71 |
|
| 72 |
-
def __init__(
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
"""
|
| 82 |
Args:
|
| 83 |
dim: feature size dimension.
|
|
@@ -94,9 +103,10 @@ class WindowAttentionGlobal(nn.Module):
|
|
| 94 |
self.window_size = window_size
|
| 95 |
self.num_heads = num_heads
|
| 96 |
head_dim = torch.div(dim, num_heads)
|
| 97 |
-
self.scale = qk_scale or head_dim
|
| 98 |
self.relative_position_bias_table = nn.Parameter(
|
| 99 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
|
|
|
| 100 |
coords_h = torch.arange(self.window_size[0])
|
| 101 |
coords_w = torch.arange(self.window_size[1])
|
| 102 |
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
|
@@ -112,7 +122,7 @@ class WindowAttentionGlobal(nn.Module):
|
|
| 112 |
self.attn_drop = nn.Dropout(attn_drop)
|
| 113 |
self.proj = nn.Linear(dim, dim)
|
| 114 |
self.proj_drop = nn.Dropout(proj_drop)
|
| 115 |
-
trunc_normal_(self.relative_position_bias_table, std
|
| 116 |
self.softmax = nn.Softmax(dim=-1)
|
| 117 |
|
| 118 |
def forward(self, x, q_global):
|
|
@@ -122,14 +132,23 @@ class WindowAttentionGlobal(nn.Module):
|
|
| 122 |
B = q_global.shape[0]
|
| 123 |
head_dim = int(torch.div(C, self.num_heads).item())
|
| 124 |
B_dim = int(torch.div(B_, B).item())
|
| 125 |
-
kv =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
k, v = kv[0], kv[1]
|
| 127 |
q_global = q_global.repeat(1, B_dim, 1, 1, 1)
|
| 128 |
q = q_global.reshape(B_, self.num_heads, N, head_dim)
|
| 129 |
q = q * self.scale
|
| 130 |
-
attn =
|
| 131 |
-
relative_position_bias = self.relative_position_bias_table[
|
| 132 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 134 |
attn = attn + relative_position_bias.unsqueeze(0)
|
| 135 |
attn = self.softmax(attn)
|
|
@@ -139,6 +158,7 @@ class WindowAttentionGlobal(nn.Module):
|
|
| 139 |
x = self.proj_drop(x)
|
| 140 |
return x
|
| 141 |
|
|
|
|
| 142 |
def _to_channel_last(x):
|
| 143 |
"""
|
| 144 |
Args:
|
|
@@ -149,25 +169,30 @@ def _to_channel_last(x):
|
|
| 149 |
"""
|
| 150 |
return x.permute(0, 2, 3, 1)
|
| 151 |
|
|
|
|
| 152 |
def _to_channel_first(x):
|
| 153 |
return x.permute(0, 3, 1, 2)
|
| 154 |
|
|
|
|
| 155 |
def _to_query(x, N, num_heads, dim_head):
|
| 156 |
B = x.shape[0]
|
| 157 |
x = x.reshape(B, 1, N, num_heads, dim_head).permute(0, 1, 3, 2, 4)
|
| 158 |
return x
|
| 159 |
|
|
|
|
| 160 |
class Mlp(nn.Module):
|
| 161 |
"""
|
| 162 |
Multi-Layer Perceptron (MLP) block
|
| 163 |
"""
|
| 164 |
|
| 165 |
-
def __init__(
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
"""
|
| 172 |
Args:
|
| 173 |
in_features: input features dimension.
|
|
@@ -193,6 +218,7 @@ class Mlp(nn.Module):
|
|
| 193 |
x = self.drop(x)
|
| 194 |
return x
|
| 195 |
|
|
|
|
| 196 |
def window_reverse(windows, window_size, H, W, h_w, w_w):
|
| 197 |
"""
|
| 198 |
Args:
|
|
@@ -209,20 +235,40 @@ def window_reverse(windows, window_size, H, W, h_w, w_w):
|
|
| 209 |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 210 |
return x
|
| 211 |
|
|
|
|
| 212 |
class feedforward(nn.Module):
|
| 213 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
super(feedforward, self).__init__()
|
| 215 |
if layer_scale is not None and type(layer_scale) in [int, float]:
|
| 216 |
self.layer_scale = True
|
| 217 |
-
self.gamma1 = nn.Parameter(
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
else:
|
| 220 |
self.gamma1 = 1.0
|
| 221 |
self.gamma2 = 1.0
|
| 222 |
self.window_size = window_size
|
| 223 |
-
self.mlp = Mlp(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
self.norm = nn.LayerNorm(dim)
|
| 225 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
| 226 |
def forward(self, attn_windows, shortcut):
|
| 227 |
B, H, W, C = shortcut.shape
|
| 228 |
h_w = int(torch.div(H, self.window_size).item())
|
|
@@ -232,8 +278,17 @@ class feedforward(nn.Module):
|
|
| 232 |
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm(x)))
|
| 233 |
return x
|
| 234 |
|
|
|
|
| 235 |
class pyramid_trans_expr2(nn.Module):
|
| 236 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
super().__init__()
|
| 238 |
|
| 239 |
self.img_size = img_size
|
|
@@ -245,51 +300,99 @@ class pyramid_trans_expr2(nn.Module):
|
|
| 245 |
self.window_size = window_size
|
| 246 |
self.N = [win * win for win in window_size]
|
| 247 |
self.face_landback = MobileFaceNet([112, 112], 136)
|
| 248 |
-
face_landback_checkpoint = torch.load(
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
| 251 |
|
| 252 |
for param in self.face_landback.parameters():
|
| 253 |
param.requires_grad = False
|
| 254 |
|
| 255 |
-
self.VIT = VisionTransformer(
|
|
|
|
|
|
|
| 256 |
|
| 257 |
-
self.ir_back = Backbone(50, 0.0,
|
| 258 |
-
ir_checkpoint = torch.load(
|
|
|
|
|
|
|
| 259 |
|
| 260 |
self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)
|
| 261 |
|
| 262 |
-
self.attn1 = WindowAttentionGlobal(
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
self.window1 = window(window_size=window_size[0], dim=dims[0])
|
| 266 |
self.window2 = window(window_size=window_size[1], dim=dims[1])
|
| 267 |
self.window3 = window(window_size=window_size[2], dim=dims[2])
|
| 268 |
-
self.conv1 = nn.Conv2d(
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
dpr = [x.item() for x in torch.linspace(0, 0.5, 5)]
|
| 273 |
-
self.ffn1 = feedforward(
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
self.
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
self.embed_v = PatchEmbed(img_size=14, patch_size=14, in_c=256, embed_dim=768)
|
| 283 |
|
| 284 |
def forward(self, x):
|
| 285 |
x_face = F.interpolate(x, size=112)
|
| 286 |
-
x_face1
|
| 287 |
x_face3 = self.last_face_conv(x_face3)
|
| 288 |
-
x_face1, x_face2, x_face3 =
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
x_ir1, x_ir2, x_ir3 = self.ir_back(x)
|
| 295 |
x_ir1, x_ir2, x_ir3 = self.conv1(x_ir1), self.conv2(x_ir2), self.conv3(x_ir3)
|
|
@@ -297,21 +400,34 @@ class pyramid_trans_expr2(nn.Module):
|
|
| 297 |
x_window2, shortcut2 = self.window2(x_ir2)
|
| 298 |
x_window3, shortcut3 = self.window3(x_ir3)
|
| 299 |
|
| 300 |
-
o1, o2, o3 =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
o1, o2, o3 =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
o1, o2, o3 = _to_channel_first(o1), _to_channel_first(o2), _to_channel_first(o3)
|
| 305 |
|
| 306 |
-
o1, o2, o3 =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
o = torch.cat([o1, o2, o3], dim=1)
|
| 309 |
|
| 310 |
out = self.VIT(o)
|
| 311 |
return out
|
| 312 |
|
|
|
|
| 313 |
def compute_param_flop():
|
| 314 |
model = pyramid_trans_expr2()
|
| 315 |
-
img = torch.rand(size=(1,3,224,224))
|
| 316 |
flops, params = profile(model, inputs=(img,))
|
| 317 |
-
print(f
|
|
|
|
| 4 |
from .mobilefacenet import MobileFaceNet
|
| 5 |
from .ir50 import Backbone
|
| 6 |
from .vit_model_8 import VisionTransformer, PatchEmbed
|
| 7 |
+
from timm.layers import trunc_normal_, DropPath
|
| 8 |
from thop import profile
|
| 9 |
|
| 10 |
+
|
| 11 |
def load_pretrained_weights(model, checkpoint):
|
| 12 |
import collections
|
| 13 |
+
|
| 14 |
+
if "state_dict" in checkpoint:
|
| 15 |
+
state_dict = checkpoint["state_dict"]
|
| 16 |
else:
|
| 17 |
state_dict = checkpoint
|
| 18 |
model_dict = model.state_dict()
|
|
|
|
| 21 |
for k, v in state_dict.items():
|
| 22 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 23 |
# keys would contain "module.", which should be ignored.
|
| 24 |
+
if k.startswith("module."):
|
| 25 |
k = k[7:]
|
| 26 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 27 |
new_state_dict[k] = v
|
|
|
|
| 32 |
model_dict.update(new_state_dict)
|
| 33 |
|
| 34 |
model.load_state_dict(model_dict)
|
| 35 |
+
print("load_weight", len(matched_layers))
|
| 36 |
return model
|
| 37 |
|
| 38 |
+
|
| 39 |
def window_partition(x, window_size, h_w, w_w):
|
| 40 |
"""
|
| 41 |
Args:
|
|
|
|
| 47 |
"""
|
| 48 |
B, H, W, C = x.shape
|
| 49 |
x = x.view(B, h_w, window_size, w_w, window_size, C)
|
| 50 |
+
windows = (
|
| 51 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 52 |
+
)
|
| 53 |
return windows
|
| 54 |
|
| 55 |
+
|
| 56 |
class window(nn.Module):
|
| 57 |
def __init__(self, window_size, dim):
|
| 58 |
super(window, self).__init__()
|
| 59 |
self.window_size = window_size
|
| 60 |
self.norm = nn.LayerNorm(dim)
|
| 61 |
+
|
| 62 |
def forward(self, x):
|
| 63 |
x = x.permute(0, 2, 3, 1)
|
| 64 |
B, H, W, C = x.shape
|
|
|
|
| 70 |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
| 71 |
return x_windows, shortcut
|
| 72 |
|
| 73 |
+
|
| 74 |
class WindowAttentionGlobal(nn.Module):
|
| 75 |
"""
|
| 76 |
Global window attention based on: "Hatamizadeh et al.,
|
| 77 |
Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>"
|
| 78 |
"""
|
| 79 |
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
dim,
|
| 83 |
+
num_heads,
|
| 84 |
+
window_size,
|
| 85 |
+
qkv_bias=True,
|
| 86 |
+
qk_scale=None,
|
| 87 |
+
attn_drop=0.0,
|
| 88 |
+
proj_drop=0.0,
|
| 89 |
+
):
|
| 90 |
"""
|
| 91 |
Args:
|
| 92 |
dim: feature size dimension.
|
|
|
|
| 103 |
self.window_size = window_size
|
| 104 |
self.num_heads = num_heads
|
| 105 |
head_dim = torch.div(dim, num_heads)
|
| 106 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 107 |
self.relative_position_bias_table = nn.Parameter(
|
| 108 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
| 109 |
+
)
|
| 110 |
coords_h = torch.arange(self.window_size[0])
|
| 111 |
coords_w = torch.arange(self.window_size[1])
|
| 112 |
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
|
|
|
| 122 |
self.attn_drop = nn.Dropout(attn_drop)
|
| 123 |
self.proj = nn.Linear(dim, dim)
|
| 124 |
self.proj_drop = nn.Dropout(proj_drop)
|
| 125 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
| 126 |
self.softmax = nn.Softmax(dim=-1)
|
| 127 |
|
| 128 |
def forward(self, x, q_global):
|
|
|
|
| 132 |
B = q_global.shape[0]
|
| 133 |
head_dim = int(torch.div(C, self.num_heads).item())
|
| 134 |
B_dim = int(torch.div(B_, B).item())
|
| 135 |
+
kv = (
|
| 136 |
+
self.qkv(x)
|
| 137 |
+
.reshape(B_, N, 2, self.num_heads, head_dim)
|
| 138 |
+
.permute(2, 0, 3, 1, 4)
|
| 139 |
+
)
|
| 140 |
k, v = kv[0], kv[1]
|
| 141 |
q_global = q_global.repeat(1, B_dim, 1, 1, 1)
|
| 142 |
q = q_global.reshape(B_, self.num_heads, N, head_dim)
|
| 143 |
q = q * self.scale
|
| 144 |
+
attn = q @ k.transpose(-2, -1)
|
| 145 |
+
relative_position_bias = self.relative_position_bias_table[
|
| 146 |
+
self.relative_position_index.view(-1)
|
| 147 |
+
].view(
|
| 148 |
+
self.window_size[0] * self.window_size[1],
|
| 149 |
+
self.window_size[0] * self.window_size[1],
|
| 150 |
+
-1,
|
| 151 |
+
)
|
| 152 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 153 |
attn = attn + relative_position_bias.unsqueeze(0)
|
| 154 |
attn = self.softmax(attn)
|
|
|
|
| 158 |
x = self.proj_drop(x)
|
| 159 |
return x
|
| 160 |
|
| 161 |
+
|
| 162 |
def _to_channel_last(x):
|
| 163 |
"""
|
| 164 |
Args:
|
|
|
|
| 169 |
"""
|
| 170 |
return x.permute(0, 2, 3, 1)
|
| 171 |
|
| 172 |
+
|
| 173 |
def _to_channel_first(x):
|
| 174 |
return x.permute(0, 3, 1, 2)
|
| 175 |
|
| 176 |
+
|
| 177 |
def _to_query(x, N, num_heads, dim_head):
|
| 178 |
B = x.shape[0]
|
| 179 |
x = x.reshape(B, 1, N, num_heads, dim_head).permute(0, 1, 3, 2, 4)
|
| 180 |
return x
|
| 181 |
|
| 182 |
+
|
| 183 |
class Mlp(nn.Module):
|
| 184 |
"""
|
| 185 |
Multi-Layer Perceptron (MLP) block
|
| 186 |
"""
|
| 187 |
|
| 188 |
+
def __init__(
|
| 189 |
+
self,
|
| 190 |
+
in_features,
|
| 191 |
+
hidden_features=None,
|
| 192 |
+
out_features=None,
|
| 193 |
+
act_layer=nn.GELU,
|
| 194 |
+
drop=0.0,
|
| 195 |
+
):
|
| 196 |
"""
|
| 197 |
Args:
|
| 198 |
in_features: input features dimension.
|
|
|
|
| 218 |
x = self.drop(x)
|
| 219 |
return x
|
| 220 |
|
| 221 |
+
|
| 222 |
def window_reverse(windows, window_size, H, W, h_w, w_w):
|
| 223 |
"""
|
| 224 |
Args:
|
|
|
|
| 235 |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 236 |
return x
|
| 237 |
|
| 238 |
+
|
| 239 |
class feedforward(nn.Module):
|
| 240 |
+
def __init__(
|
| 241 |
+
self,
|
| 242 |
+
dim,
|
| 243 |
+
window_size,
|
| 244 |
+
mlp_ratio=4.0,
|
| 245 |
+
act_layer=nn.GELU,
|
| 246 |
+
drop=0.0,
|
| 247 |
+
drop_path=0.0,
|
| 248 |
+
layer_scale=None,
|
| 249 |
+
):
|
| 250 |
super(feedforward, self).__init__()
|
| 251 |
if layer_scale is not None and type(layer_scale) in [int, float]:
|
| 252 |
self.layer_scale = True
|
| 253 |
+
self.gamma1 = nn.Parameter(
|
| 254 |
+
layer_scale * torch.ones(dim), requires_grad=True
|
| 255 |
+
)
|
| 256 |
+
self.gamma2 = nn.Parameter(
|
| 257 |
+
layer_scale * torch.ones(dim), requires_grad=True
|
| 258 |
+
)
|
| 259 |
else:
|
| 260 |
self.gamma1 = 1.0
|
| 261 |
self.gamma2 = 1.0
|
| 262 |
self.window_size = window_size
|
| 263 |
+
self.mlp = Mlp(
|
| 264 |
+
in_features=dim,
|
| 265 |
+
hidden_features=int(dim * mlp_ratio),
|
| 266 |
+
act_layer=act_layer,
|
| 267 |
+
drop=drop,
|
| 268 |
+
)
|
| 269 |
self.norm = nn.LayerNorm(dim)
|
| 270 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 271 |
+
|
| 272 |
def forward(self, attn_windows, shortcut):
|
| 273 |
B, H, W, C = shortcut.shape
|
| 274 |
h_w = int(torch.div(H, self.window_size).item())
|
|
|
|
| 278 |
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm(x)))
|
| 279 |
return x
|
| 280 |
|
| 281 |
+
|
| 282 |
class pyramid_trans_expr2(nn.Module):
|
| 283 |
+
def __init__(
|
| 284 |
+
self,
|
| 285 |
+
img_size=224,
|
| 286 |
+
num_classes=8,
|
| 287 |
+
window_size=[28, 14, 7],
|
| 288 |
+
num_heads=[2, 4, 8],
|
| 289 |
+
dims=[64, 128, 256],
|
| 290 |
+
embed_dim=768,
|
| 291 |
+
):
|
| 292 |
super().__init__()
|
| 293 |
|
| 294 |
self.img_size = img_size
|
|
|
|
| 300 |
self.window_size = window_size
|
| 301 |
self.N = [win * win for win in window_size]
|
| 302 |
self.face_landback = MobileFaceNet([112, 112], 136)
|
| 303 |
+
face_landback_checkpoint = torch.load(
|
| 304 |
+
r"./pretrain/mobilefacenet_model_best.pth.tar",
|
| 305 |
+
map_location=lambda storage, loc: storage,
|
| 306 |
+
)
|
| 307 |
+
self.face_landback.load_state_dict(face_landback_checkpoint["state_dict"])
|
| 308 |
|
| 309 |
for param in self.face_landback.parameters():
|
| 310 |
param.requires_grad = False
|
| 311 |
|
| 312 |
+
self.VIT = VisionTransformer(
|
| 313 |
+
depth=2, embed_dim=embed_dim, num_classes=num_classes
|
| 314 |
+
)
|
| 315 |
|
| 316 |
+
self.ir_back = Backbone(50, 0.0, "ir")
|
| 317 |
+
ir_checkpoint = torch.load(
|
| 318 |
+
r"./pretrain/ir50.pth", map_location=lambda storage, loc: storage
|
| 319 |
+
)
|
| 320 |
|
| 321 |
self.ir_back = load_pretrained_weights(self.ir_back, ir_checkpoint)
|
| 322 |
|
| 323 |
+
self.attn1 = WindowAttentionGlobal(
|
| 324 |
+
dim=dims[0], num_heads=num_heads[0], window_size=window_size[0]
|
| 325 |
+
)
|
| 326 |
+
self.attn2 = WindowAttentionGlobal(
|
| 327 |
+
dim=dims[1], num_heads=num_heads[1], window_size=window_size[1]
|
| 328 |
+
)
|
| 329 |
+
self.attn3 = WindowAttentionGlobal(
|
| 330 |
+
dim=dims[2], num_heads=num_heads[2], window_size=window_size[2]
|
| 331 |
+
)
|
| 332 |
self.window1 = window(window_size=window_size[0], dim=dims[0])
|
| 333 |
self.window2 = window(window_size=window_size[1], dim=dims[1])
|
| 334 |
self.window3 = window(window_size=window_size[2], dim=dims[2])
|
| 335 |
+
self.conv1 = nn.Conv2d(
|
| 336 |
+
in_channels=dims[0],
|
| 337 |
+
out_channels=dims[0],
|
| 338 |
+
kernel_size=3,
|
| 339 |
+
stride=2,
|
| 340 |
+
padding=1,
|
| 341 |
+
)
|
| 342 |
+
self.conv2 = nn.Conv2d(
|
| 343 |
+
in_channels=dims[1],
|
| 344 |
+
out_channels=dims[1],
|
| 345 |
+
kernel_size=3,
|
| 346 |
+
stride=2,
|
| 347 |
+
padding=1,
|
| 348 |
+
)
|
| 349 |
+
self.conv3 = nn.Conv2d(
|
| 350 |
+
in_channels=dims[2],
|
| 351 |
+
out_channels=dims[2],
|
| 352 |
+
kernel_size=3,
|
| 353 |
+
stride=2,
|
| 354 |
+
padding=1,
|
| 355 |
+
)
|
| 356 |
|
| 357 |
dpr = [x.item() for x in torch.linspace(0, 0.5, 5)]
|
| 358 |
+
self.ffn1 = feedforward(
|
| 359 |
+
dim=dims[0], window_size=window_size[0], layer_scale=1e-5, drop_path=dpr[0]
|
| 360 |
+
)
|
| 361 |
+
self.ffn2 = feedforward(
|
| 362 |
+
dim=dims[1], window_size=window_size[1], layer_scale=1e-5, drop_path=dpr[1]
|
| 363 |
+
)
|
| 364 |
+
self.ffn3 = feedforward(
|
| 365 |
+
dim=dims[2], window_size=window_size[2], layer_scale=1e-5, drop_path=dpr[2]
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
self.last_face_conv = nn.Conv2d(
|
| 369 |
+
in_channels=512, out_channels=256, kernel_size=3, padding=1
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
self.embed_q = nn.Sequential(
|
| 373 |
+
nn.Conv2d(dims[0], 768, kernel_size=3, stride=2, padding=1),
|
| 374 |
+
nn.Conv2d(768, 768, kernel_size=3, stride=2, padding=1),
|
| 375 |
+
)
|
| 376 |
+
self.embed_k = nn.Sequential(
|
| 377 |
+
nn.Conv2d(dims[1], 768, kernel_size=3, stride=2, padding=1)
|
| 378 |
+
)
|
| 379 |
self.embed_v = PatchEmbed(img_size=14, patch_size=14, in_c=256, embed_dim=768)
|
| 380 |
|
| 381 |
def forward(self, x):
|
| 382 |
x_face = F.interpolate(x, size=112)
|
| 383 |
+
x_face1, x_face2, x_face3 = self.face_landback(x_face)
|
| 384 |
x_face3 = self.last_face_conv(x_face3)
|
| 385 |
+
x_face1, x_face2, x_face3 = (
|
| 386 |
+
_to_channel_last(x_face1),
|
| 387 |
+
_to_channel_last(x_face2),
|
| 388 |
+
_to_channel_last(x_face3),
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
q1, q2, q3 = (
|
| 392 |
+
_to_query(x_face1, self.N[0], self.num_heads[0], self.dim_head[0]),
|
| 393 |
+
_to_query(x_face2, self.N[1], self.num_heads[1], self.dim_head[1]),
|
| 394 |
+
_to_query(x_face3, self.N[2], self.num_heads[2], self.dim_head[2]),
|
| 395 |
+
)
|
| 396 |
|
| 397 |
x_ir1, x_ir2, x_ir3 = self.ir_back(x)
|
| 398 |
x_ir1, x_ir2, x_ir3 = self.conv1(x_ir1), self.conv2(x_ir2), self.conv3(x_ir3)
|
|
|
|
| 400 |
x_window2, shortcut2 = self.window2(x_ir2)
|
| 401 |
x_window3, shortcut3 = self.window3(x_ir3)
|
| 402 |
|
| 403 |
+
o1, o2, o3 = (
|
| 404 |
+
self.attn1(x_window1, q1),
|
| 405 |
+
self.attn2(x_window2, q2),
|
| 406 |
+
self.attn3(x_window3, q3),
|
| 407 |
+
)
|
| 408 |
|
| 409 |
+
o1, o2, o3 = (
|
| 410 |
+
self.ffn1(o1, shortcut1),
|
| 411 |
+
self.ffn2(o2, shortcut2),
|
| 412 |
+
self.ffn3(o3, shortcut3),
|
| 413 |
+
)
|
| 414 |
|
| 415 |
o1, o2, o3 = _to_channel_first(o1), _to_channel_first(o2), _to_channel_first(o3)
|
| 416 |
|
| 417 |
+
o1, o2, o3 = (
|
| 418 |
+
self.embed_q(o1).flatten(2).transpose(1, 2),
|
| 419 |
+
self.embed_k(o2).flatten(2).transpose(1, 2),
|
| 420 |
+
self.embed_v(o3),
|
| 421 |
+
)
|
| 422 |
|
| 423 |
o = torch.cat([o1, o2, o3], dim=1)
|
| 424 |
|
| 425 |
out = self.VIT(o)
|
| 426 |
return out
|
| 427 |
|
| 428 |
+
|
| 429 |
def compute_param_flop():
|
| 430 |
model = pyramid_trans_expr2()
|
| 431 |
+
img = torch.rand(size=(1, 3, 224, 224))
|
| 432 |
flops, params = profile(model, inputs=(img,))
|
| 433 |
+
print(f"flops:{flops/1000**3}G,params:{params/1000**2}M")
|
FER/models/vit_model.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
original code from rwightman:
|
| 3 |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
| 4 |
"""
|
|
|
|
| 5 |
from functools import partial
|
| 6 |
from collections import OrderedDict
|
| 7 |
|
|
@@ -23,16 +24,24 @@ import torch.hub
|
|
| 23 |
from functools import partial
|
| 24 |
import math
|
| 25 |
|
| 26 |
-
from timm.
|
| 27 |
-
from timm.models
|
| 28 |
from timm.models.vision_transformer import _cfg, Mlp, Block
|
| 29 |
# from .ir50 import Backbone
|
| 30 |
|
| 31 |
|
| 32 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
| 33 |
"""3x3 convolution with padding"""
|
| 34 |
-
return nn.Conv2d(
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def conv1x1(in_planes, out_planes, stride=1):
|
|
@@ -40,7 +49,7 @@ def conv1x1(in_planes, out_planes, stride=1):
|
|
| 40 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 41 |
|
| 42 |
|
| 43 |
-
def drop_path(x, drop_prob: float = 0
|
| 44 |
"""
|
| 45 |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 46 |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
@@ -49,10 +58,12 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
| 49 |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 50 |
'survival rate' as the argument.
|
| 51 |
"""
|
| 52 |
-
if drop_prob == 0. or not training:
|
| 53 |
return x
|
| 54 |
keep_prob = 1 - drop_prob
|
| 55 |
-
shape = (x.shape[0],) + (1,) * (
|
|
|
|
|
|
|
| 56 |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 57 |
random_tensor.floor_() # binarize
|
| 58 |
output = x.div(keep_prob) * random_tensor
|
|
@@ -60,7 +71,7 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
| 60 |
|
| 61 |
|
| 62 |
class BasicBlock(nn.Module):
|
| 63 |
-
__constants__ = [
|
| 64 |
|
| 65 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 66 |
super(BasicBlock, self).__init__()
|
|
@@ -109,7 +120,9 @@ class PatchEmbed(nn.Module):
|
|
| 109 |
2D Image to Patch Embedding
|
| 110 |
"""
|
| 111 |
|
| 112 |
-
def __init__(
|
|
|
|
|
|
|
| 113 |
super().__init__()
|
| 114 |
img_size = (img_size, img_size)
|
| 115 |
patch_size = (patch_size, patch_size)
|
|
@@ -135,29 +148,36 @@ class PatchEmbed(nn.Module):
|
|
| 135 |
|
| 136 |
|
| 137 |
class Attention(nn.Module):
|
| 138 |
-
def __init__(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
| 145 |
super(Attention, self).__init__()
|
| 146 |
self.num_heads = 8
|
| 147 |
self.img_chanel = in_chans + 1
|
| 148 |
head_dim = dim // num_heads
|
| 149 |
-
self.scale = head_dim
|
| 150 |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 151 |
self.attn_drop = nn.Dropout(attn_drop_ratio)
|
| 152 |
self.proj = nn.Linear(dim, dim)
|
| 153 |
self.proj_drop = nn.Dropout(proj_drop_ratio)
|
| 154 |
|
| 155 |
def forward(self, x):
|
| 156 |
-
x_img = x[:, :self.img_chanel, :]
|
| 157 |
# [batch_size, num_patches + 1, total_embed_dim]
|
| 158 |
B, N, C = x_img.shape
|
| 159 |
# print(C)
|
| 160 |
-
qkv =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 162 |
# k, v = kv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 163 |
# q = x_img.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
@@ -193,7 +213,7 @@ class Attention(nn.Module):
|
|
| 193 |
|
| 194 |
|
| 195 |
class AttentionBlock(nn.Module):
|
| 196 |
-
__constants__ = [
|
| 197 |
|
| 198 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 199 |
super(AttentionBlock, self).__init__()
|
|
@@ -234,7 +254,14 @@ class Mlp(nn.Module):
|
|
| 234 |
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
| 235 |
"""
|
| 236 |
|
| 237 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
super().__init__()
|
| 239 |
out_features = out_features or in_features
|
| 240 |
hidden_features = hidden_features or in_features
|
|
@@ -253,29 +280,46 @@ class Mlp(nn.Module):
|
|
| 253 |
|
| 254 |
|
| 255 |
class Block(nn.Module):
|
| 256 |
-
def __init__(
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
| 267 |
super(Block, self).__init__()
|
| 268 |
self.norm1 = norm_layer(dim)
|
| 269 |
self.img_chanel = in_chans + 1
|
| 270 |
|
| 271 |
self.conv = nn.Conv1d(self.img_chanel, self.img_chanel, 1)
|
| 272 |
-
self.attn = Attention(
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 275 |
-
self.drop_path =
|
|
|
|
|
|
|
| 276 |
self.norm2 = norm_layer(dim)
|
| 277 |
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 278 |
-
self.mlp = Mlp(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
def forward(self, x):
|
| 281 |
# x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
@@ -308,8 +352,9 @@ class ClassificationHead(nn.Module):
|
|
| 308 |
|
| 309 |
def load_pretrained_weights(model, checkpoint):
|
| 310 |
import collections
|
| 311 |
-
|
| 312 |
-
|
|
|
|
| 313 |
else:
|
| 314 |
state_dict = checkpoint
|
| 315 |
model_dict = model.state_dict()
|
|
@@ -318,7 +363,7 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 318 |
for k, v in state_dict.items():
|
| 319 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 320 |
# keys would contain "module.", which should be ignored.
|
| 321 |
-
if k.startswith(
|
| 322 |
k = k[7:]
|
| 323 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 324 |
new_state_dict[k] = v
|
|
@@ -329,9 +374,10 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 329 |
model_dict.update(new_state_dict)
|
| 330 |
|
| 331 |
model.load_state_dict(model_dict)
|
| 332 |
-
print(
|
| 333 |
return model
|
| 334 |
|
|
|
|
| 335 |
class eca_block(nn.Module):
|
| 336 |
def __init__(self, channel=128, b=1, gamma=2):
|
| 337 |
super(eca_block, self).__init__()
|
|
@@ -339,7 +385,9 @@ class eca_block(nn.Module):
|
|
| 339 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 340 |
|
| 341 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 342 |
-
self.conv = nn.Conv1d(
|
|
|
|
|
|
|
| 343 |
self.sigmoid = nn.Sigmoid()
|
| 344 |
|
| 345 |
def forward(self, x):
|
|
@@ -347,6 +395,8 @@ class eca_block(nn.Module):
|
|
| 347 |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 348 |
y = self.sigmoid(y)
|
| 349 |
return x * y.expand_as(x)
|
|
|
|
|
|
|
| 350 |
#
|
| 351 |
#
|
| 352 |
# class IR20(nn.Module):
|
|
@@ -484,7 +534,9 @@ class eca_block(nn.Module):
|
|
| 484 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 485 |
|
| 486 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 487 |
-
self.conv = nn.Conv1d(
|
|
|
|
|
|
|
| 488 |
self.sigmoid = nn.Sigmoid()
|
| 489 |
|
| 490 |
def forward(self, x):
|
|
@@ -493,6 +545,7 @@ class eca_block(nn.Module):
|
|
| 493 |
y = self.sigmoid(y)
|
| 494 |
return x * y.expand_as(x)
|
| 495 |
|
|
|
|
| 496 |
class SE_block(nn.Module):
|
| 497 |
def __init__(self, input_dim: int):
|
| 498 |
super().__init__()
|
|
@@ -511,11 +564,27 @@ class SE_block(nn.Module):
|
|
| 511 |
|
| 512 |
|
| 513 |
class VisionTransformer(nn.Module):
|
| 514 |
-
def __init__(
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
"""
|
| 520 |
Args:
|
| 521 |
img_size (int, tuple): input image size
|
|
@@ -538,7 +607,9 @@ class VisionTransformer(nn.Module):
|
|
| 538 |
"""
|
| 539 |
super(VisionTransformer, self).__init__()
|
| 540 |
self.num_classes = num_classes
|
| 541 |
-
self.num_features = self.embed_dim =
|
|
|
|
|
|
|
| 542 |
self.num_tokens = 2 if distilled else 1
|
| 543 |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 544 |
act_layer = act_layer or nn.GELU
|
|
@@ -549,18 +620,20 @@ class VisionTransformer(nn.Module):
|
|
| 549 |
|
| 550 |
self.se_block = SE_block(input_dim=embed_dim)
|
| 551 |
|
| 552 |
-
|
| 553 |
-
|
|
|
|
| 554 |
num_patches = self.patch_embed.num_patches
|
| 555 |
self.head = ClassificationHead(input_dim=embed_dim, target_dim=self.num_classes)
|
| 556 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 557 |
-
self.dist_token =
|
|
|
|
|
|
|
| 558 |
# self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 559 |
self.pos_drop = nn.Dropout(p=drop_ratio)
|
| 560 |
# self.IR = IR()
|
| 561 |
self.eca_block = eca_block()
|
| 562 |
|
| 563 |
-
|
| 564 |
# self.ir_back = Backbone(50, 0.0, 'ir')
|
| 565 |
# ir_checkpoint = torch.load('./models/pretrain/ir50.pth', map_location=lambda storage, loc: storage)
|
| 566 |
# # ir_checkpoint = ir_checkpoint["model"]
|
|
@@ -570,24 +643,41 @@ class VisionTransformer(nn.Module):
|
|
| 570 |
self.IRLinear1 = nn.Linear(1024, 768)
|
| 571 |
self.IRLinear2 = nn.Linear(768, 512)
|
| 572 |
self.eca_block = eca_block()
|
| 573 |
-
dpr = [
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
self.norm = norm_layer(embed_dim)
|
| 582 |
|
| 583 |
# Representation layer
|
| 584 |
if representation_size and not distilled:
|
| 585 |
self.has_logits = True
|
| 586 |
self.num_features = representation_size
|
| 587 |
-
self.pre_logits = nn.Sequential(
|
| 588 |
-
(
|
| 589 |
-
|
| 590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
else:
|
| 592 |
self.has_logits = False
|
| 593 |
self.pre_logits = nn.Identity()
|
|
@@ -596,7 +686,11 @@ class VisionTransformer(nn.Module):
|
|
| 596 |
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 597 |
self.head_dist = None
|
| 598 |
if distilled:
|
| 599 |
-
self.head_dist =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
|
| 601 |
# Weight init
|
| 602 |
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
@@ -616,7 +710,9 @@ class VisionTransformer(nn.Module):
|
|
| 616 |
if self.dist_token is None:
|
| 617 |
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
|
| 618 |
else:
|
| 619 |
-
x = torch.cat(
|
|
|
|
|
|
|
| 620 |
# print(x.shape)
|
| 621 |
x = self.pos_drop(x + self.pos_embed)
|
| 622 |
x = self.blocks(x)
|
|
@@ -627,7 +723,6 @@ class VisionTransformer(nn.Module):
|
|
| 627 |
return x[:, 0], x[:, 1]
|
| 628 |
|
| 629 |
def forward(self, x):
|
| 630 |
-
|
| 631 |
# B = x.shape[0]
|
| 632 |
# print(x)
|
| 633 |
# x = self.eca_block(x)
|
|
@@ -680,7 +775,7 @@ def _init_vit_weights(m):
|
|
| 680 |
:param m: module
|
| 681 |
"""
|
| 682 |
if isinstance(m, nn.Linear):
|
| 683 |
-
nn.init.trunc_normal_(m.weight, std
|
| 684 |
if m.bias is not None:
|
| 685 |
nn.init.zeros_(m.bias)
|
| 686 |
elif isinstance(m, nn.Conv2d):
|
|
@@ -699,13 +794,15 @@ def vit_base_patch16_224(num_classes: int = 7):
|
|
| 699 |
weights ported from official Google JAX impl:
|
| 700 |
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
|
| 701 |
"""
|
| 702 |
-
model = VisionTransformer(
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
|
|
|
|
|
|
| 709 |
|
| 710 |
return model
|
| 711 |
|
|
@@ -717,13 +814,15 @@ def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 717 |
weights ported from official Google JAX impl:
|
| 718 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
|
| 719 |
"""
|
| 720 |
-
model = VisionTransformer(
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
|
|
|
|
|
|
| 727 |
return model
|
| 728 |
|
| 729 |
|
|
@@ -734,13 +833,15 @@ def vit_base_patch32_224(num_classes: int = 1000):
|
|
| 734 |
weights ported from official Google JAX impl:
|
| 735 |
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
|
| 736 |
"""
|
| 737 |
-
model = VisionTransformer(
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
|
|
|
|
|
|
| 744 |
return model
|
| 745 |
|
| 746 |
|
|
@@ -751,13 +852,15 @@ def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 751 |
weights ported from official Google JAX impl:
|
| 752 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
|
| 753 |
"""
|
| 754 |
-
model = VisionTransformer(
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
|
|
|
|
|
|
| 761 |
return model
|
| 762 |
|
| 763 |
|
|
@@ -768,13 +871,15 @@ def vit_large_patch16_224(num_classes: int = 1000):
|
|
| 768 |
weights ported from official Google JAX impl:
|
| 769 |
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
|
| 770 |
"""
|
| 771 |
-
model = VisionTransformer(
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
|
|
|
|
|
|
| 778 |
return model
|
| 779 |
|
| 780 |
|
|
@@ -785,13 +890,15 @@ def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = Tru
|
|
| 785 |
weights ported from official Google JAX impl:
|
| 786 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
|
| 787 |
"""
|
| 788 |
-
model = VisionTransformer(
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
|
|
|
|
|
|
| 795 |
return model
|
| 796 |
|
| 797 |
|
|
@@ -802,13 +909,15 @@ def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = Tru
|
|
| 802 |
weights ported from official Google JAX impl:
|
| 803 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
|
| 804 |
"""
|
| 805 |
-
model = VisionTransformer(
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
|
|
|
|
|
|
| 812 |
return model
|
| 813 |
|
| 814 |
|
|
@@ -818,11 +927,13 @@ def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 818 |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 819 |
NOTE: converted weights not currently available, too large for github release hosting.
|
| 820 |
"""
|
| 821 |
-
model = VisionTransformer(
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
|
|
|
|
|
|
| 828 |
return model
|
|
|
|
| 2 |
original code from rwightman:
|
| 3 |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
| 4 |
"""
|
| 5 |
+
|
| 6 |
from functools import partial
|
| 7 |
from collections import OrderedDict
|
| 8 |
|
|
|
|
| 24 |
from functools import partial
|
| 25 |
import math
|
| 26 |
|
| 27 |
+
from timm.layers import DropPath, to_2tuple, trunc_normal_
|
| 28 |
+
from timm.models import register_model
|
| 29 |
from timm.models.vision_transformer import _cfg, Mlp, Block
|
| 30 |
# from .ir50 import Backbone
|
| 31 |
|
| 32 |
|
| 33 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
| 34 |
"""3x3 convolution with padding"""
|
| 35 |
+
return nn.Conv2d(
|
| 36 |
+
in_planes,
|
| 37 |
+
out_planes,
|
| 38 |
+
kernel_size=3,
|
| 39 |
+
stride=stride,
|
| 40 |
+
padding=dilation,
|
| 41 |
+
groups=groups,
|
| 42 |
+
bias=False,
|
| 43 |
+
dilation=dilation,
|
| 44 |
+
)
|
| 45 |
|
| 46 |
|
| 47 |
def conv1x1(in_planes, out_planes, stride=1):
|
|
|
|
| 49 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 50 |
|
| 51 |
|
| 52 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 53 |
"""
|
| 54 |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 55 |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
|
| 58 |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 59 |
'survival rate' as the argument.
|
| 60 |
"""
|
| 61 |
+
if drop_prob == 0.0 or not training:
|
| 62 |
return x
|
| 63 |
keep_prob = 1 - drop_prob
|
| 64 |
+
shape = (x.shape[0],) + (1,) * (
|
| 65 |
+
x.ndim - 1
|
| 66 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 67 |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 68 |
random_tensor.floor_() # binarize
|
| 69 |
output = x.div(keep_prob) * random_tensor
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
class BasicBlock(nn.Module):
|
| 74 |
+
__constants__ = ["downsample"]
|
| 75 |
|
| 76 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 77 |
super(BasicBlock, self).__init__()
|
|
|
|
| 120 |
2D Image to Patch Embedding
|
| 121 |
"""
|
| 122 |
|
| 123 |
+
def __init__(
|
| 124 |
+
self, img_size=14, patch_size=16, in_c=256, embed_dim=768, norm_layer=None
|
| 125 |
+
):
|
| 126 |
super().__init__()
|
| 127 |
img_size = (img_size, img_size)
|
| 128 |
patch_size = (patch_size, patch_size)
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
class Attention(nn.Module):
|
| 151 |
+
def __init__(
|
| 152 |
+
self,
|
| 153 |
+
dim,
|
| 154 |
+
in_chans, # 输入token的dim
|
| 155 |
+
num_heads=8,
|
| 156 |
+
qkv_bias=False,
|
| 157 |
+
qk_scale=None,
|
| 158 |
+
attn_drop_ratio=0.0,
|
| 159 |
+
proj_drop_ratio=0.0,
|
| 160 |
+
):
|
| 161 |
super(Attention, self).__init__()
|
| 162 |
self.num_heads = 8
|
| 163 |
self.img_chanel = in_chans + 1
|
| 164 |
head_dim = dim // num_heads
|
| 165 |
+
self.scale = head_dim**-0.5
|
| 166 |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 167 |
self.attn_drop = nn.Dropout(attn_drop_ratio)
|
| 168 |
self.proj = nn.Linear(dim, dim)
|
| 169 |
self.proj_drop = nn.Dropout(proj_drop_ratio)
|
| 170 |
|
| 171 |
def forward(self, x):
|
| 172 |
+
x_img = x[:, : self.img_chanel, :]
|
| 173 |
# [batch_size, num_patches + 1, total_embed_dim]
|
| 174 |
B, N, C = x_img.shape
|
| 175 |
# print(C)
|
| 176 |
+
qkv = (
|
| 177 |
+
self.qkv(x_img)
|
| 178 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 179 |
+
.permute(2, 0, 3, 1, 4)
|
| 180 |
+
)
|
| 181 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 182 |
# k, v = kv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 183 |
# q = x_img.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
| 213 |
|
| 214 |
|
| 215 |
class AttentionBlock(nn.Module):
|
| 216 |
+
__constants__ = ["downsample"]
|
| 217 |
|
| 218 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 219 |
super(AttentionBlock, self).__init__()
|
|
|
|
| 254 |
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
| 255 |
"""
|
| 256 |
|
| 257 |
+
def __init__(
|
| 258 |
+
self,
|
| 259 |
+
in_features,
|
| 260 |
+
hidden_features=None,
|
| 261 |
+
out_features=None,
|
| 262 |
+
act_layer=nn.GELU,
|
| 263 |
+
drop=0.0,
|
| 264 |
+
):
|
| 265 |
super().__init__()
|
| 266 |
out_features = out_features or in_features
|
| 267 |
hidden_features = hidden_features or in_features
|
|
|
|
| 280 |
|
| 281 |
|
| 282 |
class Block(nn.Module):
|
| 283 |
+
def __init__(
|
| 284 |
+
self,
|
| 285 |
+
dim,
|
| 286 |
+
in_chans,
|
| 287 |
+
num_heads,
|
| 288 |
+
mlp_ratio=4.0,
|
| 289 |
+
qkv_bias=False,
|
| 290 |
+
qk_scale=None,
|
| 291 |
+
drop_ratio=0.0,
|
| 292 |
+
attn_drop_ratio=0.0,
|
| 293 |
+
drop_path_ratio=0.0,
|
| 294 |
+
act_layer=nn.GELU,
|
| 295 |
+
norm_layer=nn.LayerNorm,
|
| 296 |
+
):
|
| 297 |
super(Block, self).__init__()
|
| 298 |
self.norm1 = norm_layer(dim)
|
| 299 |
self.img_chanel = in_chans + 1
|
| 300 |
|
| 301 |
self.conv = nn.Conv1d(self.img_chanel, self.img_chanel, 1)
|
| 302 |
+
self.attn = Attention(
|
| 303 |
+
dim,
|
| 304 |
+
in_chans=in_chans,
|
| 305 |
+
num_heads=num_heads,
|
| 306 |
+
qkv_bias=qkv_bias,
|
| 307 |
+
qk_scale=qk_scale,
|
| 308 |
+
attn_drop_ratio=attn_drop_ratio,
|
| 309 |
+
proj_drop_ratio=drop_ratio,
|
| 310 |
+
)
|
| 311 |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 312 |
+
self.drop_path = (
|
| 313 |
+
DropPath(drop_path_ratio) if drop_path_ratio > 0.0 else nn.Identity()
|
| 314 |
+
)
|
| 315 |
self.norm2 = norm_layer(dim)
|
| 316 |
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 317 |
+
self.mlp = Mlp(
|
| 318 |
+
in_features=dim,
|
| 319 |
+
hidden_features=mlp_hidden_dim,
|
| 320 |
+
act_layer=act_layer,
|
| 321 |
+
drop=drop_ratio,
|
| 322 |
+
)
|
| 323 |
|
| 324 |
def forward(self, x):
|
| 325 |
# x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
|
|
| 352 |
|
| 353 |
def load_pretrained_weights(model, checkpoint):
|
| 354 |
import collections
|
| 355 |
+
|
| 356 |
+
if "state_dict" in checkpoint:
|
| 357 |
+
state_dict = checkpoint["state_dict"]
|
| 358 |
else:
|
| 359 |
state_dict = checkpoint
|
| 360 |
model_dict = model.state_dict()
|
|
|
|
| 363 |
for k, v in state_dict.items():
|
| 364 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 365 |
# keys would contain "module.", which should be ignored.
|
| 366 |
+
if k.startswith("module."):
|
| 367 |
k = k[7:]
|
| 368 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 369 |
new_state_dict[k] = v
|
|
|
|
| 374 |
model_dict.update(new_state_dict)
|
| 375 |
|
| 376 |
model.load_state_dict(model_dict)
|
| 377 |
+
print("load_weight", len(matched_layers))
|
| 378 |
return model
|
| 379 |
|
| 380 |
+
|
| 381 |
class eca_block(nn.Module):
|
| 382 |
def __init__(self, channel=128, b=1, gamma=2):
|
| 383 |
super(eca_block, self).__init__()
|
|
|
|
| 385 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 386 |
|
| 387 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 388 |
+
self.conv = nn.Conv1d(
|
| 389 |
+
1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
|
| 390 |
+
)
|
| 391 |
self.sigmoid = nn.Sigmoid()
|
| 392 |
|
| 393 |
def forward(self, x):
|
|
|
|
| 395 |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 396 |
y = self.sigmoid(y)
|
| 397 |
return x * y.expand_as(x)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
#
|
| 401 |
#
|
| 402 |
# class IR20(nn.Module):
|
|
|
|
| 534 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 535 |
|
| 536 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 537 |
+
self.conv = nn.Conv1d(
|
| 538 |
+
1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
|
| 539 |
+
)
|
| 540 |
self.sigmoid = nn.Sigmoid()
|
| 541 |
|
| 542 |
def forward(self, x):
|
|
|
|
| 545 |
y = self.sigmoid(y)
|
| 546 |
return x * y.expand_as(x)
|
| 547 |
|
| 548 |
+
|
| 549 |
class SE_block(nn.Module):
|
| 550 |
def __init__(self, input_dim: int):
|
| 551 |
super().__init__()
|
|
|
|
| 564 |
|
| 565 |
|
| 566 |
class VisionTransformer(nn.Module):
|
| 567 |
+
def __init__(
|
| 568 |
+
self,
|
| 569 |
+
img_size=14,
|
| 570 |
+
patch_size=14,
|
| 571 |
+
in_c=147,
|
| 572 |
+
num_classes=7,
|
| 573 |
+
embed_dim=768,
|
| 574 |
+
depth=6,
|
| 575 |
+
num_heads=8,
|
| 576 |
+
mlp_ratio=4.0,
|
| 577 |
+
qkv_bias=True,
|
| 578 |
+
qk_scale=None,
|
| 579 |
+
representation_size=None,
|
| 580 |
+
distilled=False,
|
| 581 |
+
drop_ratio=0.0,
|
| 582 |
+
attn_drop_ratio=0.0,
|
| 583 |
+
drop_path_ratio=0.0,
|
| 584 |
+
embed_layer=PatchEmbed,
|
| 585 |
+
norm_layer=None,
|
| 586 |
+
act_layer=None,
|
| 587 |
+
):
|
| 588 |
"""
|
| 589 |
Args:
|
| 590 |
img_size (int, tuple): input image size
|
|
|
|
| 607 |
"""
|
| 608 |
super(VisionTransformer, self).__init__()
|
| 609 |
self.num_classes = num_classes
|
| 610 |
+
self.num_features = self.embed_dim = (
|
| 611 |
+
embed_dim # num_features for consistency with other models
|
| 612 |
+
)
|
| 613 |
self.num_tokens = 2 if distilled else 1
|
| 614 |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 615 |
act_layer = act_layer or nn.GELU
|
|
|
|
| 620 |
|
| 621 |
self.se_block = SE_block(input_dim=embed_dim)
|
| 622 |
|
| 623 |
+
self.patch_embed = embed_layer(
|
| 624 |
+
img_size=img_size, patch_size=patch_size, in_c=256, embed_dim=768
|
| 625 |
+
)
|
| 626 |
num_patches = self.patch_embed.num_patches
|
| 627 |
self.head = ClassificationHead(input_dim=embed_dim, target_dim=self.num_classes)
|
| 628 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 629 |
+
self.dist_token = (
|
| 630 |
+
nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
|
| 631 |
+
)
|
| 632 |
# self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 633 |
self.pos_drop = nn.Dropout(p=drop_ratio)
|
| 634 |
# self.IR = IR()
|
| 635 |
self.eca_block = eca_block()
|
| 636 |
|
|
|
|
| 637 |
# self.ir_back = Backbone(50, 0.0, 'ir')
|
| 638 |
# ir_checkpoint = torch.load('./models/pretrain/ir50.pth', map_location=lambda storage, loc: storage)
|
| 639 |
# # ir_checkpoint = ir_checkpoint["model"]
|
|
|
|
| 643 |
self.IRLinear1 = nn.Linear(1024, 768)
|
| 644 |
self.IRLinear2 = nn.Linear(768, 512)
|
| 645 |
self.eca_block = eca_block()
|
| 646 |
+
dpr = [
|
| 647 |
+
x.item() for x in torch.linspace(0, drop_path_ratio, depth)
|
| 648 |
+
] # stochastic depth decay rule
|
| 649 |
+
self.blocks = nn.Sequential(
|
| 650 |
+
*[
|
| 651 |
+
Block(
|
| 652 |
+
dim=embed_dim,
|
| 653 |
+
in_chans=in_c,
|
| 654 |
+
num_heads=num_heads,
|
| 655 |
+
mlp_ratio=mlp_ratio,
|
| 656 |
+
qkv_bias=qkv_bias,
|
| 657 |
+
qk_scale=qk_scale,
|
| 658 |
+
drop_ratio=drop_ratio,
|
| 659 |
+
attn_drop_ratio=attn_drop_ratio,
|
| 660 |
+
drop_path_ratio=dpr[i],
|
| 661 |
+
norm_layer=norm_layer,
|
| 662 |
+
act_layer=act_layer,
|
| 663 |
+
)
|
| 664 |
+
for i in range(depth)
|
| 665 |
+
]
|
| 666 |
+
)
|
| 667 |
self.norm = norm_layer(embed_dim)
|
| 668 |
|
| 669 |
# Representation layer
|
| 670 |
if representation_size and not distilled:
|
| 671 |
self.has_logits = True
|
| 672 |
self.num_features = representation_size
|
| 673 |
+
self.pre_logits = nn.Sequential(
|
| 674 |
+
OrderedDict(
|
| 675 |
+
[
|
| 676 |
+
("fc", nn.Linear(embed_dim, representation_size)),
|
| 677 |
+
("act", nn.Tanh()),
|
| 678 |
+
]
|
| 679 |
+
)
|
| 680 |
+
)
|
| 681 |
else:
|
| 682 |
self.has_logits = False
|
| 683 |
self.pre_logits = nn.Identity()
|
|
|
|
| 686 |
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 687 |
self.head_dist = None
|
| 688 |
if distilled:
|
| 689 |
+
self.head_dist = (
|
| 690 |
+
nn.Linear(self.embed_dim, self.num_classes)
|
| 691 |
+
if num_classes > 0
|
| 692 |
+
else nn.Identity()
|
| 693 |
+
)
|
| 694 |
|
| 695 |
# Weight init
|
| 696 |
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
|
|
| 710 |
if self.dist_token is None:
|
| 711 |
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
|
| 712 |
else:
|
| 713 |
+
x = torch.cat(
|
| 714 |
+
(cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1
|
| 715 |
+
)
|
| 716 |
# print(x.shape)
|
| 717 |
x = self.pos_drop(x + self.pos_embed)
|
| 718 |
x = self.blocks(x)
|
|
|
|
| 723 |
return x[:, 0], x[:, 1]
|
| 724 |
|
| 725 |
def forward(self, x):
|
|
|
|
| 726 |
# B = x.shape[0]
|
| 727 |
# print(x)
|
| 728 |
# x = self.eca_block(x)
|
|
|
|
| 775 |
:param m: module
|
| 776 |
"""
|
| 777 |
if isinstance(m, nn.Linear):
|
| 778 |
+
nn.init.trunc_normal_(m.weight, std=0.01)
|
| 779 |
if m.bias is not None:
|
| 780 |
nn.init.zeros_(m.bias)
|
| 781 |
elif isinstance(m, nn.Conv2d):
|
|
|
|
| 794 |
weights ported from official Google JAX impl:
|
| 795 |
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
|
| 796 |
"""
|
| 797 |
+
model = VisionTransformer(
|
| 798 |
+
img_size=224,
|
| 799 |
+
patch_size=16,
|
| 800 |
+
embed_dim=768,
|
| 801 |
+
depth=12,
|
| 802 |
+
num_heads=12,
|
| 803 |
+
representation_size=None,
|
| 804 |
+
num_classes=num_classes,
|
| 805 |
+
)
|
| 806 |
|
| 807 |
return model
|
| 808 |
|
|
|
|
| 814 |
weights ported from official Google JAX impl:
|
| 815 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
|
| 816 |
"""
|
| 817 |
+
model = VisionTransformer(
|
| 818 |
+
img_size=224,
|
| 819 |
+
patch_size=16,
|
| 820 |
+
embed_dim=768,
|
| 821 |
+
depth=12,
|
| 822 |
+
num_heads=12,
|
| 823 |
+
representation_size=768 if has_logits else None,
|
| 824 |
+
num_classes=num_classes,
|
| 825 |
+
)
|
| 826 |
return model
|
| 827 |
|
| 828 |
|
|
|
|
| 833 |
weights ported from official Google JAX impl:
|
| 834 |
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
|
| 835 |
"""
|
| 836 |
+
model = VisionTransformer(
|
| 837 |
+
img_size=224,
|
| 838 |
+
patch_size=32,
|
| 839 |
+
embed_dim=768,
|
| 840 |
+
depth=12,
|
| 841 |
+
num_heads=12,
|
| 842 |
+
representation_size=None,
|
| 843 |
+
num_classes=num_classes,
|
| 844 |
+
)
|
| 845 |
return model
|
| 846 |
|
| 847 |
|
|
|
|
| 852 |
weights ported from official Google JAX impl:
|
| 853 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
|
| 854 |
"""
|
| 855 |
+
model = VisionTransformer(
|
| 856 |
+
img_size=224,
|
| 857 |
+
patch_size=32,
|
| 858 |
+
embed_dim=768,
|
| 859 |
+
depth=12,
|
| 860 |
+
num_heads=12,
|
| 861 |
+
representation_size=768 if has_logits else None,
|
| 862 |
+
num_classes=num_classes,
|
| 863 |
+
)
|
| 864 |
return model
|
| 865 |
|
| 866 |
|
|
|
|
| 871 |
weights ported from official Google JAX impl:
|
| 872 |
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
|
| 873 |
"""
|
| 874 |
+
model = VisionTransformer(
|
| 875 |
+
img_size=224,
|
| 876 |
+
patch_size=16,
|
| 877 |
+
embed_dim=1024,
|
| 878 |
+
depth=24,
|
| 879 |
+
num_heads=16,
|
| 880 |
+
representation_size=None,
|
| 881 |
+
num_classes=num_classes,
|
| 882 |
+
)
|
| 883 |
return model
|
| 884 |
|
| 885 |
|
|
|
|
| 890 |
weights ported from official Google JAX impl:
|
| 891 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
|
| 892 |
"""
|
| 893 |
+
model = VisionTransformer(
|
| 894 |
+
img_size=224,
|
| 895 |
+
patch_size=16,
|
| 896 |
+
embed_dim=1024,
|
| 897 |
+
depth=24,
|
| 898 |
+
num_heads=16,
|
| 899 |
+
representation_size=1024 if has_logits else None,
|
| 900 |
+
num_classes=num_classes,
|
| 901 |
+
)
|
| 902 |
return model
|
| 903 |
|
| 904 |
|
|
|
|
| 909 |
weights ported from official Google JAX impl:
|
| 910 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
|
| 911 |
"""
|
| 912 |
+
model = VisionTransformer(
|
| 913 |
+
img_size=224,
|
| 914 |
+
patch_size=32,
|
| 915 |
+
embed_dim=1024,
|
| 916 |
+
depth=24,
|
| 917 |
+
num_heads=16,
|
| 918 |
+
representation_size=1024 if has_logits else None,
|
| 919 |
+
num_classes=num_classes,
|
| 920 |
+
)
|
| 921 |
return model
|
| 922 |
|
| 923 |
|
|
|
|
| 927 |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 928 |
NOTE: converted weights not currently available, too large for github release hosting.
|
| 929 |
"""
|
| 930 |
+
model = VisionTransformer(
|
| 931 |
+
img_size=224,
|
| 932 |
+
patch_size=14,
|
| 933 |
+
embed_dim=1280,
|
| 934 |
+
depth=32,
|
| 935 |
+
num_heads=16,
|
| 936 |
+
representation_size=1280 if has_logits else None,
|
| 937 |
+
num_classes=num_classes,
|
| 938 |
+
)
|
| 939 |
return model
|
FER/models/vit_model_8.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
original code from rwightman:
|
| 3 |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
| 4 |
"""
|
|
|
|
| 5 |
from functools import partial
|
| 6 |
from collections import OrderedDict
|
| 7 |
|
|
@@ -23,16 +24,24 @@ import torch.hub
|
|
| 23 |
from functools import partial
|
| 24 |
import math
|
| 25 |
|
| 26 |
-
from timm.
|
| 27 |
-
from timm.models
|
| 28 |
from timm.models.vision_transformer import _cfg, Mlp, Block
|
| 29 |
from .ir50 import Backbone
|
| 30 |
|
| 31 |
|
| 32 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
| 33 |
"""3x3 convolution with padding"""
|
| 34 |
-
return nn.Conv2d(
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def conv1x1(in_planes, out_planes, stride=1):
|
|
@@ -40,7 +49,7 @@ def conv1x1(in_planes, out_planes, stride=1):
|
|
| 40 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 41 |
|
| 42 |
|
| 43 |
-
def drop_path(x, drop_prob: float = 0
|
| 44 |
"""
|
| 45 |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 46 |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
@@ -49,10 +58,12 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
| 49 |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 50 |
'survival rate' as the argument.
|
| 51 |
"""
|
| 52 |
-
if drop_prob == 0. or not training:
|
| 53 |
return x
|
| 54 |
keep_prob = 1 - drop_prob
|
| 55 |
-
shape = (x.shape[0],) + (1,) * (
|
|
|
|
|
|
|
| 56 |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 57 |
random_tensor.floor_() # binarize
|
| 58 |
output = x.div(keep_prob) * random_tensor
|
|
@@ -60,7 +71,7 @@ def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
| 60 |
|
| 61 |
|
| 62 |
class BasicBlock(nn.Module):
|
| 63 |
-
__constants__ = [
|
| 64 |
|
| 65 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 66 |
super(BasicBlock, self).__init__()
|
|
@@ -109,7 +120,9 @@ class PatchEmbed(nn.Module):
|
|
| 109 |
2D Image to Patch Embedding
|
| 110 |
"""
|
| 111 |
|
| 112 |
-
def __init__(
|
|
|
|
|
|
|
| 113 |
super().__init__()
|
| 114 |
img_size = (img_size, img_size)
|
| 115 |
patch_size = (patch_size, patch_size)
|
|
@@ -135,29 +148,36 @@ class PatchEmbed(nn.Module):
|
|
| 135 |
|
| 136 |
|
| 137 |
class Attention(nn.Module):
|
| 138 |
-
def __init__(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
| 145 |
super(Attention, self).__init__()
|
| 146 |
self.num_heads = 8
|
| 147 |
self.img_chanel = in_chans + 1
|
| 148 |
head_dim = dim // num_heads
|
| 149 |
-
self.scale = head_dim
|
| 150 |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 151 |
self.attn_drop = nn.Dropout(attn_drop_ratio)
|
| 152 |
self.proj = nn.Linear(dim, dim)
|
| 153 |
self.proj_drop = nn.Dropout(proj_drop_ratio)
|
| 154 |
|
| 155 |
def forward(self, x):
|
| 156 |
-
x_img = x[:, :self.img_chanel, :]
|
| 157 |
# [batch_size, num_patches + 1, total_embed_dim]
|
| 158 |
B, N, C = x_img.shape
|
| 159 |
# print(C)
|
| 160 |
-
qkv =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 162 |
# k, v = kv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 163 |
# q = x_img.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
@@ -193,7 +213,7 @@ class Attention(nn.Module):
|
|
| 193 |
|
| 194 |
|
| 195 |
class AttentionBlock(nn.Module):
|
| 196 |
-
__constants__ = [
|
| 197 |
|
| 198 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 199 |
super(AttentionBlock, self).__init__()
|
|
@@ -234,7 +254,14 @@ class Mlp(nn.Module):
|
|
| 234 |
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
| 235 |
"""
|
| 236 |
|
| 237 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
super().__init__()
|
| 239 |
out_features = out_features or in_features
|
| 240 |
hidden_features = hidden_features or in_features
|
|
@@ -253,29 +280,46 @@ class Mlp(nn.Module):
|
|
| 253 |
|
| 254 |
|
| 255 |
class Block(nn.Module):
|
| 256 |
-
def __init__(
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
| 267 |
super(Block, self).__init__()
|
| 268 |
self.norm1 = norm_layer(dim)
|
| 269 |
self.img_chanel = in_chans + 1
|
| 270 |
|
| 271 |
self.conv = nn.Conv1d(self.img_chanel, self.img_chanel, 1)
|
| 272 |
-
self.attn = Attention(
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 275 |
-
self.drop_path =
|
|
|
|
|
|
|
| 276 |
self.norm2 = norm_layer(dim)
|
| 277 |
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 278 |
-
self.mlp = Mlp(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
def forward(self, x):
|
| 281 |
# x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
@@ -308,8 +352,9 @@ class ClassificationHead(nn.Module):
|
|
| 308 |
|
| 309 |
def load_pretrained_weights(model, checkpoint):
|
| 310 |
import collections
|
| 311 |
-
|
| 312 |
-
|
|
|
|
| 313 |
else:
|
| 314 |
state_dict = checkpoint
|
| 315 |
model_dict = model.state_dict()
|
|
@@ -318,7 +363,7 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 318 |
for k, v in state_dict.items():
|
| 319 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 320 |
# keys would contain "module.", which should be ignored.
|
| 321 |
-
if k.startswith(
|
| 322 |
k = k[7:]
|
| 323 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 324 |
new_state_dict[k] = v
|
|
@@ -329,9 +374,10 @@ def load_pretrained_weights(model, checkpoint):
|
|
| 329 |
model_dict.update(new_state_dict)
|
| 330 |
|
| 331 |
model.load_state_dict(model_dict)
|
| 332 |
-
print(
|
| 333 |
return model
|
| 334 |
|
|
|
|
| 335 |
class eca_block(nn.Module):
|
| 336 |
def __init__(self, channel=128, b=1, gamma=2):
|
| 337 |
super(eca_block, self).__init__()
|
|
@@ -339,7 +385,9 @@ class eca_block(nn.Module):
|
|
| 339 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 340 |
|
| 341 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 342 |
-
self.conv = nn.Conv1d(
|
|
|
|
|
|
|
| 343 |
self.sigmoid = nn.Sigmoid()
|
| 344 |
|
| 345 |
def forward(self, x):
|
|
@@ -347,6 +395,8 @@ class eca_block(nn.Module):
|
|
| 347 |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 348 |
y = self.sigmoid(y)
|
| 349 |
return x * y.expand_as(x)
|
|
|
|
|
|
|
| 350 |
#
|
| 351 |
#
|
| 352 |
# class IR20(nn.Module):
|
|
@@ -484,7 +534,9 @@ class eca_block(nn.Module):
|
|
| 484 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 485 |
|
| 486 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 487 |
-
self.conv = nn.Conv1d(
|
|
|
|
|
|
|
| 488 |
self.sigmoid = nn.Sigmoid()
|
| 489 |
|
| 490 |
def forward(self, x):
|
|
@@ -493,6 +545,7 @@ class eca_block(nn.Module):
|
|
| 493 |
y = self.sigmoid(y)
|
| 494 |
return x * y.expand_as(x)
|
| 495 |
|
|
|
|
| 496 |
class SE_block(nn.Module):
|
| 497 |
def __init__(self, input_dim: int):
|
| 498 |
super().__init__()
|
|
@@ -511,11 +564,27 @@ class SE_block(nn.Module):
|
|
| 511 |
|
| 512 |
|
| 513 |
class VisionTransformer(nn.Module):
|
| 514 |
-
def __init__(
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
"""
|
| 520 |
Args:
|
| 521 |
img_size (int, tuple): input image size
|
|
@@ -538,7 +607,9 @@ class VisionTransformer(nn.Module):
|
|
| 538 |
"""
|
| 539 |
super(VisionTransformer, self).__init__()
|
| 540 |
self.num_classes = num_classes
|
| 541 |
-
self.num_features = self.embed_dim =
|
|
|
|
|
|
|
| 542 |
self.num_tokens = 2 if distilled else 1
|
| 543 |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 544 |
act_layer = act_layer or nn.GELU
|
|
@@ -549,18 +620,20 @@ class VisionTransformer(nn.Module):
|
|
| 549 |
|
| 550 |
self.se_block = SE_block(input_dim=embed_dim)
|
| 551 |
|
| 552 |
-
|
| 553 |
-
|
|
|
|
| 554 |
num_patches = self.patch_embed.num_patches
|
| 555 |
self.head = ClassificationHead(input_dim=embed_dim, target_dim=self.num_classes)
|
| 556 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 557 |
-
self.dist_token =
|
|
|
|
|
|
|
| 558 |
# self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 559 |
self.pos_drop = nn.Dropout(p=drop_ratio)
|
| 560 |
# self.IR = IR()
|
| 561 |
self.eca_block = eca_block()
|
| 562 |
|
| 563 |
-
|
| 564 |
# self.ir_back = Backbone(50, 0.0, 'ir')
|
| 565 |
# ir_checkpoint = torch.load('./models/pretrain/ir50.pth', map_location=lambda storage, loc: storage)
|
| 566 |
# # ir_checkpoint = ir_checkpoint["model"]
|
|
@@ -570,24 +643,41 @@ class VisionTransformer(nn.Module):
|
|
| 570 |
self.IRLinear1 = nn.Linear(1024, 768)
|
| 571 |
self.IRLinear2 = nn.Linear(768, 512)
|
| 572 |
self.eca_block = eca_block()
|
| 573 |
-
dpr = [
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
self.norm = norm_layer(embed_dim)
|
| 582 |
|
| 583 |
# Representation layer
|
| 584 |
if representation_size and not distilled:
|
| 585 |
self.has_logits = True
|
| 586 |
self.num_features = representation_size
|
| 587 |
-
self.pre_logits = nn.Sequential(
|
| 588 |
-
(
|
| 589 |
-
|
| 590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
else:
|
| 592 |
self.has_logits = False
|
| 593 |
self.pre_logits = nn.Identity()
|
|
@@ -596,7 +686,11 @@ class VisionTransformer(nn.Module):
|
|
| 596 |
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 597 |
self.head_dist = None
|
| 598 |
if distilled:
|
| 599 |
-
self.head_dist =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
|
| 601 |
# Weight init
|
| 602 |
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
@@ -616,7 +710,9 @@ class VisionTransformer(nn.Module):
|
|
| 616 |
if self.dist_token is None:
|
| 617 |
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
|
| 618 |
else:
|
| 619 |
-
x = torch.cat(
|
|
|
|
|
|
|
| 620 |
# print(x.shape)
|
| 621 |
x = self.pos_drop(x + self.pos_embed)
|
| 622 |
x = self.blocks(x)
|
|
@@ -627,7 +723,6 @@ class VisionTransformer(nn.Module):
|
|
| 627 |
return x[:, 0], x[:, 1]
|
| 628 |
|
| 629 |
def forward(self, x):
|
| 630 |
-
|
| 631 |
# B = x.shape[0]
|
| 632 |
# print(x)
|
| 633 |
# x = self.eca_block(x)
|
|
@@ -680,7 +775,7 @@ def _init_vit_weights(m):
|
|
| 680 |
:param m: module
|
| 681 |
"""
|
| 682 |
if isinstance(m, nn.Linear):
|
| 683 |
-
nn.init.trunc_normal_(m.weight, std
|
| 684 |
if m.bias is not None:
|
| 685 |
nn.init.zeros_(m.bias)
|
| 686 |
elif isinstance(m, nn.Conv2d):
|
|
@@ -699,13 +794,15 @@ def vit_base_patch16_224(num_classes: int = 7):
|
|
| 699 |
weights ported from official Google JAX impl:
|
| 700 |
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
|
| 701 |
"""
|
| 702 |
-
model = VisionTransformer(
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
|
|
|
|
|
|
| 709 |
|
| 710 |
return model
|
| 711 |
|
|
@@ -717,13 +814,15 @@ def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 717 |
weights ported from official Google JAX impl:
|
| 718 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
|
| 719 |
"""
|
| 720 |
-
model = VisionTransformer(
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
|
|
|
|
|
|
| 727 |
return model
|
| 728 |
|
| 729 |
|
|
@@ -734,13 +833,15 @@ def vit_base_patch32_224(num_classes: int = 1000):
|
|
| 734 |
weights ported from official Google JAX impl:
|
| 735 |
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
|
| 736 |
"""
|
| 737 |
-
model = VisionTransformer(
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
|
|
|
|
|
|
| 744 |
return model
|
| 745 |
|
| 746 |
|
|
@@ -751,13 +852,15 @@ def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 751 |
weights ported from official Google JAX impl:
|
| 752 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
|
| 753 |
"""
|
| 754 |
-
model = VisionTransformer(
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
|
|
|
|
|
|
| 761 |
return model
|
| 762 |
|
| 763 |
|
|
@@ -768,13 +871,15 @@ def vit_large_patch16_224(num_classes: int = 1000):
|
|
| 768 |
weights ported from official Google JAX impl:
|
| 769 |
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
|
| 770 |
"""
|
| 771 |
-
model = VisionTransformer(
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
|
|
|
|
|
|
| 778 |
return model
|
| 779 |
|
| 780 |
|
|
@@ -785,13 +890,15 @@ def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = Tru
|
|
| 785 |
weights ported from official Google JAX impl:
|
| 786 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
|
| 787 |
"""
|
| 788 |
-
model = VisionTransformer(
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
|
|
|
|
|
|
| 795 |
return model
|
| 796 |
|
| 797 |
|
|
@@ -802,13 +909,15 @@ def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = Tru
|
|
| 802 |
weights ported from official Google JAX impl:
|
| 803 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
|
| 804 |
"""
|
| 805 |
-
model = VisionTransformer(
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
|
|
|
|
|
|
| 812 |
return model
|
| 813 |
|
| 814 |
|
|
@@ -818,11 +927,13 @@ def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True
|
|
| 818 |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 819 |
NOTE: converted weights not currently available, too large for github release hosting.
|
| 820 |
"""
|
| 821 |
-
model = VisionTransformer(
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
|
|
|
|
|
|
| 828 |
return model
|
|
|
|
| 2 |
original code from rwightman:
|
| 3 |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
| 4 |
"""
|
| 5 |
+
|
| 6 |
from functools import partial
|
| 7 |
from collections import OrderedDict
|
| 8 |
|
|
|
|
| 24 |
from functools import partial
|
| 25 |
import math
|
| 26 |
|
| 27 |
+
from timm.layers import DropPath, to_2tuple, trunc_normal_
|
| 28 |
+
from timm.models import register_model
|
| 29 |
from timm.models.vision_transformer import _cfg, Mlp, Block
|
| 30 |
from .ir50 import Backbone
|
| 31 |
|
| 32 |
|
| 33 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
| 34 |
"""3x3 convolution with padding"""
|
| 35 |
+
return nn.Conv2d(
|
| 36 |
+
in_planes,
|
| 37 |
+
out_planes,
|
| 38 |
+
kernel_size=3,
|
| 39 |
+
stride=stride,
|
| 40 |
+
padding=dilation,
|
| 41 |
+
groups=groups,
|
| 42 |
+
bias=False,
|
| 43 |
+
dilation=dilation,
|
| 44 |
+
)
|
| 45 |
|
| 46 |
|
| 47 |
def conv1x1(in_planes, out_planes, stride=1):
|
|
|
|
| 49 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
| 50 |
|
| 51 |
|
| 52 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 53 |
"""
|
| 54 |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 55 |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
|
| 58 |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 59 |
'survival rate' as the argument.
|
| 60 |
"""
|
| 61 |
+
if drop_prob == 0.0 or not training:
|
| 62 |
return x
|
| 63 |
keep_prob = 1 - drop_prob
|
| 64 |
+
shape = (x.shape[0],) + (1,) * (
|
| 65 |
+
x.ndim - 1
|
| 66 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 67 |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 68 |
random_tensor.floor_() # binarize
|
| 69 |
output = x.div(keep_prob) * random_tensor
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
class BasicBlock(nn.Module):
|
| 74 |
+
__constants__ = ["downsample"]
|
| 75 |
|
| 76 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 77 |
super(BasicBlock, self).__init__()
|
|
|
|
| 120 |
2D Image to Patch Embedding
|
| 121 |
"""
|
| 122 |
|
| 123 |
+
def __init__(
|
| 124 |
+
self, img_size=14, patch_size=16, in_c=256, embed_dim=768, norm_layer=None
|
| 125 |
+
):
|
| 126 |
super().__init__()
|
| 127 |
img_size = (img_size, img_size)
|
| 128 |
patch_size = (patch_size, patch_size)
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
class Attention(nn.Module):
|
| 151 |
+
def __init__(
|
| 152 |
+
self,
|
| 153 |
+
dim,
|
| 154 |
+
in_chans, # 输入token的dim
|
| 155 |
+
num_heads=8,
|
| 156 |
+
qkv_bias=False,
|
| 157 |
+
qk_scale=None,
|
| 158 |
+
attn_drop_ratio=0.0,
|
| 159 |
+
proj_drop_ratio=0.0,
|
| 160 |
+
):
|
| 161 |
super(Attention, self).__init__()
|
| 162 |
self.num_heads = 8
|
| 163 |
self.img_chanel = in_chans + 1
|
| 164 |
head_dim = dim // num_heads
|
| 165 |
+
self.scale = head_dim**-0.5
|
| 166 |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 167 |
self.attn_drop = nn.Dropout(attn_drop_ratio)
|
| 168 |
self.proj = nn.Linear(dim, dim)
|
| 169 |
self.proj_drop = nn.Dropout(proj_drop_ratio)
|
| 170 |
|
| 171 |
def forward(self, x):
|
| 172 |
+
x_img = x[:, : self.img_chanel, :]
|
| 173 |
# [batch_size, num_patches + 1, total_embed_dim]
|
| 174 |
B, N, C = x_img.shape
|
| 175 |
# print(C)
|
| 176 |
+
qkv = (
|
| 177 |
+
self.qkv(x_img)
|
| 178 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 179 |
+
.permute(2, 0, 3, 1, 4)
|
| 180 |
+
)
|
| 181 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 182 |
# k, v = kv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 183 |
# q = x_img.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
| 213 |
|
| 214 |
|
| 215 |
class AttentionBlock(nn.Module):
|
| 216 |
+
__constants__ = ["downsample"]
|
| 217 |
|
| 218 |
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 219 |
super(AttentionBlock, self).__init__()
|
|
|
|
| 254 |
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
| 255 |
"""
|
| 256 |
|
| 257 |
+
def __init__(
|
| 258 |
+
self,
|
| 259 |
+
in_features,
|
| 260 |
+
hidden_features=None,
|
| 261 |
+
out_features=None,
|
| 262 |
+
act_layer=nn.GELU,
|
| 263 |
+
drop=0.0,
|
| 264 |
+
):
|
| 265 |
super().__init__()
|
| 266 |
out_features = out_features or in_features
|
| 267 |
hidden_features = hidden_features or in_features
|
|
|
|
| 280 |
|
| 281 |
|
| 282 |
class Block(nn.Module):
|
| 283 |
+
def __init__(
|
| 284 |
+
self,
|
| 285 |
+
dim,
|
| 286 |
+
in_chans,
|
| 287 |
+
num_heads,
|
| 288 |
+
mlp_ratio=4.0,
|
| 289 |
+
qkv_bias=False,
|
| 290 |
+
qk_scale=None,
|
| 291 |
+
drop_ratio=0.0,
|
| 292 |
+
attn_drop_ratio=0.0,
|
| 293 |
+
drop_path_ratio=0.0,
|
| 294 |
+
act_layer=nn.GELU,
|
| 295 |
+
norm_layer=nn.LayerNorm,
|
| 296 |
+
):
|
| 297 |
super(Block, self).__init__()
|
| 298 |
self.norm1 = norm_layer(dim)
|
| 299 |
self.img_chanel = in_chans + 1
|
| 300 |
|
| 301 |
self.conv = nn.Conv1d(self.img_chanel, self.img_chanel, 1)
|
| 302 |
+
self.attn = Attention(
|
| 303 |
+
dim,
|
| 304 |
+
in_chans=in_chans,
|
| 305 |
+
num_heads=num_heads,
|
| 306 |
+
qkv_bias=qkv_bias,
|
| 307 |
+
qk_scale=qk_scale,
|
| 308 |
+
attn_drop_ratio=attn_drop_ratio,
|
| 309 |
+
proj_drop_ratio=drop_ratio,
|
| 310 |
+
)
|
| 311 |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 312 |
+
self.drop_path = (
|
| 313 |
+
DropPath(drop_path_ratio) if drop_path_ratio > 0.0 else nn.Identity()
|
| 314 |
+
)
|
| 315 |
self.norm2 = norm_layer(dim)
|
| 316 |
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 317 |
+
self.mlp = Mlp(
|
| 318 |
+
in_features=dim,
|
| 319 |
+
hidden_features=mlp_hidden_dim,
|
| 320 |
+
act_layer=act_layer,
|
| 321 |
+
drop=drop_ratio,
|
| 322 |
+
)
|
| 323 |
|
| 324 |
def forward(self, x):
|
| 325 |
# x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
|
|
| 352 |
|
| 353 |
def load_pretrained_weights(model, checkpoint):
|
| 354 |
import collections
|
| 355 |
+
|
| 356 |
+
if "state_dict" in checkpoint:
|
| 357 |
+
state_dict = checkpoint["state_dict"]
|
| 358 |
else:
|
| 359 |
state_dict = checkpoint
|
| 360 |
model_dict = model.state_dict()
|
|
|
|
| 363 |
for k, v in state_dict.items():
|
| 364 |
# If the pretrained state_dict was saved as nn.DataParallel,
|
| 365 |
# keys would contain "module.", which should be ignored.
|
| 366 |
+
if k.startswith("module."):
|
| 367 |
k = k[7:]
|
| 368 |
if k in model_dict and model_dict[k].size() == v.size():
|
| 369 |
new_state_dict[k] = v
|
|
|
|
| 374 |
model_dict.update(new_state_dict)
|
| 375 |
|
| 376 |
model.load_state_dict(model_dict)
|
| 377 |
+
print("load_weight", len(matched_layers))
|
| 378 |
return model
|
| 379 |
|
| 380 |
+
|
| 381 |
class eca_block(nn.Module):
|
| 382 |
def __init__(self, channel=128, b=1, gamma=2):
|
| 383 |
super(eca_block, self).__init__()
|
|
|
|
| 385 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 386 |
|
| 387 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 388 |
+
self.conv = nn.Conv1d(
|
| 389 |
+
1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
|
| 390 |
+
)
|
| 391 |
self.sigmoid = nn.Sigmoid()
|
| 392 |
|
| 393 |
def forward(self, x):
|
|
|
|
| 395 |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 396 |
y = self.sigmoid(y)
|
| 397 |
return x * y.expand_as(x)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
#
|
| 401 |
#
|
| 402 |
# class IR20(nn.Module):
|
|
|
|
| 534 |
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
| 535 |
|
| 536 |
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 537 |
+
self.conv = nn.Conv1d(
|
| 538 |
+
1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False
|
| 539 |
+
)
|
| 540 |
self.sigmoid = nn.Sigmoid()
|
| 541 |
|
| 542 |
def forward(self, x):
|
|
|
|
| 545 |
y = self.sigmoid(y)
|
| 546 |
return x * y.expand_as(x)
|
| 547 |
|
| 548 |
+
|
| 549 |
class SE_block(nn.Module):
|
| 550 |
def __init__(self, input_dim: int):
|
| 551 |
super().__init__()
|
|
|
|
| 564 |
|
| 565 |
|
| 566 |
class VisionTransformer(nn.Module):
|
| 567 |
+
def __init__(
|
| 568 |
+
self,
|
| 569 |
+
img_size=14,
|
| 570 |
+
patch_size=14,
|
| 571 |
+
in_c=147,
|
| 572 |
+
num_classes=8,
|
| 573 |
+
embed_dim=768,
|
| 574 |
+
depth=6,
|
| 575 |
+
num_heads=8,
|
| 576 |
+
mlp_ratio=4.0,
|
| 577 |
+
qkv_bias=True,
|
| 578 |
+
qk_scale=None,
|
| 579 |
+
representation_size=None,
|
| 580 |
+
distilled=False,
|
| 581 |
+
drop_ratio=0.0,
|
| 582 |
+
attn_drop_ratio=0.0,
|
| 583 |
+
drop_path_ratio=0.0,
|
| 584 |
+
embed_layer=PatchEmbed,
|
| 585 |
+
norm_layer=None,
|
| 586 |
+
act_layer=None,
|
| 587 |
+
):
|
| 588 |
"""
|
| 589 |
Args:
|
| 590 |
img_size (int, tuple): input image size
|
|
|
|
| 607 |
"""
|
| 608 |
super(VisionTransformer, self).__init__()
|
| 609 |
self.num_classes = num_classes
|
| 610 |
+
self.num_features = self.embed_dim = (
|
| 611 |
+
embed_dim # num_features for consistency with other models
|
| 612 |
+
)
|
| 613 |
self.num_tokens = 2 if distilled else 1
|
| 614 |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 615 |
act_layer = act_layer or nn.GELU
|
|
|
|
| 620 |
|
| 621 |
self.se_block = SE_block(input_dim=embed_dim)
|
| 622 |
|
| 623 |
+
self.patch_embed = embed_layer(
|
| 624 |
+
img_size=img_size, patch_size=patch_size, in_c=256, embed_dim=768
|
| 625 |
+
)
|
| 626 |
num_patches = self.patch_embed.num_patches
|
| 627 |
self.head = ClassificationHead(input_dim=embed_dim, target_dim=self.num_classes)
|
| 628 |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 629 |
+
self.dist_token = (
|
| 630 |
+
nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
|
| 631 |
+
)
|
| 632 |
# self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 633 |
self.pos_drop = nn.Dropout(p=drop_ratio)
|
| 634 |
# self.IR = IR()
|
| 635 |
self.eca_block = eca_block()
|
| 636 |
|
|
|
|
| 637 |
# self.ir_back = Backbone(50, 0.0, 'ir')
|
| 638 |
# ir_checkpoint = torch.load('./models/pretrain/ir50.pth', map_location=lambda storage, loc: storage)
|
| 639 |
# # ir_checkpoint = ir_checkpoint["model"]
|
|
|
|
| 643 |
self.IRLinear1 = nn.Linear(1024, 768)
|
| 644 |
self.IRLinear2 = nn.Linear(768, 512)
|
| 645 |
self.eca_block = eca_block()
|
| 646 |
+
dpr = [
|
| 647 |
+
x.item() for x in torch.linspace(0, drop_path_ratio, depth)
|
| 648 |
+
] # stochastic depth decay rule
|
| 649 |
+
self.blocks = nn.Sequential(
|
| 650 |
+
*[
|
| 651 |
+
Block(
|
| 652 |
+
dim=embed_dim,
|
| 653 |
+
in_chans=in_c,
|
| 654 |
+
num_heads=num_heads,
|
| 655 |
+
mlp_ratio=mlp_ratio,
|
| 656 |
+
qkv_bias=qkv_bias,
|
| 657 |
+
qk_scale=qk_scale,
|
| 658 |
+
drop_ratio=drop_ratio,
|
| 659 |
+
attn_drop_ratio=attn_drop_ratio,
|
| 660 |
+
drop_path_ratio=dpr[i],
|
| 661 |
+
norm_layer=norm_layer,
|
| 662 |
+
act_layer=act_layer,
|
| 663 |
+
)
|
| 664 |
+
for i in range(depth)
|
| 665 |
+
]
|
| 666 |
+
)
|
| 667 |
self.norm = norm_layer(embed_dim)
|
| 668 |
|
| 669 |
# Representation layer
|
| 670 |
if representation_size and not distilled:
|
| 671 |
self.has_logits = True
|
| 672 |
self.num_features = representation_size
|
| 673 |
+
self.pre_logits = nn.Sequential(
|
| 674 |
+
OrderedDict(
|
| 675 |
+
[
|
| 676 |
+
("fc", nn.Linear(embed_dim, representation_size)),
|
| 677 |
+
("act", nn.Tanh()),
|
| 678 |
+
]
|
| 679 |
+
)
|
| 680 |
+
)
|
| 681 |
else:
|
| 682 |
self.has_logits = False
|
| 683 |
self.pre_logits = nn.Identity()
|
|
|
|
| 686 |
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 687 |
self.head_dist = None
|
| 688 |
if distilled:
|
| 689 |
+
self.head_dist = (
|
| 690 |
+
nn.Linear(self.embed_dim, self.num_classes)
|
| 691 |
+
if num_classes > 0
|
| 692 |
+
else nn.Identity()
|
| 693 |
+
)
|
| 694 |
|
| 695 |
# Weight init
|
| 696 |
nn.init.trunc_normal_(self.pos_embed, std=0.02)
|
|
|
|
| 710 |
if self.dist_token is None:
|
| 711 |
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
|
| 712 |
else:
|
| 713 |
+
x = torch.cat(
|
| 714 |
+
(cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1
|
| 715 |
+
)
|
| 716 |
# print(x.shape)
|
| 717 |
x = self.pos_drop(x + self.pos_embed)
|
| 718 |
x = self.blocks(x)
|
|
|
|
| 723 |
return x[:, 0], x[:, 1]
|
| 724 |
|
| 725 |
def forward(self, x):
|
|
|
|
| 726 |
# B = x.shape[0]
|
| 727 |
# print(x)
|
| 728 |
# x = self.eca_block(x)
|
|
|
|
| 775 |
:param m: module
|
| 776 |
"""
|
| 777 |
if isinstance(m, nn.Linear):
|
| 778 |
+
nn.init.trunc_normal_(m.weight, std=0.01)
|
| 779 |
if m.bias is not None:
|
| 780 |
nn.init.zeros_(m.bias)
|
| 781 |
elif isinstance(m, nn.Conv2d):
|
|
|
|
| 794 |
weights ported from official Google JAX impl:
|
| 795 |
链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
|
| 796 |
"""
|
| 797 |
+
model = VisionTransformer(
|
| 798 |
+
img_size=224,
|
| 799 |
+
patch_size=16,
|
| 800 |
+
embed_dim=768,
|
| 801 |
+
depth=12,
|
| 802 |
+
num_heads=12,
|
| 803 |
+
representation_size=None,
|
| 804 |
+
num_classes=num_classes,
|
| 805 |
+
)
|
| 806 |
|
| 807 |
return model
|
| 808 |
|
|
|
|
| 814 |
weights ported from official Google JAX impl:
|
| 815 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
|
| 816 |
"""
|
| 817 |
+
model = VisionTransformer(
|
| 818 |
+
img_size=224,
|
| 819 |
+
patch_size=16,
|
| 820 |
+
embed_dim=768,
|
| 821 |
+
depth=12,
|
| 822 |
+
num_heads=12,
|
| 823 |
+
representation_size=768 if has_logits else None,
|
| 824 |
+
num_classes=num_classes,
|
| 825 |
+
)
|
| 826 |
return model
|
| 827 |
|
| 828 |
|
|
|
|
| 833 |
weights ported from official Google JAX impl:
|
| 834 |
链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
|
| 835 |
"""
|
| 836 |
+
model = VisionTransformer(
|
| 837 |
+
img_size=224,
|
| 838 |
+
patch_size=32,
|
| 839 |
+
embed_dim=768,
|
| 840 |
+
depth=12,
|
| 841 |
+
num_heads=12,
|
| 842 |
+
representation_size=None,
|
| 843 |
+
num_classes=num_classes,
|
| 844 |
+
)
|
| 845 |
return model
|
| 846 |
|
| 847 |
|
|
|
|
| 852 |
weights ported from official Google JAX impl:
|
| 853 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
|
| 854 |
"""
|
| 855 |
+
model = VisionTransformer(
|
| 856 |
+
img_size=224,
|
| 857 |
+
patch_size=32,
|
| 858 |
+
embed_dim=768,
|
| 859 |
+
depth=12,
|
| 860 |
+
num_heads=12,
|
| 861 |
+
representation_size=768 if has_logits else None,
|
| 862 |
+
num_classes=num_classes,
|
| 863 |
+
)
|
| 864 |
return model
|
| 865 |
|
| 866 |
|
|
|
|
| 871 |
weights ported from official Google JAX impl:
|
| 872 |
链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
|
| 873 |
"""
|
| 874 |
+
model = VisionTransformer(
|
| 875 |
+
img_size=224,
|
| 876 |
+
patch_size=16,
|
| 877 |
+
embed_dim=1024,
|
| 878 |
+
depth=24,
|
| 879 |
+
num_heads=16,
|
| 880 |
+
representation_size=None,
|
| 881 |
+
num_classes=num_classes,
|
| 882 |
+
)
|
| 883 |
return model
|
| 884 |
|
| 885 |
|
|
|
|
| 890 |
weights ported from official Google JAX impl:
|
| 891 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
|
| 892 |
"""
|
| 893 |
+
model = VisionTransformer(
|
| 894 |
+
img_size=224,
|
| 895 |
+
patch_size=16,
|
| 896 |
+
embed_dim=1024,
|
| 897 |
+
depth=24,
|
| 898 |
+
num_heads=16,
|
| 899 |
+
representation_size=1024 if has_logits else None,
|
| 900 |
+
num_classes=num_classes,
|
| 901 |
+
)
|
| 902 |
return model
|
| 903 |
|
| 904 |
|
|
|
|
| 909 |
weights ported from official Google JAX impl:
|
| 910 |
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
|
| 911 |
"""
|
| 912 |
+
model = VisionTransformer(
|
| 913 |
+
img_size=224,
|
| 914 |
+
patch_size=32,
|
| 915 |
+
embed_dim=1024,
|
| 916 |
+
depth=24,
|
| 917 |
+
num_heads=16,
|
| 918 |
+
representation_size=1024 if has_logits else None,
|
| 919 |
+
num_classes=num_classes,
|
| 920 |
+
)
|
| 921 |
return model
|
| 922 |
|
| 923 |
|
|
|
|
| 927 |
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 928 |
NOTE: converted weights not currently available, too large for github release hosting.
|
| 929 |
"""
|
| 930 |
+
model = VisionTransformer(
|
| 931 |
+
img_size=224,
|
| 932 |
+
patch_size=14,
|
| 933 |
+
embed_dim=1280,
|
| 934 |
+
depth=32,
|
| 935 |
+
num_heads=16,
|
| 936 |
+
representation_size=1280 if has_logits else None,
|
| 937 |
+
num_classes=num_classes,
|
| 938 |
+
)
|
| 939 |
return model
|
FER/prediction.py
CHANGED
|
@@ -48,7 +48,7 @@ def main():
|
|
| 48 |
)
|
| 49 |
)
|
| 50 |
else:
|
| 51 |
-
print("=> no checkpoint found at '{}'".format(model_path))
|
| 52 |
predict(model, image_path=image_arr)
|
| 53 |
return
|
| 54 |
|
|
|
|
| 48 |
)
|
| 49 |
)
|
| 50 |
else:
|
| 51 |
+
print("[!] prediction.py => no checkpoint found at '{}'".format(model_path))
|
| 52 |
predict(model, image_path=image_arr)
|
| 53 |
return
|
| 54 |
|